Bayesian model selection of population synthesis models of CBCs

Sumit Kumar

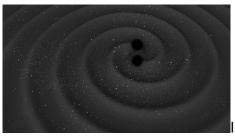
International Centre for Theoretical Sciences
Tata Institute of Fundamental Research
Bengaluru

Arnab Dhani, Arunava Mukherjee, Archisman Ghosh, Abhirup Ghosh, P. Ajith

March 23, 2017

Ripples in Spacetime

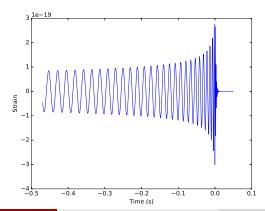
- The detection of GWs by LIGO opens up a new window to observe the Universe.
- Start of the era of GW astronomy.
- Along with advLIGO and adv VIRGO, a worldwide network of GW detectors with LIGO-India and KAGRA at Japan by the next decade.



Credit: ESA-C. Carreau

GWs from compact binary sources

- Merger of two compact objects (BBH, NSBH, NSNS) is the main source for GWs for LIGO detectors.
- The waveform for BBH merger with masses $(m_1, m_2) = (20 M_{\odot} 10 M_{\odot})$ looks like:



Population Synthesis Models for Compact Binaries

- The physical and astrophysical processes governing the evolution of compact binaries are poorly understood.
- Population synthesis codes aim to simulate these processes and provide predictions of the galactic merger rates and mass distribution for NS-NS, NS-BH, and BH-BH mergers.
- The rates differs for the different models which are characterized by various unknown parameters such as metalicity, binding energy of the envelope, maximum mass of the neutron star, etc.
- Advanced LIGO is expected to detect many events. This will provide us an opportunity to constrain parameter space of these models.

4/16

Synthetic Universe

- Dominik et al., 2012 provided publicly available population synthesis models for compact binaries with simulations using StarTrack code.
 www.syntheticuniverse.org
- Distribution of masses and spins of compact binaries along with merger rates for 64 different models (16 models with 4 submodels of each) which are characterized by various parameters.
- We consider the BBH mass distribution predicted by each model and develop a Bayesian method to rank these models based on the observed GW events.

Classification of population synthesis models

Table 1 Summary of Models^a

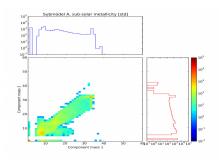
Model	Parameter	Description
S	Standard	$\begin{array}{l} \lambda = &Nanjing, \ M_{\rm NS,max} = 2.5 \ \rm M_{\odot}, \ \sigma = 265 \\ \rm km \ s^{-1} \ BH \ kicks: \ variable, \ SN: \ Rapid \\ \rm half-cons \ mass \ transfer \end{array}$
V1	$\lambda = 0.01$	very low λ : fixed
V2	$\lambda = 0.1$	low λ : fixed
V3	$\lambda = 1$	high λ : fixed
V4	$\lambda = 10$	very high λ : fixed
V5	$M_{\rm NS,max}=3.0~{\rm M}_{\odot}$	high maximum NS mass
V6	$M_{\rm NS,max}=2.0~{\rm M}_{\odot}$	low maximum NS mass
V7	$\sigma=132.5~\rm km~s^{-1}$	low kicks: NS/BH
V8	full BH kicks	high natal kicks: BH
V9	no BH kicks	no natal kicks: BH
V10	Delayed SN	NS/BH formation: Delayed SN engine
V11	weak winds	Wind mass loss rates reduced to 50%
V12	cons MT	Fully conservative mass transfer
V13	non-cons MT	Fully non-conservative mass transfer
V14	$\lambda \times 5$	Nanjing λ increased by 5
V15	$\lambda \times 0.2$	Nanjing λ decreased by 5

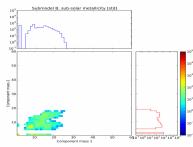
a All parameters, except for the one listed under "Description", retain their Standard model ("S") values.

Figure: Dominik et. al., Astrophys. J., 759, 1

March 23, 2017

Component mass distribution for standard model





Using Bayesian inference to rank models

The probability of parameter θ given data d and a population synthesis a model M, is given by,

$$P(\theta|d,M) = \frac{P(\theta|M)\mathcal{L}(d|\theta,M)}{P(d|M)}$$
(1)

Using Bayesian inference to rank models

The probability of parameter θ given data d and a population synthesis a model M, is given by,

$$P(\theta|d,M) = \frac{P(\theta|M)\mathcal{L}(d|\theta,M)}{P(d|M)}$$
(1)

The quantity in denominator,

$$P(d|M) := \int P(\theta|I)\mathcal{L}(d|\theta,I)d\theta$$
 (2)

is called the marginal likelihood of the model M, or the evidence of M.

Accounting for selection Bias (...In Progress)

- Observed mass distribution does not represent the true mass distribution.
- Avoid selection bias by accounting non-detection and perform full Bayesian analysis. [Messenger, C and Veitch J.]
- Selection function using large number of injections in data analysis pipeline.

Challenges

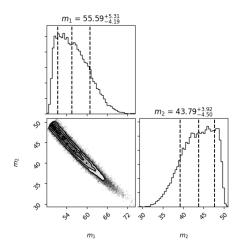
- How to account for selection bias in an efficient way.
- Accounting for uncertainties due to poorly understood astrophysics.

Using Bayesian inference methods to rank models

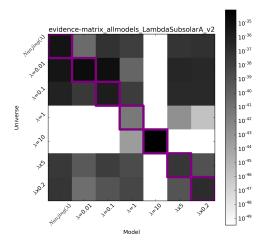
- We simulate populations of BBHs with mass distributions predicted by various population synthesis models. (spatially distributed uniformly in comoving volume).
- We calculate evidence for each model and rank them accordingly as models with higher evidence rank higher.
- For large number of detections, we expect to recover the fiducial model and expect that we can distinguish between different models also.

LALInference runs for simulated events

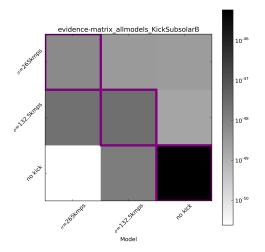
- Nested Sampling implementation in LALInference
- Posterior distribution for one simulated event



15 simulated observations, SNR > 15



24 simulated observations, SNR > 15



Summary

- As we enter the era of GW astronomy, the future detections of GWs from compact binaries can be used to distinguish between some of the population synthesis models.
- With large number of detections (~ O(100)) one can not only distinguish different population synthesis models but can rule out many models.
- It will have implication for astrophysics as it can constrain various astrophysical parameters used in the evolution of these population synthesis models.

Thank you!

