Fracture in amorphous alloys: in search of a length scale and their physical meaning

JAKS Symposium, NCBS, Bangalore, 2012

"The first thing you hear about a material is the best thing you will ever hear about it"

What controls the toughness of BMGs?

Kc (MPa√m) Hardness (GPa)

Vitreloy Zr41.2Ti13.8Cu12.5Ni1 0Be22.5

Amorphous steel Fe48Cr15Mo14Er2C15 B6

 17.8 ± 0.73

Bulk amorphous metal - An emerging engineering material Johnson WL , JOM, Volume: 54, Pages: 40-43 , MAR 2002

Free volume and toughness

Calorimetric observations

The decrease in the exothermic peak is used estimate free volume changes associated with structural relaxation

Free volume and toughness

Deformation through shear localization

Spherical indentation

Ductile-to-brittle transition

Raghavan, Murali, Ramamurty. Acta mat. 2009

Fundamental mechanical properties*

*Quasi-static loading, room temperature

Free volume and toughness

Murali & Ramamurty Apta Mat. 2005

Material model

Anand-Su model for metallic glasses

- based on Mohr-Coulomb yield criterion
- involves discrete shearing accompanied by dilatation
- dilatation induced strain softening
- captures inhomogeneous deformation of BMGs well

Plastic dilatancy function (β)

Cohesion function

Effect of Poisson's ratio

KIc = 80 $Pt_{57.5}Cu_{14.7}Ni_{5.3}P_{22.5}$ Poisson's ratio =0.42

Lewandowski et al., Phil. Mag 2005

Schroers and Johnson, PRL 2004

Mode I plastic zones

Tandaiya et. al. Acta Mat (2008)

Fracture in metallic glasses

 Click to east the outline text format *What is the governing fractife Child Polyto* Level

Metallic glasses are schizophrenic in the fracture sense Outline Level _Fifth

Stress based (RKR) fracture criterion

Models failure by brittle micro-cracking

(Ritchie et. al, 1973 and MTS theory of mixed mode fracture)

Failure occurs when $\sigma\theta\theta$ exceeds a critical value σc over a critical distance rc from the notch tip

Suitable for brittle materials

Strain based fracture criterion

Models failure by ductile void nucleation and growth

Failure occurs when Inεp1 exceeds critical value εc over a critical distance rc from the notch tip

Suitable for ductile materials

Variation of Jc versus Me

Operative failure mechanism : RKR for all Me \rightarrow Jc (Me=0)/Jc (Me=1) \approx 5.5

Operative failure mechanism : ductile for all Me \rightarrow Jc (Me=1)/Jc (Me=0) \approx 1.75 to 3

Mixed-mode (I and II) fracture experiments using asymmetric 4-point bend specimens

Vitreloy 1 ($Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$)

- » Notch diameter : 60 μm
- > d controls mode mixity

Pure mode I tests: Symmetric four-point bend specimen

Specimen	crack length,	a/W	d	M^e	M^p	Initiation	$J_{\rm c}$ (Elastic)	J_c (Elastic-plastic)
type	a (mm)		(mm)			load, P_c (kN)	(N/mm)	(N/mm)
AS4PB-1	3.5	0.7	0	-0.105	-0.089	9.58 ±0.22	9.23 ±0.36	11.1 ±0.57
AS4PB-2	2.5	0.5	0.4	0.043	0.175	13.16 ±0.40	7.13 ±0.39	8.38 ± 0.59
AS4PB-3	2.5	0.5	0.8	0.215	0.484	14.31 ±0.12	9.50 ± 0.15	12.29 ± 0.32
AS4PB-4	2.5	0.5	1.5	0.448	0.684	14.15 ± 0.22	14.49 ±0.48	20.59 ± 1.39
S4PB-1	2.5	0.5		1	1	2.66 ±0.33	32.27 ±6.48	35.03 ± 7.73

In-situ observations

____ 100 µm

Speed: 16x

In-situ observations of AS4PB-1 specimen

(a) 6.8 kN

Notch deformation
Shear banding
Stable crack growth inside shear bands
Final failure
Stable crack growth in a shear band 2525

(c) 9.4 kN

(d) 12.4 kN

(b) 7.7 kN

Crack grows within a shear band

Me = 1 (pure mode I)

Crack trajectories

Incipient crack growth occurs inside a dominant shear band for all the specimens

AS4PB-1

AS4PB-2

S4PB-1

Finite element analyses

- \cdot No. of elements = 14394
- 64 elements around the notch root
- Frictionless contact
- Downward displacement prescribed for nodes on arcs abc and def
- Nodes on arc ghi and jkl are fixed

>Two analyses:	a
Linear elastic	b.
Elastic-plastic	

•Constitutive model[•] Anand and Su model implemented through UMAT in ABAQUS/Standard

>Material properties for Vitreloy 1: E = 97 GPa; v=0.36; c0=890 MPa; μ=0.06; b=120 MPa

Determine:

a.

a.

Elastic mode mixity parameter Me b. Plastic mode mixity parameter Mp

c. Calibrate of J against P for each specimen

- using both the above analyses
- d. Find critical energy release rate Jc
- e. Simulate near-tip shear band patterns

Mixed Mode Fracture

Tandaiya, Ramamurty, Narasimhan,

Mixed Mode Fracture

P = 14.1 kN

Notch opening (δI) and shear (δII) displacements with J

Jc increases with Mp

Jc under mode I > 4 times that under mode II

Jc increases with Mp

Jc under mode I > 4 times that under mode II

Jc increases with Mp

Jc under mode I > 4 times that under mode II

Critical stress based criterion is not suitable

Variation of Jc with mode mixity

Jc increases with Mp Jc under mode I > 4 times that under mode II

 \odot cc=0.1; rcc = 60 µm match with the experimental data and is appropriate for Vitreloy 1 BMG.

Fractography

(d)

>Two types of morphologies

-1.Smooth and shallow features involving highly smeared vein patterns within 45-60 µm from the notch front

2. Rough and deep features involving coarse dimple patterns superposed on ridges and valleys beyond 60 μm from the notch front

 Similar observations apply for other specimens also

Conclusions

- Experiments combined with FEM show that the fracture criterion for a ductile BMG is strain controlled with a critical length of 60 microns.
- At notch tips: shear bands turn into shear cracks, which grow stably before final fracture. Cracks grow inside shear bands!
- Still need to understand a lot of things w.r.t. fracture in amorphous solids!