muon g-2/EDM

PCPV2013, February 21, 2013 Tsutomu Mibe (IPNS/KEK)

photo : Oarai Beach, Ibaraki JAPAN

Scales of CP-odd sources and EDM

Scales of CP-odd sources and EDM

Lepton EDM directly proves CP-odd phases at TeV scale (and beyond?)

Lepton EDM limits

Particle	EDM limits (e•cm)	Standard model (e • cm)	
е	1.0×10 ⁻²⁷	< 10 ⁻⁴¹	ICL Nature 473, 493 (2011)
μ	1.8×10 ⁻¹⁹	< 10 ⁻³⁸	BNL E821 PR D 80, 052008 (2009)
τ	5×10 ⁻¹⁷		Belle PLB 551, 16 (2003)

Lepton dipole moments

• Interactions with static B and E-fields:

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

Magnetic Dipole Moment

$$\vec{\mu} = \frac{q}{2m} \left(\frac{q}{2m}\right) \vec{s}$$

Electric Dipole Moment

$$\vec{d} = \eta \left(\frac{q}{2mc}\right) \vec{s}$$

Transition Dipole Moments

cLFV process with photon radiation (e.g. $\mu{\rightarrow}e\gamma$)

g-2, EDM and cLFV in SUSY

• Large g-2 \rightarrow Large cLFV

G. Isidori, F. Mescia, P. Paradisi, and D. Temes. PRD 75 (2007) 115019

g-2, EDM and cLFV in SUSY • Large g-2 → Large cLFV → Large EDM

Experimental status

Lepton dipole moments

• Interactions with static B and E-fields:

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

Magnetic Dipole Moment

$$\vec{\mu} = \mathbf{g} \left(\frac{q}{2m}\right) \vec{s}$$

Electric Dipole Moment

$$\vec{d} = \eta \left(\frac{q}{2mc}\right) \vec{s}$$

Transition Dipole Moments

cLFV process with photon radiation (e.g. $\mu{\rightarrow}e\gamma$)

Anomalous magnetic moment

• The Lande's *g* factor is 2 in tree level (Dirac equation)

• In quantum field theory, *g* factor gets corrections:

Anomalous magnetic moment

$$a_{\mu} = a_{\mu}(QED) + a_{\mu}(had) + a_{\mu}(weak) + \frac{a_{\mu}(BSM)}{a_{\mu}(BSM)}$$

All interactions, *including ones we don't know*, appear in quantum loops, and add up to contribute a_{μ}

QED contributions to a_{μ}

Leading order correction (Schwinger term, 1948)

From Lepton Moments (World Scientific, 2010)

Julian Schwinger

QED contributions to a_{μ} (cont.)

M. Hayakawa (tau2012)

$$a_l(\text{QED}) = a_l^{(2)} \times \frac{\alpha}{\pi} + a_l^{(4)} \times \left(\frac{\alpha}{\pi}\right)^2 + a_l^{(6)} \times \left(\frac{\alpha}{\pi}\right)^3 + a_l^{(8)} \times \left(\frac{\alpha}{\pi}\right)^4 + a_l^{(10)} \times \left(\frac{\alpha}{\pi}\right)^5 + \cdots$$

Table: $a_{\mu}(\text{QED})$ at each order 2n, scaled by 10¹¹

order $2n$	using $lpha(ext{Rb})$	using $lpha(a_e)$	-
2	$116 \ 140 \ 973.318 \ (77)$	$116 \ 140 \ 973.213 \ (30)$	-
4	$413 \ 217.6291 \ (90)$	$413 \ 217.6284 \ (89)$	
6	$30 \ 141.902 \ 48 \ (41)$	$30 \ 141.902 \ 39 \ (40)$	NEW!
8	381.008 (19)	381.008 (19)	
10	5.0938 (70)	5.0938 (70)	
sum	116 584 718.951 (80)	116 584 718.846 (37)	-

QED contributions to a_{μ} (cont.)

14

Prof. T. Kinoshita giving a lecture at KEK on 10th order QED corrections

Sohtaro Kanda (U. Tokyo, Master's course student) → tomorrow's speaker

An example of Leading order hadronic term

Theory requires inputs to photon-hadron coupling

Accurate data on "e+e- $\rightarrow \gamma^* \rightarrow$ hadrons" data (VEPP, BaBar, Belle, KLOE...) has been used.

Coutesy D. Nomura (tau2012)

pQCD not useful. Use the dispersion relation and the optical theorem.

$$a_{\mu}^{\rm had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm th}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\rm had}(s)$$

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^+\pi^-$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$

New data on $e^+e^- \rightarrow \pi^+\pi^-$ from KLOE

New data on $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ from Belle

- Lattice efforts making progress by Tom Blum et. al and other groups (UKQCD, ETMC, Mainz).
- Lattice is especially important for evaluation of light-by-light term, which no measurement can be done.

Courtesy Tom Blum

Blobs: all possible hadronic states

Electro-Weak contributions

Leading order Electro-Weak loop

Relevant couplings have been accurately measured by the LEP experiments.

Contributions from Higgs-loop appears only in higher order.

Standard Model prediction for a_{μ}

D. Nomura (tau2012)

QED contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al	
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al	
Hadronic contribution			
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11 in consistent with	
NLO hadronic	-9.8 (0.1) ×10 ⁻¹⁰	HLMNT11 DHMZ10	
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein	
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰		

HLMNT11 : J.Phys.G38:085003,2011

Comparison with experiments

D. Nomura (tau2012)

QED contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al
Hadronic contribut	tion	
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11 in consistent with
NLO hadronic	-9.8 (0.1) $\times 10^{-10}$	HLMNT11 DHMZ10
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰	
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg ~BNL E821 (0.5ppm)
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy

HLMNT11: J.Phys.G38:085003,2011

Beyond the standard model

Contributions from SUSY particles

$$\left|a_{\mu}^{\mathrm{SUSY}}\right| \simeq 130 \times 10^{-11} \left(\frac{100 \text{ GeV}}{\widetilde{m}}\right)^2 \tan \beta,$$

Present uncertainty (exp + SM) : $\Delta a_{\mu} = 80 \times 10^{-11}$

R.D. McKeown, NuFact2012 New Opportunity: Search for A' at Jefferson Lab

- BNL "g-2" expt: Δa_{μ} (expt-thy) = (295±88) x 10⁻¹¹ (3.4 σ)
- No evidence for SUSY at LHC (yet)
- Another solution: A', a massive neutral vector boson

also useful for dark matter models

- 3 Jefferson Lab proposals:
 - APEX test run (Hall A) published
 - HPS test run (Hall B) complete
 - DarkLight test run (FEL) July 2012

g-2 anomaly isn't?

• If the current deviation is fully from EDM?

- J.L.Feng, K. T. Matchev, Y. Shadmi, NP B613 (2001) 366

muon g-2/EDM measurements

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

 a_{μ} (= (g-2)/2) is deduced from this residual rotation (precession). In general, spin also rotates due to $B_{eff} = \beta \times E$ and EDM.

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \end{bmatrix}$$
BNL E821 approach

$$\gamma = 30 \ (P = 3 \ GeV/c)$$

$$\vec{W} = -\frac{e}{m} \frac{\dot{e}}{\ddot{e}} a_{m}\vec{B} + \frac{h^{2}}{2} \frac{\vec{e}}{\vec{b}} \cdot \vec{B} + \frac{\vec{E}}{c} \frac{\ddot{o}\dot{u}}{\dot{\omega}}$$

$$\vec{\omega} = -\frac{e}{m} \begin{bmatrix} a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B}\right) \end{bmatrix}$$

Continuation at FNAL with 0.1ppm precision

Proposed at J-PARC with 0.1ppm precision

The Experiment at BNL

E821 Experimental Technique

Arrival time spectrum

$f(t) \simeq N_0 e^{-\lambda t} [1 + A \cos \omega_a t + \phi)]$ $4 \times 10^9 e^{-}, E_{e^-} \ge 1.8 \text{ GeV}$

BOSTON UNIVERSITY

B. Lee Roberts -tau2012-Nagoya - 21 September 2012

Average field uniformity \pm 1 ppm

History of g-2 measurements

Courtesy F. Jergerlehner, arXiv:0902.3360

3.3 – 3.6 σ : Theory & Experiment must do better

The New g-2 Experiment:

An experiment to Measure the Muon Anomalous Magnetic Moment

to ± 0.14 ppm Precision

- Equal statistical and systematic errors of 0.1 ppm
- Experiment: E989 at Fermilab ≥ X4 better
 - relocate the storage ring to Fermilab
 - use the p-bar debuncher ring (now called the delivery ring) as a 1.9 m long decay line.
- Improve on E821 d_{μ} limit by factor of 100
- New detectors, electronics; improved B-field equipment muon kicker, etc
- CD0 received on September 18, 2012
- Building construction will begin in November 2012
- Ring transport in 2013?

muon g-2/EDM measurements

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

 a_{μ} (= (g-2)/2) is deduced from this residual rotation (precession). In general, spin also rotates due to $B_{eff} = B \times E$ and EDM.

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
BNL E821 approach
 $\gamma = 30 \ (P = 3 \ GeV/c)$

$$\vec{W} = -\frac{e}{m} \frac{\acute{e}}{\ddot{e}} a_{m} \vec{B} + \frac{\hbar^{2}}{2} \frac{\vec{c}}{\dot{b}} \vec{E} + \frac{\vec{E}}{c} \frac{\ddot{0}}{\dot{u}}$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$
Continuation at FNAL with
Proposed at J-PARC with

0.1ppm precision

Proposed at J-PARC with 0.1ppm precision

Lower energy and compact storage ring

BNL E821 / FNAL g-2

J-PARC g-2

Lower energy and compact storage ring

BNL E821 / FNAL g-2

P= 0.3 GeV/c , B=3.0 T

J-PARC g-2

66cm

- Advantages
 - Suited for precision control of B-field
 - Example : MRI magnet , 1ppm local uniformity
 - Spin manipulation of muon beam
 - Effective to cancel various systematics
 - <u>Completely different systematics than the BNL E821</u> or FNAL

Ultra-cold Muon

Requirement for zero E-field:

Muons should be kept stored without E-focusing

ightarrow Beam with ultra-small transverse dispersion

 $\Delta p_T/p \sim 0$

Ultra-cold Muon

 $\Delta p_T / p \sim 3 \text{ keV} / 300 \text{ MeV} = 1\text{E-5}$

Comparison of experiments

	BNL-E821	Fermilab	J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		Very weak magnetic
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9 -		-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

J-PARC Facility (KEK/JAEA)

Neutrino Beam To Kamioka

Main Ring (30 Gold

Bird's eye photo in Feb. 2008

GeV

hrotron

Expected time spectrum of $\mu \rightarrow e^+ v \bar{v}$ decay

Muon spin precesses with time.

 \rightarrow number of high energy e⁺ changes with time by the frequency :

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Expected time spectrum of $\mu \rightarrow e^+ v \bar{v}$ decay

EDM tilts the precession axis.

 \rightarrow This yields an up-down decay asymmetry in number of e+ (oscillates with the same frequency ω)

The collaboration

• 92 members (...still evolving)

25 Institutions: KEK, RIKEN, U-Tokyo, TRIUMF, BNL, PMCU, CYCRC-Tohoku, Osaka, Rikkyo, TITech, SUNYSB, RAL, UCR, UNM, Victoria

7 countries: Czech, USA, Russia, Japan, UK, Canada, France

Dec 2009 : Proposal submitted Dec 2012 : CDR submitted Jan 2012 : Stage-1 status granted from PAC (IMSS, IPNS) $P34 \rightarrow E34$

H-Line construction at J-PARC

ST-

- Sa

Muon production target (graphite)

Snil

proton bean (3 GeV)

H-line construction at J-PARC

To experimental Area

Muon

target

Oici

Ô

production

proton

beam

Development of Mu production target

- Silica powders (SiO₂)
 - known to be a good Mu emitter at room temp. (e.g. Used in Mu→anti-Mu conv. searches)
 - Not self-standing \rightarrow difficulty in laser ionization.
- Silica aerogel
 - Similar structure of SiO₂ grain-network. Self-standing!
 - New data taken in TRIUMF S1249 experiment in 2010-2011
 - Vacuum emission confirmed. Diffusion parameters being extracted.
 - Next step → Optimization of structure (porous structure?, c.f. Antognini et al. (PRL108,143401,2012))

• BG

= 0~0.5 µsec = 1~1.5 µsec = 0.5~1 µsec Events 10³ t = 2.5~3 μsec t = 1.5~2 usec t = 2~2.5 µsec 10² 10 -10 40 -10 0 10 20 30 40 -10 0 10 20 30 40 0 10 20 30 z (mm) z (mm) z (mm)

Development of Mu production target

Metals

- mal emission of Mu (4%) from W at high ture (T=2000K) (PRL, Mills et al)
- W hat goes is a system (K. Yokovama / D
- tomorrow, ⁻ system (K. Yokoyama / D. RAL with upgrau Tomono et al.)
- R&D experiments at J-PARC.
 - source.
 - J-PARC : The world highest pulset
 A new apparatus to quickly study the free material is being commission emission ۲
 - List of materials to be studied:
 - Hot W and other metals ٠
 - Room temp W coated with alkali-metal (Na, Cs)
 - Room temp aerogel ...

Heated W foil (RIKEN-RAL)

commissioning at D-Line/J-PARC

Lyman-α Generating System

Lyman-α Generating System

Generation of high power Lyman- α is being tested at RIKEN. Laser ionization of Mu to be tested at U-line/J-PARC in this year. Y. Oishi 29 Jun. 2012

Muon acceleration

RFQ

IH linac

KEKB/J-PARC accelerator group + TITech + Kyoto Beam simulations in progress. Muon acceleration test being planned at J-PARC

Muon storage magnet and detector

Spiral injection

LINAC+ beam transport

Acceptance has been evaluated with 3D B-field map.

H. linuma, H. Nakayama

mechanical structure₅₈ of vacuum chamber

Vertical kicker

H. linuma, H. Nakayama

Vertical kicker is to stop muon beam in the muon storage area

 $B_{kick}(t) = B_{peak} \times sin(\omega t)$ $\omega = \pi / T_{kick}$

✓ Stop beam vertical motion 7~9mrad
 ✓ B_{peak} =1~10 gauss
 ✓ T_{kick}=150 nsec (~20 turns of muon)
 ✓ Uniformity ~1%

Muon storage magnet and detector

Silicon strip tracker

Number of vanes: 24-48

- Tracking e+ from muon decay (p = 200-300 MeV/c)
- No contamination of B-field (< 1ppm) and E-field (<10mV/cm) in the muon storage region.
- Efficient and stable over ~5 lifetime (33µs)
 - Instantaneous rate changes by two orders of magnitude.
 - Flipping spin of muon will cancel rate effect in the leading order.

Silicon-strip detector development

- Test detector module (KEK)
 - Studies on rate effects
 - Impact to precision B-field
- Frontend ASICs under development (KEK)
- Software development (KEK-RIKEN-LPNHE)

Timing resolution Rate dependence

T. Kakurai

Figure 7.29: The DSSD test module on the support box

Measured magnetic moment of detector components

Milestones

- M1) Demonstration of the ultra-cold muon production with the required conversion efficiency leading to an intensity of $1 \times 10^6 \mu^+/s$.
- M2) Muon acceleration tests with the baseline configuration of low-B muon LINAC, i.e. RFQ, and IH LINAC.
- M3) Tests of the spiral injection scheme.
- M4) Production of a prototype magnet and development of the field monitor with the required precision.
- M5) Demonstration of rate capability of the detector system for decay positron detection.

Summary

- J-PARC muon g-2/EDM experiment
 - Precision measurement of muon g-2 (0.1ppm)
 - Search for muon EDM (sensitivity < 10⁻²⁰ e cm)
- Project status
 - Conceptual Design Report was released.
 - Stage-1 status granted from PAC (IMSS, IPNS)
 - H-Line construction has started.
 - R&Ds in progress for all areas of the project
 - Experiment can be started in 5 years (technically driven schedule)

J-PARC Material and Life science Facility

