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Motivation

What is an insulator?

Is an insulator a property of low lying excited states or just the
ground state property?

Conventional way: the gap between the ground state and the first
excited state. Ex: Band Insulator

Mott insulator, Anderson Insulator, or any other kind of
insulator(except many body localisation ) can be characterized by
one definition?
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Motivation

Walter Kohn’s view on the insulating state

The insulating behaviour is a property of the ground state.

Electrons organise themselves in the ground state as to satisfy a many
electrons localisation.

The insulating state emerges whenever the ground state of the
extended system breaks up into sum of function
ψM (Ψ(r1, r2, ··, rn) =

∑
M φM (r1, r2, ··, rn)

which are localized in disconnected region of RM of the high
dimensional configuration space. Hence electronic localization in an
insulator occurs in the configuration space not in the position space

Kohn aruged that such disconnectedness is in fact a signature of the
insulating wave function.

S. R. Hassan (IMSc. Chennai) Quantum Geometry of Correlated Many-Body States 3 / 26



Motivation

Resta prescription for Many electrons localization

Resta and Sorrela proposed how to measure the electronic localization
length to address the shape of the ground state wavefunction.

They define the localization tensor < rαrβ >c. It has dimension of
square of length; it is an intensive quantity that characterizes the
ground state.

It is related with Quantm geoemtric tensor ηαβ.
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Quantum geometry Quantum geoemtery of non interacting fermions

Non-interacting fermions

Consider NB tight binding model.

H =
∑
iα,jβ

tαβij c
†
iαcjβ + h.c

In momentum space k (where k takes values in BZ) H is:

H =
∑
kαβ

h(k)αβc
†
kαckβ

The single particle Hamiltonian h(k) in the quasi momentum space k
is NB ×NB matrix.

Its spectrum is denoted by, h(k)un(k) = εn(k)un(k)

The single-particle states in the nth band are denoted by
ρn(k) = un(k)(un(k)†)

Basically, the single particle states, un(k) define mapping from the
BZ to the projective hilbert space, k→ ρn(k). The projective hilbert
space is the space of physical states.
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Quantum geometry Quantum geoemtery of non interacting fermions

Space of the physical states

Quantum theory represents the physical states by rays in a Hilbert
space.

A ray in Hilbert space is the following. Consider a vector |un(k) >.
Take it to be normalized < un(k)|unk) >= 1.

|un(k) > and eiφ(k)|un(k) > represents the same states. So the phase
is not detectable. Each state has a direction. These what we call rays.

Correspondence between normalized vectros in a Hilbert space and
the physical states is many to one.
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Quantum geometry Quantum geoemtery of non interacting fermions

Non-interacting fermions:Bargmann invariant

Each band of states, we associate a nth Bargmann invariant with
every ordrerd sequence of n point in the BZ, k = (k1,k2, · · kn).
Bn(k1,k2, · · kn) = Tr(ρn(k1)ρ

n(k2)ρ
n(k3) · · · ρn(kn))

The quantum distances and geometric phases in the BZ come from
this map.

Quantum distance:

d2(k1,k2) = 1−B(2)(k1,k2)

Geometric phase:

Ω(k1,k2,k3) =
B(3)(k1,k2,k3)

|B(3)(k1,k2,k3)|
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Quantum geometry Quantum geometry of inetracting fermions

Quantum geoemtry of Interacting Fermions

Just we have seen the single particle state is parametrized by quasi
momentum k.

But in the case of many body states there is no such parmetrization.
Let us consider a many body state |ψ >:

|ψ >=
∑
k

ck1,k2,k3,··kn |k1,k2,kn, · · kn >

We can see there is no parametrization as |ψ(k) > for many body
state |ψ >.

Then there is a natural question to ask how to generalize a concept of
quantum distance in a physical paramter space such as BZ wave
space.
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Quantum geometry Quantum geometry of inetracting fermions

Generalization of concept of distance on a physical
parameter space for MBS

Let us first investigate for the mean field state. The mean field state
for a multiband system is written as:

|n >=
∏
k,α

(unα(k)c†k,α)|0 >

The density matrix at k1 and k2 are ρn(k1) = un(k1)(un(k1)† and
ρn(k2) = un(k2)(un(k2)†

The second Bargmann invariant:

B(2)(k1,k2) = Tr(ρn(k1)ρn(k2))
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Quantum geometry Quantum geometry of inetracting fermions

Mean-field states

B(2)(k1,k2) = (un†(k1)un(k2)(un†(k2)un(k1))

= − < 0|(un†(k1)ck1)(un†(k2)ck2)(un†(k2)c†k2
)(un†(k1)c†k1

)|0 >

= − < k1,k2|(un†(k2)c†k2
)(un†(k1)c†k1

)|0 >

=< k1,k2|E(k1,k2)c†k1
c†k2

E(k1,k2)|0 >

E(k1,k2) is an unitary operator, which we may call certain type of
exchange operator, such that

E(k1,k2)|0 >= |0 >

E(k1,k2)|0 >= |k1,k2 >

E(k1,k2)c†k1
c†k2

E(k1,k2) = −c†k2
c†k1
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Quantum geometry Quantum geometry of inetracting fermions

Exchange operator

B(2)(k1,k2) =< n|E(k1,k2)|n >
The Bargmann invarinat B(2) can be written as expectation value of
E over many body state |n >.

E(k1,k2)=e
π
2

∑
α(c

†
k1α

ck2α−h.c)
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Quantum geometry Quantum geometry of inetracting fermions

Distance and Geometric phase

The second Bargmann invarant has been used to define a distance
between two states |ψ1 > and |ψ2 >

d(k1,k2) =

√
1−B2(k1,k2)

λ
2

λ is a real number ≥ 1

maximum distance is 1 when states are orthogonal to each other.

minimum distance is 0.

satisfies the traingle inequality

The phase of Bargmann invariant as a geometric phase is related with
3-vertex Bargmann invariant.
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Distances in Strongly correlated systems

Quantum distance for strongly interacting fermions

How to define the quantum distance for the correlated systems?

We define induced distance between two points on the BZ as distance
between |Ψ > and E(k1, k2)|Ψ >

d2(k1, k2) = 1− | < Ψ|E(k1, k2)|Ψ > |2

where

E(k1, k2) = e
π
2
(c†k1

ck2−h.c)

|Ψ >=
∑
{k}

Ck1,k2,.......kL |k1 ⊗ k2 ⊗ .......⊗ kL >
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Distances in Strongly correlated systems

Quantum distance

d(k, k) = 0, d(k1, k2) = d(k2, k1)

Triangle inequality d(k1, k2) + d(k2, k3) ≥ d(k3, k1) is also satisfied.
Can be proven by Ptolemy inequality.

|1 >= E(k2, k3)|GS >, |2 >= E(K3, k1)|GS >,
|3 >= E(k1,K2)|GS >
It can be shown that < 1|2 >=< 2|3 >=< 3|1 >. This condition
helps to prove triangle inequality.
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Distances in Strongly correlated systems

Ptolemay inquality

Four normalized Hilbert space vectors |Ψ >, |1 > ,|2 >, and |3 > can
constructed. Six distances dij between any four distinct points
i, j = 1, 2, 3, 4 satisfy the following Ptolemy inequality

dijdkl + dikdjl ≥ dildjl
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Olympiad Corner 
 
Below are the problems of the 2013 
Asia Pacific Mathematical Olympiad. 

 
Problem 1. Let ABC be an acute 
triangle with altitudes AD, BE and CF, 
and let O be the center of its 
circumcircle. Show that the segments 
OA, OF, OB, OD, OC, OE dissect the 
triangle ABC into three pairs of 
triangles that have equal areas. 
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an integer. Here [r] denotes the greatest 
integer less than or equal to r. 
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Ptolemy’s Inequality  
Nguyen Ngoc Giang, M.Sc. 

 
       Ptolemy’s inequality is a beautiful 
inequality, but it is rather difficult to see 
when or how it can be applied to 
geometry problems. This inequality has 
often been used in gifted student 
selection exams in various places.  
 
        In this article we will first look at 
how this inequality is derived. 
 
Theorem (Ptolemy’s Inequality) Let 
ABCD be a quadrilateral. We have  
 

ABuCD+DAuBC ≥ ACuBD 
 

with equality if and only if ABCD is a 
cyclic quadrilateral. 
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Proof. From A and from B draw two 
rays to cut diagonals BD and AC at X 
and at Y respectively such that ∠XAB = 
∠DAC and ∠YBA =∠DCA.   
 
Suppose AX cut BY at E. Then ∠BAC 
=∠EAD. We have ∆ABE ~ ∆ACD. So 
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and we also have ∆AED ~ ∆ABC. It 
follows  

        )2(.EDACBCAD
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Adding the equations (1) and (2), we 
have  

ABuCD+DAuBC=AC u(BE+ED)  
                 ≥ ACuBD. 

 
Thus, for arbitrary quadrilateral ABCD, 
we have ABuCD+DAuBC ≥ ACuBD. 
Equality holds if and only if E belongs 
to BD. In that case ∠ABD =∠ACD or 
ABCD is a cyclic quadrilateral. 
 
This inequality can also be proved in a 
different way (cf vol. 2, no. 4 of Math 
Excalibur). 
 
Next we will look at applications of the 
theorem and Ptolemy’s inequality. 

Example 1 An isosceles triangle ABC 
(with CA=CB) is inscribed in a circle 
with center O and M is an arbitrary point 
lying on the minor arc BC. Prove that  
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Solution. Applying Ptolemy’s theorem 
to AMBC, we have MAuBC + MBuCA = 
MC u AB. From CA=CB, we have 
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Example 2 (Pythagorean Theorem) For 
right ∆ABC with ∠ACB=90°, we have 
BC2 + AC2 = AB2. 

 

OA

C
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D   
Solution. Draw a circle with midpoint O 
of side AB as center and radius AB/2. 
Let ray CO intersect the circle at D. 
Applying Ptolemy’s theorem to ACBD, 
we have ADuBC+BDuAC = ABuCD. 
Since AD = BC, BD=AC and CD=AB, 
we get  

BC2 + AC2 = AB2. 
 
Example 3 Let a and b be acute angles. 
Prove that  
 

sin(a+b) = sin a cos b + sin b cos a. 
 

Solution. Let’s draw a circle with 
diameter AC = 1. Construct the rays AB 
and AD lying on opposite sides of the 
diameter AC such that ∠CAB = a and 
∠CAD = b. Also draw diameter BE as 
shown in the next figure. 
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Distances in Strongly correlated systems

Ptolemaic distance space

All these distances induced on the pair of physical paramter space is a
metric space. It is also called Ptolemaic metric or we can call it
distance space.

We have distance space. The question is what to do with it. What
information we can extract for the physical system?

How to characterize distance space mathematically?

we can view this distance space as a network or a graph:

1

2

3

4

5

6

7
8

9
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Distances in Strongly correlated systems

Geometric Phase

Our exchange operator generated states
|GS >= |Ψ1 >, |Ψ2 >= E(12)|GS >, , |Ψ3 >= E(13)|GS >, .......
The third order Bargmann Invariant:
B3(|Ψ1 >, |Ψ2 >, |Ψ3 >) = Tr(ρ(Ψ1)ρ(Ψ2)ρ(Ψ3))

This satisfies additive properties of phases.

Total geometric phase can be computed.

The question is how to express the third order Bargmann invriant as
B(3)(k1,k2,k3)?

Can it be written as expectation value of some operator C(k1,k2,k3)
where C is:

C(k1,k2,k3) = E(k1,k2)E(k2,k3)

This form works for mean-field state but not the correlated states.
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Distances in Strongly correlated systems Application

Application:Quantum distance in the t-V modle

The hamiltonian is

H =

L∑
i

(−t(c†ici+1 + h.c) + V ninj)

for V=0

|FS >=
∏

kn≤kf

C†kn |0 >

ckn =
∑

i cie
−ikni and kn = 2πn

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

kout kin kout
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Distances in Strongly correlated systems Application

Di stance Matrix at V = 0,∞

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

kout kin kout

At V = 0:

D =

 kin kout
kin 0 I
kout I 0


Distance Matrix at V =∞ (CDW state):

Dij =

 0 i = j

1 i = j + L
2√

3
4 i 6= j, i 6= j + L

2


At an arbitary V:

D =

[
∆ ∆e

∆e ∆

]
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Distances in Strongly correlated systems Application

Distance Matrix
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Figure: (a)-(f) Distance matrices obtained from numerical computation for
interaction strengths V = 0.1 (a), V = 1 (b), V = 2 (c), V = 3 (d), V = 4 (e)
and V = 12 (f).
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Distances in Strongly correlated systems Application

Distance Matrix

-3.49 -2.79 -2.09 -1.40 -0.70 0.00 0.70 1.40 2.09 2.79
k
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d(
−π

,k
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V=4
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V
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0.6
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δ

L=10
L=14
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Figure: Distance d(−π, k) between k = −π and the other k modes in the
Brillouin zone (BZ) for different values of the interaction strength V .
δ = d(−π,−π/2)− d(−π,−π/2− 2π/L), gives a measure of the discontinuity
across the Fermi points. It is studied as a function of interaction strength V for
different system sizes.
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Distances in Strongly correlated systems Application

Properties of NN distances

0.00 0.35 0.70 1.05 1.40 1.75 2.09 2.44
kn

0.0

0.2

0.4

0.6

0.8

1.0

d(
k n
,k

n
+
1)

V=0.1
V=1
V=2
V=3
V=4
V=12

V=0: all zero except fermi point (delta function sigularity at kf )

intermediate V: this singularity remains but smmoothen out.

V =∞: all NN distances are equal.
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Distances in Strongly correlated systems Application

Behaviour of triangles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

kout kin kout

(a) (b) (c) (d) (a) (b) (c) (d)

Particle triangles:
Particle-Hole triangles:
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Distances in Strongly correlated systems Application

Understanding Distances

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

kout kin kout

V=0

0

V=1 V=2

V=3 V=4 V=12

Define
a radius R in terms sum of NN dist :
2πR =

∑
i d(ki, ki+1)

NN distance represnted by an angle:
θi,i+1 = d(ki,ki+1)

R
Each quasi momentum by an angle:
θk =

∑k
j θj,j+1

S. R. Hassan (IMSc. Chennai) Quantum Geometry of Correlated Many-Body States 24 / 26



Distances in Strongly correlated systems Application

Unit Circle representation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

kout kin kout

V=0

0

V=1 V=2

V=3 V=4 V=12

V = 0 all the points collaps into θ = 0, π.

Small V: they spread out but points in the feri sea and those outside
its are well separated

In the corss over regions (2 ≤ V ≤ 3 ): the separation starts closing.

In the insilating state: the sepration is indistinguishable.

V =∞: they are eqyally spaced.
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Conclusion

Summary

We presented an approach how to construct distance space for the
many body state.

We have studied properties of distances and tried to extract from it
possible cross over transition.

The Quantum distance probes the shape of the ground state wave
function

Our expresssion of the Quantum distance is very general and can be
applied in one band Hubbard model. Other approaches fail to study
geometry for such cases.

We can apply in spin systems/bose system

We are unable to parametrize the thrid order Bargmann invariant in
terms of BZ vectors.
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