Non-linear response

Going beyond linear response

- * Perturbation strength larger
- * Around equilibrium and nonequilibrium
- * Response beyond regime of Kubo formula (or Nonequilibrium equivalent)
- * General structure?
- * Use dynamical ensembles

Extend the linear response

- * Observable $\langle O(t) \rangle_{\varepsilon} \langle O(t) \rangle_{0} = \varepsilon \chi_{1} + \varepsilon^{2} \chi_{2} + O(\varepsilon^{3})$
- * Second order susceptibility

$$\chi_2 = \frac{1}{2} \frac{d^2}{d\varepsilon^2} \langle O(t) \rangle_{\varepsilon}$$

$$\varepsilon = 0$$

- * Express χ_2 in terms of correlations in the unperturbed state?
- * Particularly relevant around equilibrium

Static, equilibrium

- * System in equilibrium, energy $H_0(x)$, inverse temperature β
- * Perturbation at t = 0 with additional potential $H(x) = H_0(x) \varepsilon V(x)$
- * After initial relaxation, new equilibrium with $\rho_{\varepsilon}(x) = \frac{e^{-\beta H(x)}}{\int dx \ e^{-\beta H(x)}}$
- * Expectation $\langle O \rangle_{\varepsilon} = \sum_{x} O(x) \rho_{\varepsilon}(x)$
- * Expand in ε

$$\chi_2 = \frac{\beta}{2} [\langle V^2 O \rangle_0 - \langle V^2 \rangle_0 \langle O \rangle_0 + 2 \langle V^2 \rangle_0 \langle O \rangle_0 - 2 \langle VO \rangle_0 \langle V \rangle_0]$$

Dynamical response

- * Use dynamical ensembles
- * Expected value of observable

$$\langle O(\omega) \rangle_{\varepsilon} = \sum_{\omega} P_{\varepsilon}(\omega) O(\omega) = \sum_{\omega} e^{-A_{\varepsilon}(\omega)} P_{0}(\omega) O(\omega)$$

* Second order response: second derivative wrt ε

$$\frac{d^2(0)}{d\epsilon^2} = -\langle A''(\omega) O(\omega) \rangle_{\epsilon} + \langle A'^2(\omega) O(\omega) \rangle_{\epsilon}$$

$$A = D - \frac{1}{2}S$$

- * Decompose in terms of S and D
- * Assume $S_{\varepsilon}'' = 0$: entropy generated is linear in perturbation strength
- * True in most physical scenarios (as seen in examples)
 - defines order of perturbation : eg, linear change in Hamiltonian
- * General nonequilibrium second order response:

$$\frac{d^2}{d\varepsilon^2}\langle O(\omega)\rangle = -\langle D''O\rangle_{\varepsilon} + \langle (D')^2O\rangle_{\varepsilon} + \frac{1}{4}\langle (S')^2O\rangle_{\varepsilon} - \langle S'D'O\rangle_{\varepsilon}$$

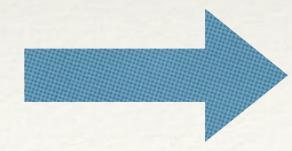
* Around equilibrium?

Second order response around equilibrium

- * Unperturbed state is equilibrium
- * Response of state observable $\langle O(x_t) \rangle$
- * Take $Y(\omega) = O(x_t) O(x_0)$: anti-symmetric under time reversal

$$\frac{d^2}{d\varepsilon^2} \langle Y \rangle \Big|_0 = -\langle D''Y \rangle_0 + \langle (D')^2 Y \rangle_0 + \frac{1}{4} \langle (S')^2 Y \rangle_0 - \langle S'D'Y \rangle_0$$
$$= -\langle S'D'[O(x_t) - O(x_0)] \rangle_0$$

$$\frac{d^2}{d\varepsilon^2} \langle O(x_t) \rangle \Big|_0 = -2 \langle S'D'O(x_t) \rangle_0$$



$$\chi_2 = -\langle S'D'O(x_t)\rangle_0$$

* Nonlinear fluctuation dissipation relation around equilibrium:

$$\langle O(x_t) \rangle_{\varepsilon} = \langle O(x_t) \rangle_0 + \varepsilon \langle S'O(x_t) \rangle_0 - \varepsilon^2 \langle S'D'O(x_t) \rangle_0$$

- * Only linear excesses appear
- * Observable: current (anti-symmetric)

$$\langle J \rangle_{\varepsilon} = \frac{\varepsilon}{2} \langle S'J \rangle_{0} - \frac{\varepsilon^{2}}{2} \langle S'D'J \rangle_{0}$$

* Nonlinear extension of Green-Kubo relation

- * Kinetic details (friction, coupling, dwelling times) enter explicitly even around equilibrium
- * There is no "the" second order response, depends on the kinetic aspects
- * Two perturbations which are thermodynamically same can give rise to different second order response
- * Examples?

Boundary driven SEP

- Symmetric exclusion process on a 1D lattice: $s_i = 0,1; i = 1,2,...L$
- Symmetric hopping at the bulk 10 <-> 01 with rate 1
- Particles enter and exit at the boundaries: reservoirs with same chemical potential $\mu_L=\mu_R$
- Perturbation: increase chemical potential of the left reservoir

$$\frac{\alpha}{\kappa} = e^{\beta \mu_L}$$
 $\frac{\gamma}{\delta} = e^{\beta \mu_R}$
Equilibrium $\mu_L = \mu_R$

- * Change in boundary drive: $\mu_L \rightarrow \mu_L + d\mu_L$ at the left reservoir
- *Only terms involving jumps at the left boundary

* Entropy
$$S(\omega) = N_L^{\rightarrow} \log \frac{\alpha}{\kappa} + N_L^{\leftarrow} \log \frac{\kappa}{\alpha} = J_L^{in} \log \frac{\alpha}{\kappa} = J_L^{in} \beta \mu_L$$
+ μ_L independent terms

* Net influx at the left boundary $J_L^{in} = N_L^{\rightarrow} - N_L^{\leftarrow}$

* Excess entropy
$$\frac{dS(\omega)}{d\mu_L}\Big|_{\mu_L=\mu_R} = \beta J_L^{in}$$

* Frenesy
$$D(\omega) = -\frac{1}{2}(N_L^{\rightarrow} + N_L^{\leftarrow})\log \alpha \kappa + \alpha t_0 + \kappa t_1 + \mu_L \text{ independent terms}$$

- * t_0 , t_1 time during which $s_1 = 0,1$ respectively
- * Excess depends on the specific dependence of α , β on chemical potential

* Examples:

Examples:
I.
$$\alpha = e^{\beta \mu_L/2}$$
, $\kappa = e^{-\beta \mu_L/2}$ (ie, $\alpha \kappa = 1$)
$$D'(\omega) = \frac{\beta}{2} (\alpha t_0 - \kappa t_1) \Big|_{\mu_L = \mu_R}$$

* II.
$$\alpha = e^{\beta \mu_L}$$
, $\kappa = 1$

$$D'(\omega) = -\frac{\beta}{2}N + \beta \alpha t_0 \Big|_{\mu_L = \mu_R}$$

- * Perturbations are thermodynamically identical: same change in chemical potential
- * Differ in kinetic details: specific coupling to the reservoir
- * Excess entropy same: linear response is identical
- * Second order response of observables (density, current,...) are very different

Extrapolation

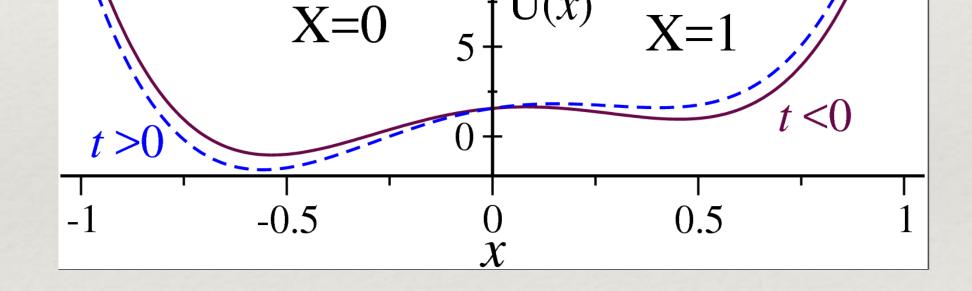
* Second order response depends only on linear excesses of entropy and frenesy

$$\chi_2 = -\langle S'D'O(x_t)\rangle_0$$

- * Possibility of extrapolation: if we can measure the linear excesses with a small perturbation, second order response can be predicted
- * Requires knowledge of all possible paths not feasible in general
- * Useful in a coarse-grainined picture where only a few (macroscopic) dof
- * Eg experiments where only some observables are accessible...

Extrapolation

- * Coarse grained 'macro' states X in a complex system
- * X=0,1,2...n-1 depending on the microscopic configuration
- * Examples: n=2
 - Particle in a double well potential



Classical Ising model

$$X = \Theta(m)$$

magnetization

Paths in the macro-space

* Path [ij;t] connecting states X=i (t=0) and X=j (time t)

Probability
$$P_{ij}(t) = \int_{ij} d\omega \ p(\omega)$$
 — Microscopic

Equilibrium: time-reversible

$$P_{ij}^{\text{eq}}(t) = P_{ji}^{\text{eq}}(t)$$

* Action

$$\mathcal{A}_{ij} \equiv -\log \frac{P_{ij}}{P_{ij}^{\text{eq}}} = \log \left[\frac{1}{P_{ij}^{\text{eq}}} \int_{ij} d\omega \ p_{\text{eq}}(\omega) e^{-a(\omega)} \right].$$

* Decompose $\mathcal{A}_{ij} = \mathcal{D}_{ij} - \frac{1}{2} \mathcal{S}_{ij}$

* Entropy and frenesy in coarse-grained path space

Ref: Phys. Rev. Lett 120,180604 (2018)

- * Observable in coarse grained space $O(X_t)$
- * Second order response formula for coarse-grained observable

$$\langle O(X_t) \rangle = \sum_{ij} P_{ij} O(j) = \langle O(X) \rangle^{\text{eq}} + \varepsilon \sum_{ij} S'_{ij} P_{ij}^{\text{eq}} O(j)$$
$$- \varepsilon^2 \sum_{ij} S'_{ij} \mathfrak{D}'_{ij} P_{ij}^{\text{eq}} O(j) + \left(\frac{\varepsilon^2}{2} \sum_{ij} S''_{ij} P_{ij}^{\text{eq}} O(j) \right).$$

* Excesses

$$\mathcal{S}'_{ij} \equiv \mathcal{A}'_{ji} - \mathcal{A}'_{ij} = \frac{1}{P_{ij}^{\text{eq}}} \int_{ij} d\omega \ p_{\text{eq}}(\omega) \mathfrak{s}'(\omega),$$

$$\mathcal{S}'_{ij} \equiv \frac{1}{2} \left(\mathcal{A}'_{ij} + \mathcal{A}'_{ji} \right) = \frac{1}{P_{ij}^{\text{eq}}} \int_{ij} d\omega \ p_{\text{eq}}(\omega) d'(\omega),$$

$$\mathcal{S}''_{ij} \equiv \left(\mathcal{A}''_{ji} - \mathcal{A}''_{ij} \right) = 2 \mathcal{D}'_{ij} \mathcal{S}'_{ij} - \frac{2}{P_{ij}^{\text{eq}}} \int_{ij} d\omega \ p_{\text{eq}}(\omega) d' \mathfrak{s}'.$$
Non-zero in general

$$S_{ij} = -S_{ji}$$

$$\mathcal{D}_{ij} = \mathcal{D}_{ji}$$

- * Consider perturbations acting on the coarse-grained variable X only
- * Example: potential V(X)
- * Microscopic entropy same for all macro-paths

$$\int_{ij} d\omega \ p_{eq}(\omega) d's' = \mathcal{S}'_{ij} \int_{ij} d\omega \ p_{eq}(\omega) d' = \mathcal{S}'_{ij} \mathfrak{D}'_{ij} P_{ij}^{eq}.$$
 $\mathcal{S}'' = \mathbf{0}$

* Response formula reduces to:

$$\langle O(X_t) \rangle = \langle O(X) \rangle^{\text{eq}} + \varepsilon \sum_{ij} S'_{ij} P_{ij}^{\text{eq}} O(j)$$
$$- \varepsilon^2 \sum_{ij} S'_{ij} \mathfrak{D}'_{ij} P_{ij}^{\text{eq}} O(j).$$

* For n=2 and O=X

$$\chi_2^{\text{eq}} = -\mathcal{S}'_{01} \mathcal{D}'_{01} P_{01}^{\text{eq}}$$

Extrapolation scheme

* Measure macroscopic S' and D' from near equilirium (linear regime) experiments

$$\mathcal{S}'_{ij} = \frac{1}{\varepsilon} \log \frac{P_{ij}^{\varepsilon}}{P_{ji}^{\varepsilon}} \qquad \mathcal{D}'_{ij} = \frac{1}{2\varepsilon} \left[-\log P_{ij}^{\varepsilon} P_{ji}^{\varepsilon} + 2\log P_{ij}^{\text{eq}} \right]$$

- * Use these to predict far away from equilibrium (second order) reponse
- * No detail about system required!
 - Price: an extra nonequilibrium experiment

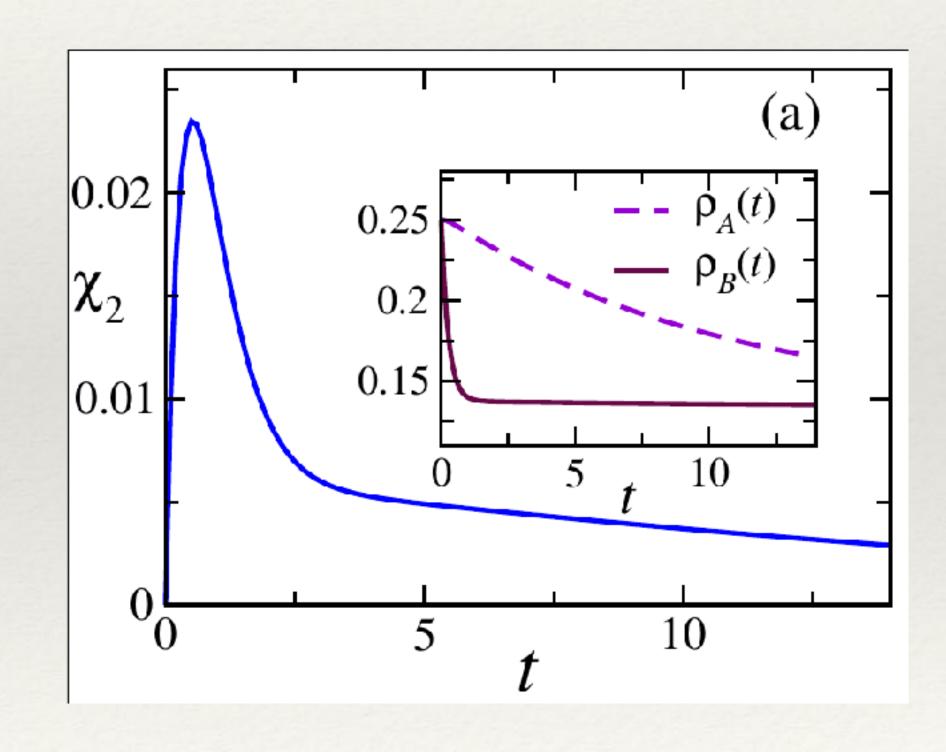
Example I: 4-state jump process



Observable
$$\langle X \rangle - \langle X \rangle_0 = \varepsilon \chi_1 + \varepsilon^2 \chi_2$$

- * Perturbation: change in rate B—> C (coupled to X)
- * Analytically solvable
- * Response calculated directly and using equilibrium prediction: identical

Does not rely on fast equilibration of integrated degrees!

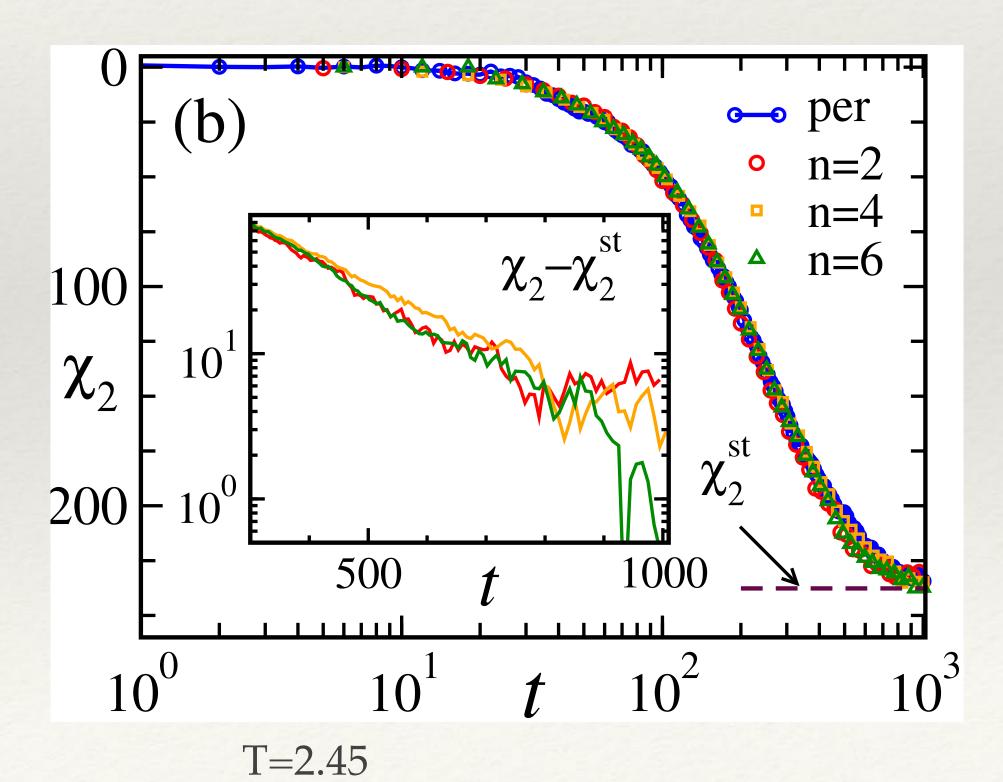


Example II: 2d Ising model

- Near-critical Ising model
- * Perturbation: change in magnetic field
- * Coarse-grained observable $X = \Theta(\sum_{i} s_{i})$
- * Perturbation not in X-space
 - Excess entropy and dynamical activity determined at $\varepsilon = 0.0005$
 - Compared to direct measurement at $\varepsilon = 0.003$
 - · No system details needed

$$H = -\sum_{ij} s_j s_j - (h + \varepsilon) \sum_i s_i$$

$$\langle X \rangle - \langle X \rangle_0 = \varepsilon \chi_1 + \varepsilon^2 \chi_2$$



- * Prediction of second order response of coarse-grained observable
- * Two sets of experiment needed: equilibrium and close-to-equilibrium
- * No knowledge about dynamics needed
- * Easily applicable for complex systems
- * Example: Colloid moving in viscoelastic medium

Overview

- * Linear response theory around equilibrium
- * Response in nonequilibrium: dynamical ensembles
- * Entropic and frenetic components
- * Nonlinear response
- * Untouched questions
 - * Thermal response same formalism, but some additional nuances
 - * Nonequilibrium baths
 - * Time-dependent rates