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Abstract
Regulatory circuits are found at the basis of all non-trivial dynamical properties of biological networks.
More specifically, positive circuits are involved in the generation of multiple differentiated states, whereas negative
circuits can generate cyclic or homeostatic behaviours. These notions are briefly reviewed, from initial biological
formulations to mathematical formalisations, further encompassing their application to the design of synthetic
regulatory systems. Finally, current challenges for the analysis of increasingly complex regulatory networks are
indicated, as well as prospects for our understanding of development and evolution.
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BIOLOGICAL FEEDBACKS
Most remarkable properties of biological regulatory

networks can be related to the occurrence of

(generally non-linear) regulatory feedbacks. In bio-

chemistry, the role of feedback inhibition of catalytic

enzymes by biosynthetic products has been under-

lined already 50 years ago [1]. In parallel, positive
feedback was postulated to account for enzymatic

induction phenomena in bacteria [2]. Soon, the

distinction between regulatory and structural

genes, together with the specification of a concrete

mechanism for gene regulation (operon model), led

Monod and Jacob [3] to imagine different regula-

tory schemes accounting for the generation of

multiple cell differentiation states by a single

genotype (Figure 1).

During the 1970s, molecular analyses and model-

ling studies progressively enabled general character-

isations of simple biochemical and genetic

networks [4–6].

Notably, proper definition and classification of

regulatory circuits (or feedback loops) were proposed by

Thomas [7], together with general rules about

circuit requirement to generate non-trivial dynami-

cal behaviour. Indeed, defined as simple circular

chains of oriented interactions, feedback circuits can

be classified into positive or negative circuits,

depending on the parity of the number of negative

interactions (i.e. the sign of a circuit is given by the

product of the signs of its constitutive interactions).

Positive circuits are necessary to generate alternative

cellular states (multiple attractors, using the terminol-

ogy of Dynamical Systems), whereas negative circuits are
needed to generate homeostasis or sustained oscillatory

behaviour (Figure 2; cf. [8] for an extensive review).

FORMALDEFINITIONSOF
FEEDBACKCIRCUITS
The biological regulatory schemes found in the

literature encompass arrows representing different

types of molecular processes, e.g. metabolic reactions,

transcriptional regulation, degradation, transport, etc.

In order to investigate the dynamical roles of

regulatory circuits, such regulatory schemes have to

be translated into an homogenous mathematical

formalism. In the present context, modellers often

refer to a qualitative formalisation in terms of graphs or
logical equations, or yet, to a quantitative representation

in terms of ordinary differential equations (ODEs).
In the case of a graph-based representation, the

notion of regulatory circuit directly derives from the
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Luminy, case 928, 13288 Marseille, Cedex 09 France. E-mail: thieffry@tagc.univ-mrs.fr

DenisThieffry, with a background in Molecular Biology, is a Professor in Computational Biology at the Universite¤ de laMe¤ diterrane¤ e
and project leader at the INSERM ERM 206 research unit. He is widely recognised for his contributions to the field of qualitative

dynamical modelling of genetic regulatory networks.

BRIEFINGS IN BIOINFORMATICS. page 1 of 6 doi:10.1093/bib/bbm028

� The Author 2007. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

 Briefings in Bioinformatics Advance Access published July 11, 2007



graph-theoretic circuit concept (interaction signs are

then defined as arc labels). For given logical rules

specifying the behaviour of each regulatory compo-

nents, it is possible to induce the regulatory

interactions, including their signs (positive, negative

or yet dual, i.e. context-dependent sign) (cf. [9]; for

another qualitative approach using piece-wise differ-

ential equations, see [10]).

In the differential case, regulatory circuits can be

rigorously defined on the basis of the Jacobian matrix
of the ODE system (x0i ¼ Fi ð�xÞ, stating that the

evolution or the derivative of a component i depends
on the levels of other components of the network,

represented by a state vector x). Indeed, the terms

(aij ¼ @Fi=@xj) of this matrix provides information

about pair-wise influences (from regulatory compo-

nent j onto component i ). Consequently, any set of

non-zero elements aij of the Jacobian matrix of the

differential system, such that the i (row) and j
(column) indices form a circular permutation, defines

a regulatory circuit, whose sign is given by the

product of the signs of these elements (cf. example in

Figure 3). Note that, for most biological models, the

consideration of passive, linear degradation of

molecular components gives rise to negative diagonal

terms and thus to auto-inhibitory circuits.

The Jacobian matrix is most often defined at the

level of a specific steady state to determine its dyna-

mical properties (linear stability analysis; see e.g. [11]).

In this respect, it is worth noting that the

mathematical objects used for steady state character-

ization (characteristic equation, eigenvalues) exclusively

rely on terms involved in feedback circuits.

However, this does not impede other terms to play

important roles in the location or the number of

steady states (for a more detailed discussion on the

relationship between the Jacobian matrix and steady

state properties, see [12]).

FROMTHOMAS’RULES TO
MATHEMATICALTHEOREMS
ANDDEMONSTRATIONS
Thomas’ rules [7] have attracted the interest of a

number of mathematicians, who translated them

into proper theorems. In the differential context,

a series of increasingly general theorems have been

proposed, stating the necessity of a positive circuit to

generate multistationarity [13–17], or the necessity

of a negative circuit to generate a cyclic attractor

[14–16]. More recently, the same rules have been

demonstrated in a biologically relevant, discrete,

multilevel framework, considering transitions

between discrete states affecting at most one

component at a time, switching it to a neighbouring

value (i.e. the Hamming distance between two follow-

ing states is exactly 1) [9, 18].
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Figure 2: Classification of regulatory circuits.
Depending on theparity of the number of negative inter-
actions involved, regulatory circuits canbe classified into
positive versus negative circuits, endowed with remark-
ably different dynamical and biological properties.
The last row provides simple examples of positive and
negative circuits extracted from regulatory networks
controlling the development of bacteriophage lambda
and HIV virus, respectively. Normal arrows represent
activations, blunt arrows inhibitions.
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Figure 1: Examples of biochemical feedback (left)
and genetic regulatory circuits (right, cf. [3]). Si, Ei and Pi
denote substrates, catalytic enzymes, and products,
respectively; RGi and SGi denote regulatory and struc-
tural genes. Note that the enzymatic reaction on the
left is considered as irreversible for sake of simplicity;
in this metabolic pathway, the arrow from S3 to E1
represents a regulatory effect called feedback. The
regulatory scheme on the right encompasses arrows
with different meanings: regulatory interactions (solid
arrows) and enzymatic reactions (dotted arrows);
P1 (resp. P2) inhibits the activation of the expression of
the structural gene SG2 (resp. SG1) by the regulatory
gene RG2 (resp. RG1), thereby forming a cross-inhibitory,
positive regulatorycircuit.

page 2 of 6 Thieffry



Lately, Thomas has proposed a third rule, stating

that a negative circuit is necessary to have an attractor

in the case of a differential system [12].

Altogether, these rules and theorems specify

necessary conditions, which can be directly applied

to specific networks. For example, whatever the

complexity of the network considered, if it encom-

passes no positive circuit, one can directly conclude

that the system can generate at most one attractor.

Similarly, in the absence of negative circuit, one

cannot expect a cyclic attractor.

However, the sole presence of a circuit in a

regulatory graph (or in the Jacobian matrix of a

differential system) does not necessarily imply the

corresponding dynamical behaviour. Indeed, it is well

known that at least some non-linearity is further

necessary in continuous systems, as well as specific

constraints on relevant parameters (kinetic parameters

in the case of differential systems, logical rules

directing component behaviours in the case of discrete

systems). In the differential framework, these condi-

tions can be established through the analysis of the

sensitivity of specific state properties depending on

crucial parameter values (parameter bifurcation analysis, cf.
[19] and [20]). In the discrete case, it is possible to

specify necessary conditions to obtain non-trivial

dynamical behaviour with isolated (functional) feed-

back circuits, whatever the number and signs of

involved interactions (see examples in Figure 4) [21].

ENGINEERING OF SYNTHETIC
REGULATORYCIRCUITS
The appreciation of the crucial dynamical roles of

regulatory circuits in real systems was at the root of

the design of synthetic genetic circuits endowed with

specific dynamical properties, including a cross-

inhibitory positive circuit [22], a negative circuit

RG1 RG2

RG1 RG2

RG3

Figure 4: Typical dynamical behaviour dynamics of iso-
lated feedback circuit dynamics in the simplest discrete
(Boolean) case.Top: Examples of positive (left) and nega-
tive (right) regulatory circuits. Bottom: Corresponding
state transitiongraphs.The two-elementpositive circuit,
made of cross-inhibitions (upper left), gives rise to two
alternative stable (circled grey states) with opposites
gene-level configurations (01denotes a state with gene1
OFF, gene 2 ON). In contrast, the three-element nega-
tive circuit, made of consecutive negative regulations
(upper right), gives rise to an attractive state transition
cycle, composed of six successive states (grey states in
the bottom left panel). These dynamical properties are
typical of the corresponding (positive versus negative)
circuit class, whatever the number of components or
theprecise regulatory sign configuration (only the circuit
signmatters).
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Figure 3: Example of systemof three ordinarydifferen-
tial equations (top), with its Jacobianmatrix (bottom).The
dynamicalvariablexidenotes the concentrationor activity
level of a regulatory product, whereas �ij and gi denote
(constant and strictly positive) kinetic parameters.
According to these equations, the first gene (whose pro-
duct level is given by x1) activates the expression of the
second gene (x2), which in turn inhibits the third gene (x3);
finally, genes 2 and 3 both activate the first gene indepen-
dently (sum). All regulatory products are further linearly
degraded (i.e. proportionally to product concentration).
In the bottom panel, the Jacobian matrix of this ODE
system is displayed. Each term aij of this matrix gives the
partial derivative of the evolution term i with respect to
thevariable j. As all these terms involve onlypositivepara-
meters and variable squares, they have fixed signs. The
system encompasses five circuits indicated by dotted cir-
cles and arrows on the matrix: three one-element nega-
tive circuits, one two-element positive circuit involving
genes1and 2, and one three-element negative circuit.
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made of the sequential inhibitions of three repressor

genes [23], as well as a simple auto-inhibitory circuit

[24] (see Figure 5; an example of circuit engineering

in Yeast is found in [25]; for a review, see [26]).

A whole new field is presently emerging from

these seminal studies, Synthetic Biology, which com-

bines relatively standard molecular genetic protocols

with mathematical modelling, under an engineering

perspective.

In this respect, the MIT promotes a yearly inter-

national competition (iGEM) on biological circuit

engineering, and organises the distribution of a

growing collection of basic molecular genetic com-

ponents or modules, which can be further combined

with self-engineered regulatory modules in vivo to

produce more sophisticated regulatory systems.

DISENTANGLING COMPLEX
NETWORKS
As molecular data on regulatory components and

interactions are quickly accumulating, biologists

are facing increasingly complex networks, which

are defying not only our intuition, but also standard

modelling approaches.

In this context, an important challenge lies in the

development of strategies to decompose large net-

works into functional cross-regulatory modules, thereby
enabling stepwise dynamical modelling and analysis,

while managing procedures to reassemble sub-

models into a comprehensive model and to

efficiently compute collective properties.

In this respect, a first instructive step would be to

systematically identify the feedback circuits at the

origin of remarkable dynamical properties of com-

plex networks (functional circuits). Several groups are
currently addressing this issue, either in terms of

novel algorithmic developments, or through the

formulation of mathematical theorems (sufficient
conditions for circuit functionality). Preliminary results

in the discrete framework suggest that only a

relatively small fraction of (often short) regulatory

circuits are functional in large networks, but that
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Figure 5: Design of simple regulatory circuit in bacteria.Using genetic components frombacteria or phages, several
groups have built regulatory circuits with specific dynamical properties. Left: positive circuit involving two cross-inhi-
bitorygenes, givingrise to two alternative stable states and inductionmemorisation [22].Middle: negative circuit invol-
ving three consecutive inhibitions, leading to oscillatory gene expression for proper degradation and synthesis
coefficients [23].Right: self-inhibitory circuit, leading to homeostatic expression of the auto-regulatedgene (increased
stability of gene expression in individual cells, decreased expression variability across cells, as well as buffering of copy
number effects) [24].The logical schemes corresponding to these genetic constructions (upper part) are given in terms
of regulatorygraphs (bottompart).Thegene coding for theGreen Fluorescent Protein (GFP) is used to reveal the gene
expression state in vivo. R1, R2, R3 denote regulatory genes, whereas P1, P2, P3 denote the promoters sensitive to the
corresponding regulatory genes; finally, blunt arrows represent inhibitory interactions.

page 4 of 6 Thieffry



intertwined circuits might collectively contribute

to generate specific properties (e.g. multistability, cf.

[27, 28]).

This last point leads to the question of whether

other, higher level feedback structures should be

systematically defined, which could be endowed

with more sophisticated dynamical properties.

Indeed, combinations of feedback circuits have

already been evocated in the context of steady-

state linear stability analyses for biological systems

[29]. More recently, working on abstract dynamical

systems, Thomas and Kaufman [12] have introduced

the concept of nucleus, defined as a combination of

disjoint circuits, which together involve all the

components of a regulatory system. In differential

systems, these nuclei appear to play a crucial role in

the specification of steady-state properties. However,

the significance of these nuclei and their potential

practical application to systems biology remain to be

properly assessed.

Finally, as our knowledge progresses and diver-

sifies, it becomes possible to compare the design of

regulatory networks controlling similar dynamical

processes in different organisms, or yet similar

processes at different time or place in the same

organism. Such comparative approach is already

underway in the case of networks controlling cell

cycle [30]. Tentatively, comparative model analyses

focusing on network design in relation with

dynamical behaviour should ultimately contribute

to our understanding of the essential molecular

processes at the basis of biological development and

evolution.
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