

Two Statistical Challenges in Classification of Variable Sources

James Long

Texas A&M University

March 21, 2017

Outline

Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Outline

Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Overview of Statistical Classification

Key Terms:

- ► training data: lightcurves of known class
- ▶ unlabeled data: lightcurves of unknown class

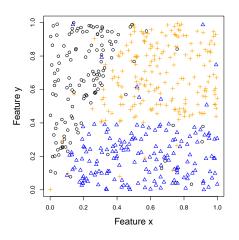
Steps in Classification:

- 1. **feature extraction:** derive quantities from light curves useful for separating classes, eg period, amplitude, derivatives, etc.
- 2. classifier construction: using training data, construct function

$$\widehat{\mathcal{C}}(features) \to class$$

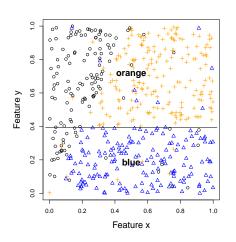
3. apply classifier: for unlabeled data, compute features and predict class using $\widehat{\mathcal{C}}$

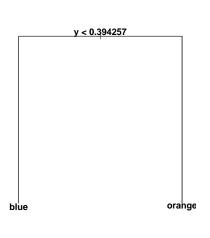
Classifier Construction using CART



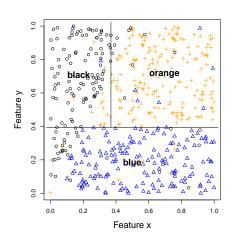
- ► Classification and Regression Trees (CART) developed in 1980s
- recursively partitions feature space
- partition represented by tree

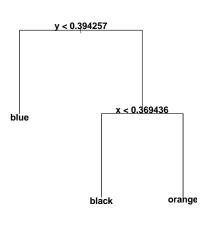
Building CART Tree . . .



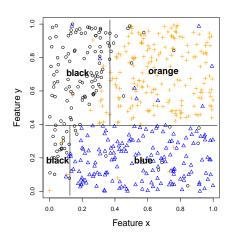


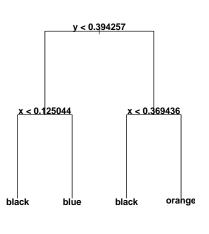
Building CART Tree . . .



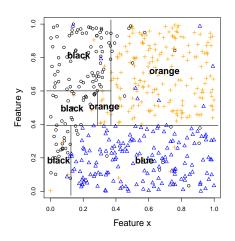


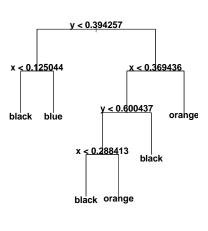
Building CART Tree . . .





Resulting Classifier





Apply Classifier to Test Data

Test Data: Data used to evaluate classifier accuracy. Test data is not used to construct classifier.

Confusion Matrix: Rows are true class of test data. Columns are predicted class of test data. Entries are counts.

	Predicted				
Truth	black	blue	orange		
black	23	1	7		
blue	2	30	2		
orange	3	1	31		

Outline

Background on Automated Variable Star Classification

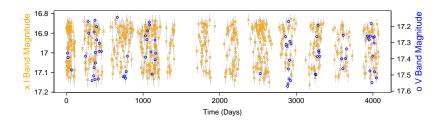
Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Optical Gravitational Lensing Experiment (OGLE)

- ► 400,000 + variable sources in LMC, SMC, Galactic Bulge
- typically hundreds of epochs in I, dozens in V
- ▶ 10 year + baseline



OGLE Classification Example

Classes

- Mira O–rich
- ► Mira C-rich
- ► Cepheid
- ► RR Lyrae AB
- RR Lyrae C

Features

- period (of best fitting sinusoid)
- ightharpoonup amplitude = 95^{th} percentile mag 5^{th} percentile mag
- skew of magnitude measurements
- p2p_scatter¹

 $^{^{1}}$ Dubath et al. 2011 "Random forest automated supervised classification of Hipparcos periodic variable stars" MNRAS

First 6 Rows of Feature–Class Dataframe

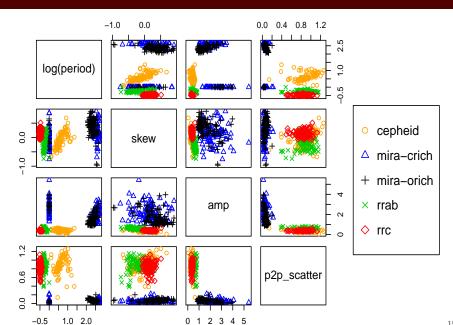
```
period
              skew
                       amp p2p scatter
                                         class
1.6128497 -0.5009063 0.56050
                             0.8672024 cepheid
0.6394983 0.3022388 0.35675
                             0.7523166
                                          rrab
                                          rrab
0.6433533  0.3200730  0.33730
                             0.8554517
0.4954661 -0.2053132 0.42000
                             0.7560226
                                          rrab
                             0.9215426
0.3540801 0.1361693 0.34340
                                           rrc
0.5460332 -0.3863142 0.69600
                             1.0682803
                                          rrab
```

500 total rows. 5 classes.

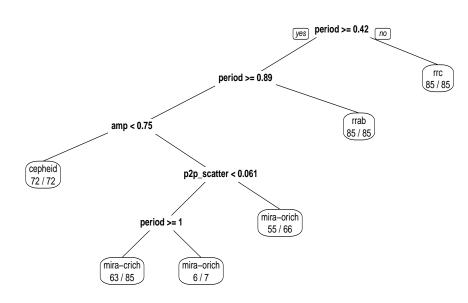
training data: 400 randomly selected rows

test data: remaining 100 rows

Feature Distributions



CART Model Fit To Training Data



Confusion Matrix using Test Data

	Predicted				
Truth	cepheid	mira-crich	mira-orich	rrab	rrc
cepheid	24	0	0	0	0
mira-crich	0	15	10	0	0
mira-orich	0	5	12	0	0
rrab	1	0	0	14	0
rrc	0	0	0	1	14

Conclusion: Develop features to better separate O/C-rich Mira.

Note: CART is interpretable (not black box) but not particularly accurate. Forms basis for Random Forests.²

²Breiman 2001. "Random forests" *Machine learning*

Outline

Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Features and Computation Time

feature	computation time / l.c.		
colors	≈ 0		
Stetson $-J^3$	≈ 0		
period (best fitting sine) ⁴	5 seconds		
Mira Gaussian Process model ⁵	20 sec		
RR Lyrae template goodness–of–fit ⁶	30 minutes		
generative model posterior probabilities	ask David Jones		
:	 -		

Computational limitations prevent extracting all features for all sources.

³Stetson 1996 "On the automatic determination of light-curve parameters for cepheid variables" PASP

⁴Vanderplas 2015 "Periodograms for multiband astronomical time series" ApJ

⁵He 2016 "Period Estimation for Sparsely Sampled Quasi-periodic Light Curves Applied to Miras" ApJ

⁶Sesar 2016 "Machine–learned Identification of RR Lyrae Stars from Sparse, Multi–band data: The PS1 Sample"

Minimizing Feature Computations

Common Solution:

- 1. compute cheap features for all sources
- 2. build a simple classifier
- 3. select "interesting objects"
- compute more expensive features on interesting objects, build classifier

Example: Variable versus non-variable

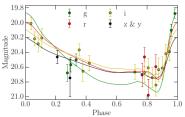
- 1. compute Stetson J, other variability metrics
- 2. make cuts on variability metrics
- 3. compute more expensive features on objects classified as variables

Multiple Iterations: RR Lyrae in Pan-STARRS

Example: Sesar 2016

Goal: Find RR Lyrae among 500 million Pan-STARRS objects

- ► <u>Classifier 1:</u> identified variables using Stetson J, other metrics
- ► <u>Classifier 2:</u> extracted "simple" features (multiband period estimator, amplitude, etc.) on variables, built classifier
- ► <u>Classifier 3:</u> extracted computationally intensive features (eg RRL template fits) on high probability RRL candidates from Classifier 2, built classifier



Formalizing this Framework

Standard Setting

- ▶ *l* is light curve
- f(l) = X is features for light curve l
- ightharpoonup Z is class of l
- $ightharpoonup \widehat{C}$ is classifier

Train classifier \widehat{C} to

$$\text{maximize } P(\widehat{C}(f(l)) = Z)$$

Controlling Feature Extraction Computational Cost

- lacktriangle classifier \widehat{C} chooses which features to compute
- $lackbox{}\widehat{C}$ outputs predicted class \widehat{Z} and feature extraction time T

$$C(l) = (\widehat{Z}, T)$$

Train classifier \widehat{C} to

maximize
$$P(\widehat{C}(l)_1 = Z)$$
 subject to $\mathbb{E}[\widehat{C}(l)_2] < t_0$

Result

 $pprox Nt_0$ time to classify N objects

Question: Has this been studied in the statistics / ML literature?

Outline

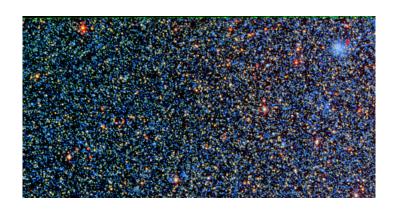
Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

What are the distances to these objects?



Problem:

brightness
$$\propto \frac{\text{luminosity}}{\text{distance}^2}$$

Only brightness can be directly measured.

Image Source: DES Collaboration

Standard Candles

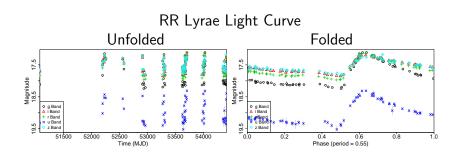
Standard Candle: Class of objects with same luminosity

- ► Know absolute luminosity of standard candle.
- ▶ Determine object is standard candle and estimate its brightness.
- Solve for distance.

RR Lyrae (RRL): Standard candle variable star

► All RR Lyrae have (approximately) same luminosity

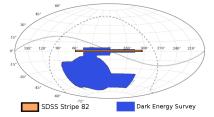
RR Lyrae are Variable Stars



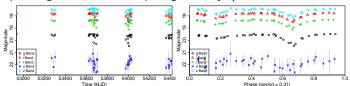
Standard candle: Distance to this star is proportional to mean magnitude, after accounting for <u>dust</u> and <u>PL relation</u>.

Sloan Digital Sky Survey (SDSS) III – Stripe 82

- ▶ Discovered $\approx 60,000$ variable stars
- ightharpoonup pprox 250 brightness measurements / star
- variables belong to many classes



Example Light Curve: Eclipsing Binary (Unfolded and Folded)



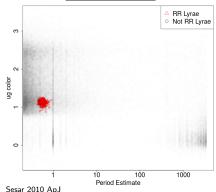
Ivezic 2007 "Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry" ApJ. 28 / 32

Identifying RRL, Mapping MW Halo with SDSS

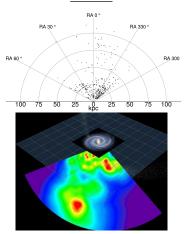
Sesar 2010:

- 1. extracted features for $\approx 60,000$ variables (eg period, amplitude)
- 2. identified ≈ 350 RR Lyrae
- 3. estimated distances to RRL

Steps 1 and 2



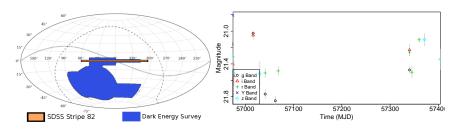
Step 3



Mapping the Galactic Halo with DES

Dark Energy Survey (DES)

- ▶ ongoing survey (started 2013, 5 years of planned observing)
- ▶ 5000 square degrees ($\approx 1/9^{th}$ entire sky)
- ▶ depths to 24 mag in *i*
- ▶ 68 million stars
- $\triangleright \approx 10$ observations in each filter (g,i,r,z,Y) over five years



DES is deeper and wider but sparsely sampled.

Complicated, Multilevel Inference Process

Steps in Inference Process:

- 1. classify stars as RR Lyrae
- 2. estimate distances to stars classified as RR Lyrae
- 3. estimate intensity maps of distribution of matter in MW halo

Can machine learning methods propagate uncertainty through all of these steps?

A Framework for Statistical Inference in Astrophysics

Chad M. Schafer

Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; email: cschafer@cmu.edu

Discusses multistage aspect of several astrostatistics problems.

Thank you. Questions?