Bangalore School on Statistical Physics VIII Course 2: CRITICAL DYNAMICS Problem set 1

- 1. Scaling hypotheses and scaling relations.
 - (a) The scaling hypothesis for the singular part of the free energy near a second-order (continuous) phase transition reads

$$f_{\text{sing.}}(\tau, h) = |\tau|^{2-\alpha} \hat{f}(h/|\tau|^{\Delta})$$
,

where $\tau = (T - T_c)/T_c$ and \hat{f} denotes a non-singular scaling function. Show that the specific heat $C_{h=0} \sim |\tau|^{-\alpha}$ as $|\tau| \to 0$.

- (b) Determine the critical exponents β , δ , and γ , and derive the scaling relations $\Delta = \beta \delta$, $\alpha + \beta (1 + \delta) = 2 = \alpha + 2\beta + \gamma$, $\gamma = \beta (\delta 1)$. *Hint:* Consider the behavior of the derivative $\hat{f}'(x)$ as $x \to \infty$.
- (c) Similarly, use the scaling ansatz for the correlation function

$$G(\vec{q}, \tau) = |\vec{q}|^{-2+\eta} \, \hat{G}(|\vec{q}| \, \xi) , \quad \xi \sim |\tau|^{-\nu} ,$$

and show that $\gamma = \nu (2 - \eta)$, $\beta = \nu (d - 2 + \eta)/2$.

Hint: Remember that $\chi_T = G(\vec{q} = 0, T)/k_BT$. Away from the critical point, what is the limit of $G(|\vec{x}| \to \infty, \tau)$ in d dimensions?

- 2. Critical order parameter decay and dynamic correlations.
 - (a) Show that the dynamic scaling ansatz for the order parameter

$$\langle S(\tau,t)\rangle = |\tau|^{\beta} \hat{S}(t/t_c(\tau))$$

with the characteristic relaxation time scale $t_c(\tau) \sim \xi(\tau)^z \sim |\tau|^{-z\nu}$ implies the long-time algebraic decay $\langle S(0,t) \rangle \sim t^{-\beta/z\nu}$ at $T = T_c$.

(b) Confirm that the dynamic scaling form for the response function

$$\chi(\tau, \vec{q}, \omega) = |\vec{q}|^{-2+\eta} \,\hat{\chi}_{\pm} \Big(\vec{q} \,\xi(\tau), \omega \,\xi(\tau)^z \Big)$$

leads to the scaling forms for the dynamic correlation function

$$C(\tau, \vec{q}, \omega) = |\vec{q}|^{-z-2+\eta} \, \hat{C}_{\pm} \Big(\vec{q} \, \xi(\tau), \omega \, \xi(\tau)^z \Big),$$

$$C(\tau, \vec{x}, t) = |\vec{x}|^{-d+2-\eta} \, \tilde{C}_{\pm} \Big(\vec{x}/\xi(\tau), t/\xi(\tau)^z \Big) \ .$$