Symmetric Exclusion Process with Stochastic Resetting

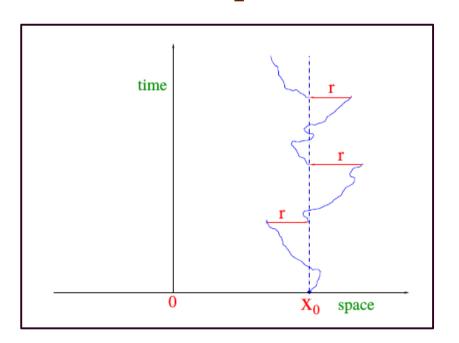
Urna Basu Raman Research Institute

Joint work with Anupam Kundu (ICTS, India) and Arnab Pal (TAU, Israel)

ISPCM, ICTS, Bengaluru February, 2020

Stochastic Resetting

- Interrupt and restart a dynamical process with some rate
- Paradigmatic example: Brownian particle reset to the initial position with fixed rate r



- Leads to
- Nontrivial stationary state
- Non-monotonic mean first passage time
- Anomalous persistence properties
- **•** ...

[Evans and Majumdar, PRL 2011]

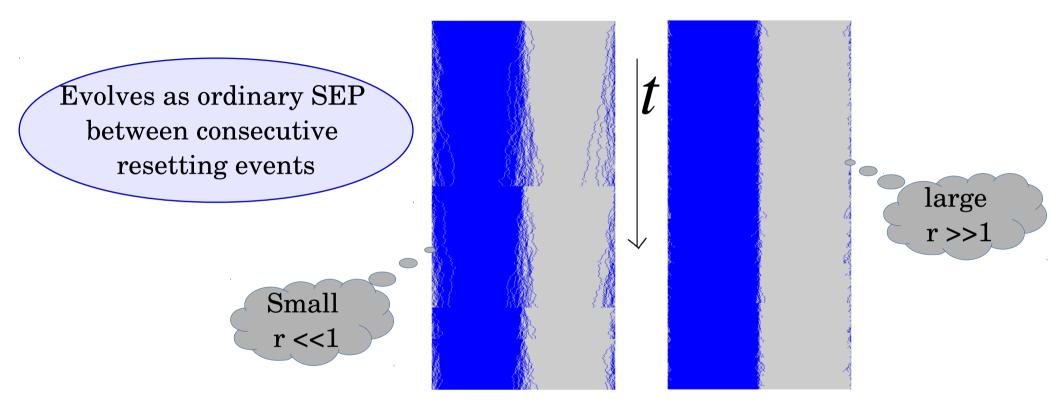
Interacting systems

- What happens for interacting many-particle systems?
 - Stationary state?
 - Effect on particle current?
- Simple example Symmetric exclusion process

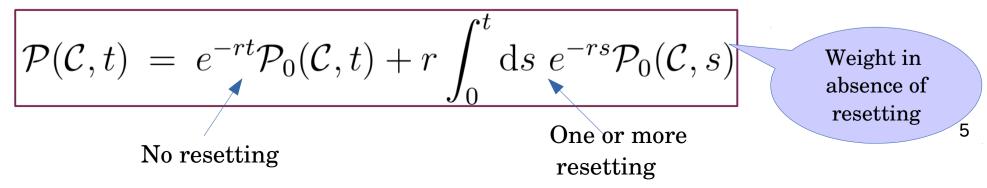
Symmetric Exclusion Process under resetting

- Particles on 1-dimensional ring of size L
- Exclusion: each site has at most one particle
- Configuration *C* is $\{s_i = 0, 1; i = 0, 1, ..., L-1\}$
- Half-filling condition: L/2 particles in total
- Dynamics:
 - Hopping to vacant nearest neighbouring site with unit rate (ordinary SEP dynamics)
 - Resetting to a step-like configuration $C_0 = \{...1111111000000...\}$ with rate r.

Time evolution of configurations



• Renewal equation for configuration weights



Observables

• Density Profile: average particle density at sites

Stationary profile?

- Particle current: net number of particles crossing the central bond during time [0,t]
 - Diffusive current (due to hopping)
 - Resetting current (due to resetting)

Statistical properties of these currents?

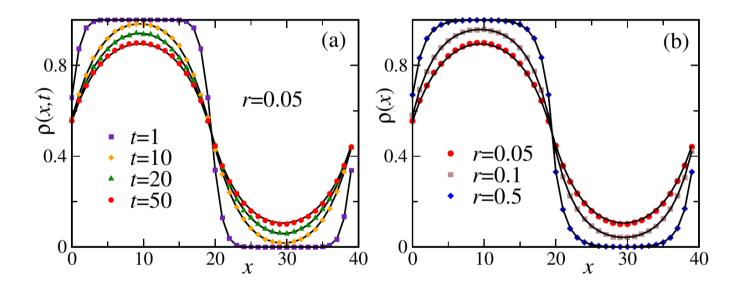
[UB, Kundu, Pal, Phys. Rev. E 100, 032136 (2019)]

Recap: ordinary SEP

- Density profile becomes flat in the long-time limit
- Diffusive current increases with time
- For a thermodynamically large system, in the long-time regime,
 - Average current $\langle J_0(t) \rangle \simeq \sqrt{\frac{t}{\pi}}$
 - Variance $\langle J_0^2(t) \rangle \langle J_0(t) \rangle^2 \simeq \sqrt{\frac{t}{\pi}} \left(1 \frac{1}{\sqrt{2}} \right)$
 - Typical fluctuations of J₀: Gaussian

Density Profile

Can be calculated exactly using ordinary SEP results



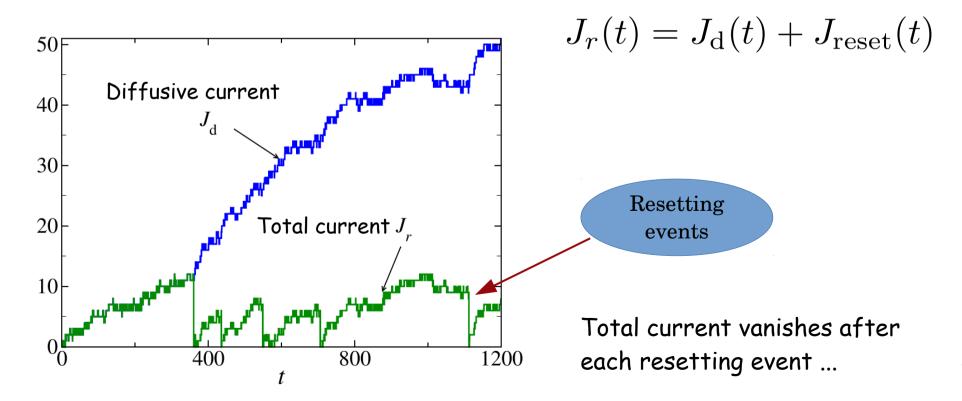
Inhomogeneous Stationary profile:

$$\rho(x) = \frac{1}{2} + \frac{r}{L} \sum_{n=1,3}^{L-1} e^{-i\frac{2\pi nx}{L}} \frac{(1+i\cot\frac{\pi n}{L})}{r+\lambda_n}$$

$$\lambda_n = 2\left(1 - \cos\frac{2\pi n}{L}\right)$$

Current

- Net number of particles crossing the central bond = #particles on the right-half of the lattice
- Total current J_r: diffusive + resetting currents



Diffusive current J_d

- Net particles crossing the central bond due to hopping only
- Sum of diffusive currents between consecutive resettings
- For a trajectory with n resetting events,

$$J_{
m d} = \sum_{i=1}^{n+1} J_0(t_i)$$
 Hopping current for r=0

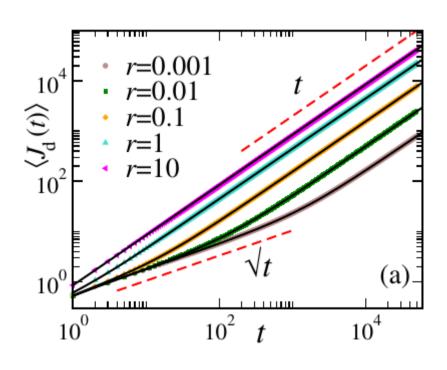
 Moments can be calculated using Laplace transform of the moment generating function

$$Q(s,\lambda) = \mathcal{L}_{t\to s}[\langle e^{\lambda J_{d}} \rangle] = \int_{0}^{\infty} dt \ e^{-st} \langle e^{\lambda J_{d}} \rangle$$

Average of J_d

- Exactly computed
- For small \mathbf{r} $\langle J_{\mathrm{d}}(t) \rangle = \frac{1}{2\sqrt{r}} \left[\left(rt + \frac{1}{2} \right) \operatorname{erf}(\sqrt{rt}) + \sqrt{\frac{rt}{\pi}} e^{-rt} \right]$
- Short-time (t << r⁻¹): similar to SEP, grows $\sim \sqrt{t}$
- Long-time $(t >> r^{-1})$:

$$\langle J_{\rm d}(t) \rangle \simeq \sqrt{\frac{r}{r+4}} t.$$



 \bigstar Linear growth - much faster than the \sqrt{t} behaviour for r=0 (ordinary SEP)

Variance of J_d

Closed form expression for small r

$$\langle J_{\rm d}^2(t) \rangle = \frac{1}{4\pi} \left[t(\pi r t + 4) + 2b\sqrt{\pi t} e^{-rt} + \frac{b\pi}{\sqrt{r}} (1 + 2rt) \mathrm{erf}(\sqrt{rt}) \right]$$

$$+ \frac{b\pi}{\sqrt{r}} (1 + 2rt) \mathrm{erf}(\sqrt{rt})$$

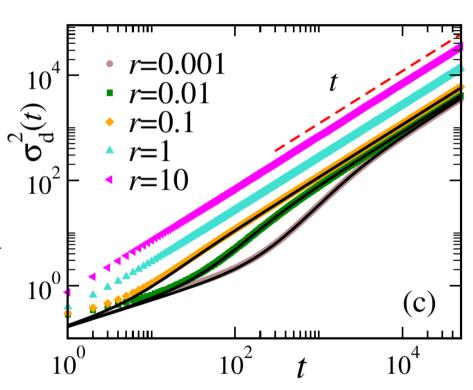
$$+ \frac{10^4}{\sqrt{r}} r = 0.001$$

$$+ \frac{r}{\sqrt{r}} r = 0.1$$

$$+ \frac{10^4}{\sqrt{r}} r = 0.1$$

• Variance grows linearly with t at late times

$$\sigma_{\rm d}^2(t) \simeq t \left[\frac{4-\pi}{4\pi} + \frac{\sqrt{r}}{2} \left(1 - \frac{1}{\sqrt{2}} \right) \right]$$

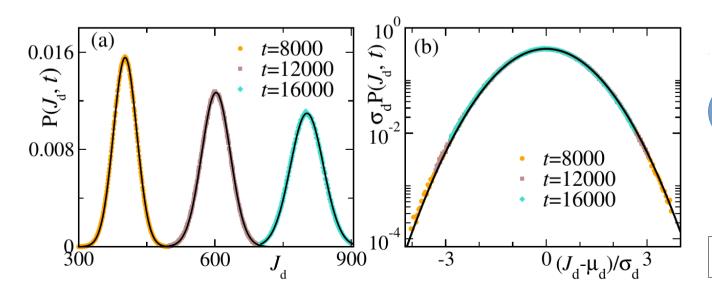


Reminder: For ordinary SEP, variance also grows $\sim \sqrt{t}$

Distribution

- Sum of (n+1) independent, identically distributed variables $J_{d} = \sum_{i=1}^{n+1} J_{0}(t_{i})$
- Gaussian distribution for large n, ie, at long time (rt >> 1)

$$P(J_{\rm d}, t) \simeq \frac{1}{\sqrt{2\pi\sigma_d^2(t)}} \exp\left(-\frac{[J_d - \mu_{\rm d}(t)]^2}{2\sigma_d^2(t)}\right)$$



Typical fluctuations around the peak

r=0.01

Total current

• Undergoes a resetting itself $-J_r=0$ after each resetting event

Renewal equation

$$P_r(J_r,t) = e^{-rt}P_0(J_r,t) + r \int_0^t ds \ e^{-rs}P_0(J_r,s)$$

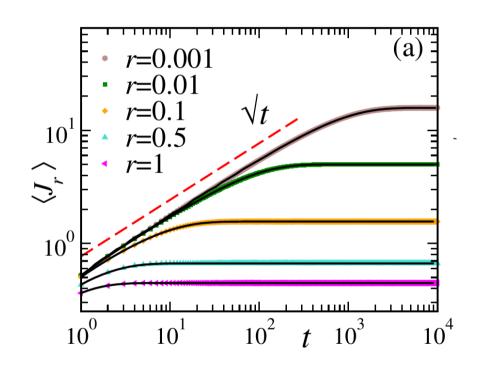
- Reaches a stationary state
- Moments satisfy same renewal equation

Moments of J_r

• Average total current (for r << 1)

$$\langle J_r(t)\rangle = \frac{1}{2\sqrt{r}}\operatorname{erf}(\sqrt{rt})$$

• Stationary value (for any r) is $\frac{1}{\sqrt{r(r+4)}}$

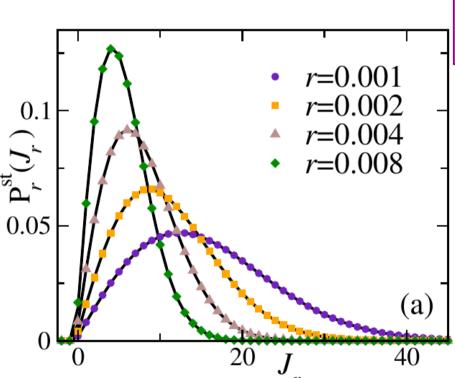


Variance shows similar behaviour

Distribution of total current

For small r

• Stationary distribution

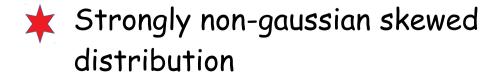


$$P_r^{\rm st}(J_r) = r \int_0^\infty d\tau \frac{e^{-r\tau}}{\sqrt{2\pi\sigma_\tau^2}} \exp\left[-\frac{(J_r - \mu_\tau)^2}{2\sigma_\tau^2}\right]$$

Gaussian distribution for SEP with r=0

$$P_r^{\text{st}}(J_r) = \frac{2\sqrt{2}r}{\pi^{1/4}\sqrt{b}} \exp\left(\frac{J_r}{b}\right)$$

$$\times \sum_{n=0}^{\infty} \frac{(-r)^n}{n!} \left(\sqrt{\pi}J_r\right)^{2n+\frac{3}{2}} K_{2n+\frac{3}{2}}\left(\frac{J_r}{b}\right)$$



Conclusions

- Behaviour of Symmetric Exclusion process under stochastic resetting
- Inhomogeneous stationary density profile
- Diffusive current and its variance grows *linearly* with time in contrast to the √t behaviour for ordinary SEP
- Total current reaches a stationary limit
- Non-gaussian fluctuations of the total current

Thank you!

Resetting current

- Net contribution from resetting events
- Negative
- Negatively correlated with diffusive current

