
  

Tarun Kanti Ghosh
Department of Physics

IIT-Kanpur

Electronic transport properties of the         lattice



  

Plan of this talk

Basic information of Dice lattice:  pseudospin-1 Dirac-Weyl system  

Evolution of S=1/2 (honeycomb)  to S=1 pseudospin (dice) lattice: 
the concept  of                 lattice  

Magnetotransport properties: the role of a variable Berry phase

Summary and conclusions

Haldane-like model of dice lattice: Anomalous Hall conductivity

Haldane-like model of dice lattice in presence of quantizing magnetic 
field



  

Dirac-Weyl systems

Honeycomb lattice: graphene monolayer Brillouin zone

Two inequivalent  K points

Dirac-like Hamiltonian: 

Low-energy modes:

Isotropic Dirac cones at two 
inequivalent K points

t

A state makes a closed loop encloses the Dirac 
points, it acquires the Berry phase: 



  

One atom at each center of the honeycomb lattice

Three inequivalent atoms (A, B, C) per unit cell

1st Brillouin zone is also a  hexagon with two independent K points

The center sites are bonded to the alternate
 corners of the hexagon

Hub sites (B): 6 coordination number

Rim sites (A,C): 3 coordination number

Dice lattice exhibits nodes with unequal 
connectivity:

Unit cell is the same as that of a honeycomb lattice

Dice lattice has larger pseudospin 1 as compared to pseudospin-1/2 for 
honeycomb lattice 

Equal hopping amplitude t



  

Hopping between C and B sites: 

Raoux et al, PRL 112, 026402 (2016)

Continuous tuning of     : one can go from honeycomb to dice lattice

(Pseudospin-1/2)

(Pseudospin-1)

It exhibits nodes with unequal  hopping 
amplitude:   and 

Three inequivalent atoms (A, B, C) per unit cell

1st Brillouin zone is also a  hexagon with two independent K points

C atom is disconnected



  

Dice lattice: 3 counterpropagating identical laser 
beams on a plane with wavelength 

Rizzi et al, PRB (2006), Bercioux et al, PRA (2009)

Potential landsacpe

How to realize Dice lattice and                            ?

y
x E(0,E)

Dephase one of the three pairs of laser 
beams to get



  

A flat band is sandwitched between two dispersive bands

Tight-binding approx. (within nearest-neighbour 
hopping)

Dispersive bands are exactly the same as that of graphene

Hamiltonian for 

Three level system:

Vivcencio et al PRL 114 (2015) & Mukherjee, PRL 114  (2015)

Three levels are       independent, but the states do depend on 

      



  

Low-energy spectrum around the Dirac points:

Standard spin-1 matrices

-dependent spin-1 like matrices

for all values of k

The low-energy Hamiltonian around the Dirac points

Spin-1 Dirac-Weyl Hamiltonian for the dice lattice

Dice lattice:



  

Variable Berry phase

Conduction and valence bands

Flat band

For graphene: the Berry phase is  (Independent of valleys)

The Berry phase is different in two K valleys except for graphene and 
dice lattice  

For dice lattice, the Berry phase is zero for all the bands

The Berry phase is smoothly decreasing  with       and becomes zero for 
dice lattice

Valley-dependent Berry phase:

Valley dependent Berry phase will be reflected on magnetotransport 
properties



  

Applying uniform magnetic field normal
to the lattice: Landau levels are formed

Honeycomb  lattice in presence of magnetic field

Cyclotron motion in k-space, acquires Berry phase. It must appears in Landau levels

E

Modified Lifshitz-Onsager semiclassical quantization:

This is the reason why zero-energy Landau level exist in graphene. Existence
of zero-energy LL shows up in the Hall conductivuty measurement

Graphene: Carbon in 2D, M I Katsnelson

Berry phase dependent Landau levels

Lifshitz-Onsager semiclassical quantization:

Area of cyclotron orbit in k-space is quantized

For linear spectrum:



  

Applying uniform magnetic field normal to the lattice: Landau levels are formed

 in presence of magnetic field

Valley degeneracy of Landau levels is removed

Zero-energy Landau level does not exist for 

For           lattice, Berry phase dependent Landau levels (using operator method 
and modified LO semiclassical quantization condition:

(semiclassical quantization condition fails here)



  

Tutul and TKG, JP: CM (2016)

Each valley contributes differently, giving 
rise to two closely spaced peaks.      

Subnikov de-Haas (SdH) oscillations and quantized Hall resistivity 

Valley-dependent DoS through Berry phase..      



  

Longitudinal conductivity

Tutul Biswas and TKG, JP: CM (2016)

Oscillatory behaviour consisting of a number 
of peaks

A Peak splits into two unequal peaks due to 
valley-dependent DoS

Two splitted peaks move in opposite direction 
as       increases. 

Right-split of N-th peak and left-split of 
(N+1)-th peak merges together when     =1

For dice lattice, a new set of conductivity peaks whose positions are 
completeley different from graphene



  

Anomalous quantized Hall conductivity

Each valley contributes separately,
giving additional Hall plateaus 

Tutul Biswas and TKG, JP: CM (2016)

(Similar to bilayer graphene)

Dice lattice can be thought of as a 
“zero-separation” bilayer graphene

N: number of Landau levels below Fermi energy  (excluding zero energy LL)

Dice lattice

graphene



  

Haldane-like model of dice lattice

Spatially periodic magnetic flux through hexagonal unit cell centered around 
any hub stite (B) vanishes

On-site energies     at A and          at C sublattices

Low-energy Hamiltonian at a partcular magnetic field:

It opens up a valley-dependent gap

Both space inversion and time reversal 
symmetries are broken

Bashab Dey, PK,OP and TKG, in preparation



  

Anomalous Hall conductivity in the Haldane model of dice lattice

When Fermi energy lies in the gap and

Varying mass M, one can go from trivial insulator to topological insulator
 with Chern number 2

Bashab Dey, PK,OP and TKG, in preparation

If Fermi energy lies in the gap, where is the conducting channel?



  

Edge states of haldane-like model of dice lattice with armchair edges

Bashab Dey, PK,OP and TKG, in preparation

Left edge Right edge Left edge Right edge

Two pairs of counter-propgating 
edge states; zero net current 

Two pairs of co-propgating  
edge states; finite net current

Topological insulator Trivial insulator



  

Haldane model of dice lattice in presence of quantizing magnetic field

Valley-dependent exact Landau energy levels are obtained

Bashab Dey, PK,OP and TKG, in preparation



  

Number of oscillations between two successive nodes:

Results from simple analysis match very well with the exact results based 
on Kubo formula

Exact results
Using Kubo formula

On-site energy (M) and next nearest neighbour hopping energy can be 
extracted from this analysis. 

Magnetotransport in Haldane model of dice lattice

Semiclassical:

Bashab Dey, PK,OP and TKG, in preparation



  

Summary and conclusion

Magnetotransport coefficents (SdH oscillations and quantized Hall
conductivity are directly related to the Berry phase acquired during 
cyclotron motion

Magnetotransport properties of the 

Haldane-like model of dice lattice: topological Chern insulator in 
three-band system

Shubnikov-de Haas oscillations in Haldane-like model of dice lattice

Thank you for your kind attention
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