Quantum Geometry of Correlated Many-Body State

S. R. Hassan

The Institute of Mathematical Sciences, CIT Campus, Tharamani, Chennai

ICTS Meeting, GEOMETRIC PHASES IN OPTICS AND TOPOLOGICAL MATTER, Bangalore, 23rd January, 2020

In Collaboration with: Ankita Chakrabarti (AC), R. Shankar (RS)

SRH, RS, AC, PRB 98 (23), 235134 (2018)
AC, SRH, RS, PRB,99 (8), 085138 (2019)
SRH, AC, RS, arxive:1905.13535

Outline I

(1) Motivation
(2) Quantum geometry

- Quantum geoemtery of non interacting fermions
- Quantum geometry of inetracting fermions
(3) Distances in Strongly correlated systems
- Application

4. Conclusion

What is an insulator?

Is an insulator a property of low lying excited states or just the ground state property?

Conventional way: the gap between the ground state and the first excited state. Ex: Band Insulator

Mott insulator, Anderson Insulator, or any other kind of insulator(except many body localisation) can be characterized by one definition?

Walter Kohn's view on the insulating state

- The insulating behaviour is a property of the ground state.
- Electrons organise themselves in the ground state as to satisfy a many electrons localisation.
- The insulating state emerges whenever the ground state of the extended system breaks up into sum of function $\psi_{M}\left(\Psi\left(r_{1}, r_{2}, \cdot \cdot, r_{n}\right)=\sum_{M} \phi_{M}\left(r_{1}, r_{2}, \cdot \cdot, r_{n}\right)\right.$ which are localized in disconnected region of \mathcal{R}_{M} of the high dimensional configuration space. Hence electronic localization in an insulator occurs in the configuration space not in the position space
- Kohn aruged that such disconnectedness is in fact a signature of the insulating wave function.

Resta prescription for Many electrons localization

- Resta and Sorrela proposed how to measure the electronic localization length to address the shape of the ground state wavefunction.
- They define the localization tensor $\left\langle r_{\alpha} r_{\beta}\right\rangle_{c}$. It has dimension of square of length; it is an intensive quantity that characterizes the ground state.
- It is related with Quantm geoemtric tensor $\eta_{\alpha \beta}$.

Non-interacting fermions

- Consider N_{B} tight binding model.

$$
H=\sum_{i \alpha, j \beta} t_{i j}^{\alpha \beta} c_{i \alpha}^{\dagger} c_{j \beta}+h . c
$$

- In momentum space \mathbf{k} (where \mathbf{k} takes values in $B Z$) H is:

$$
H=\sum_{\mathbf{k} \alpha \beta} h(\mathbf{k})_{\alpha \beta} c_{\mathbf{k} \alpha}^{\dagger} c_{\mathbf{k} \beta}
$$

The single particle Hamiltonian $h(\mathbf{k})$ in the quasi momentum space \mathbf{k} is $N_{B} \times N_{B}$ matrix.

- Its spectrum is denoted by, $h(\mathbf{k}) u^{n}(\mathbf{k})=\epsilon_{\mathbf{n}}(\mathbf{k}) \mathbf{u}^{\mathbf{n}}(\mathbf{k})$
- The single-particle states in the $n^{\text {th }}$ band are denoted by $\rho^{n}(\mathbf{k})=\mathbf{u}^{\mathbf{n}}(\mathbf{k})\left(\mathbf{u}^{\mathbf{n}}(\mathbf{k})^{\dagger}\right)$
- Basically, the single particle states, $u^{n}(\mathbf{k})$ define mapping from the BZ to the projective hilbert space, $\mathbf{k} \rightarrow \rho^{n}(\mathbf{k})$. The projective hilbert space is the space of physical states.

Space of the physical states

- Quantum theory represents the physical states by rays in a Hilbert space.
- A ray in Hilbert space is the following. Consider a vector $\mid u^{n}(\mathbf{k})>$. Take it to be normalized $\left.<u^{n}(\mathbf{k}) \mid u^{n} \mathbf{k}\right)>=1$.
- $\mid u^{n}(\mathbf{k})>$ and $e^{i \phi(\mathbf{k})} \mid u^{n}(\mathbf{k})>$ represents the same states. So the phase is not detectable. Each state has a direction. These what we call rays.
- Correspondence between normalized vectros in a Hilbert space and the physical states is many to one.

Non-interacting fermions:Bargmann invariant

- Each band of states, we associate a nth Bargmann invariant with every ordrerd sequence of n point in the $B Z, \mathbf{k}=\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \cdots \mathbf{k}_{n}\right)$. $B^{n}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \cdots \mathbf{k}_{n}\right)=\operatorname{Tr}\left(\rho^{n}\left(\mathbf{k}_{1}\right) \rho^{n}\left(\mathbf{k}_{2}\right) \rho^{n}\left(\mathbf{k}_{3}\right) \cdots \rho^{n}\left(\mathbf{k}_{n}\right)\right)$
- The quantum distances and geometric phases in the BZ come from this map.
- Quantum distance:

$$
d^{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=1-B^{(2)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)
$$

- Geometric phase:

$$
\Omega\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\frac{B^{(3)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)}{\left|B^{(3)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)\right|}
$$

Quantum geoemtry of Interacting Fermions

- Just we have seen the single particle state is parametrized by quasi momentum \mathbf{k}.
- But in the case of many body states there is no such parmetrization. Let us consider a many body state $|\psi\rangle$:

$$
\left|\psi>=\sum_{\mathbf{k}} c_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \cdot \cdot \mathbf{k}_{n}}\right| \mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{n}, \cdots \mathbf{k}_{n}>
$$

- We can see there is no parametrization as $\mid \psi(\mathbf{k})>$ for many body state $|\psi\rangle$.
- Then there is a natural question to ask how to generalize a concept of quantum distance in a physical paramter space such as BZ wave space.

Generalization of concept of distance on a physical parameter space for MBS

- Let us first investigate for the mean field state. The mean field state for a multiband system is written as:

$$
\left|n>=\prod_{\mathbf{k}, \alpha}\left(u_{\alpha}^{n}(\mathbf{k}) c_{\mathbf{k}, \alpha}^{\dagger}\right)\right| 0>
$$

- The density matrix at $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ are $\rho^{n}\left(\mathbf{k}_{\mathbf{1}}\right)=\mathbf{u}^{\mathbf{n}}\left(\mathbf{k}_{\mathbf{1}}\right)\left(\mathbf{u}^{\mathbf{n}}\left(\mathbf{k}_{\mathbf{1}}\right)^{\dagger}\right.$ and $\rho^{n}\left(\mathbf{k}_{\mathbf{2}}\right)=\mathbf{u}^{\mathbf{n}}\left(\mathbf{k}_{\mathbf{2}}\right)\left(\mathbf{u}^{\mathbf{n}}\left(\mathbf{k}_{\mathbf{2}}\right)^{\dagger}\right.$
- The second Bargmann invariant:

$$
B^{(2)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\operatorname{Tr}\left(\rho^{n}\left(\mathbf{k}_{\mathbf{1}}\right) \rho^{\mathbf{n}}\left(\mathbf{k}_{\mathbf{2}}\right)\right)
$$

Mean-field states

$$
\begin{gathered}
B^{(2)}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{1}}\right) u^{n}\left(\mathbf{k}_{\mathbf{2}}\right)\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{2}}\right) \mathbf{u}^{\mathbf{n}}\left(\mathbf{k}_{\mathbf{1}}\right)\right)\right. \\
=-<0\left|\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{1}}\right) c_{\mathbf{k}_{\mathbf{1}}}\right)\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{2}}\right) c_{\mathbf{k}_{\mathbf{2}}}\right)\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{2}}\right) c_{\mathbf{k}_{\mathbf{2}}}^{\dagger}\right)\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{1}}\right) c_{\mathbf{k}_{\mathbf{1}}}^{\dagger}\right)\right| 0> \\
=-<\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\left|\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{2}}\right) c_{\mathbf{k}_{\mathbf{2}}}^{\dagger}\right)\left(u^{n \dagger}\left(\mathbf{k}_{\mathbf{1}}\right) c_{\mathbf{k}_{\mathbf{1}}}^{\dagger}\right)\right| 0> \\
=<\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\left|E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) c_{\mathbf{k}_{\mathbf{1}}}^{\dagger} c_{\mathbf{k}_{\mathbf{2}}}^{\dagger} E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)\right| 0>
\end{gathered}
$$

$E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)$ is an unitary operator, which we may call certain type of exchange operator, such that

$$
\begin{gathered}
E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)|0>=| 0> \\
E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)|0>=| \mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}> \\
E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) c_{\mathbf{k}_{\mathbf{1}}}^{\dagger} c_{\mathbf{k}_{\mathbf{2}}}^{\dagger} E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=-c_{\mathbf{k}_{\mathbf{2}}}^{\dagger} c_{\mathbf{k}_{1}}^{\dagger}
\end{gathered}
$$

Exchange operator

- $B^{(2)}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=<n\left|E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)\right| n>$
- The Bargmann invarinat $B^{(2)}$ can be written as expectation value of E over many body state $\mid n>$.
- $E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=\mathrm{e}^{\frac{\pi}{2} \sum_{\alpha}\left(c_{\mathbf{k}_{\mathbf{1}} \alpha}^{\dagger} c_{\mathbf{k}_{\mathbf{2}} \alpha}-h . c\right)}$

Distance and Geometric phase

The second Bargmann invarant has been used to define a distance between two states $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$

$$
d\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=\sqrt{1-B^{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)^{\frac{\lambda}{2}}}
$$

- λ is a real number ≥ 1
- maximum distance is 1 when states are orthogonal to each other.
- minimum distance is 0 .
- satisfies the traingle inequality
- The phase of Bargmann invariant as a geometric phase is related with 3-vertex Bargmann invariant.

Quantum distance for strongly interacting fermions

- How to define the quantum distance for the correlated systems?
- We define induced distance between two points on the BZ as distance between $\mid \Psi>$ and $E\left(k_{1}, k_{2}\right) \mid \Psi>$

$$
d^{2}\left(k_{1}, k_{2}\right)=1-|<\Psi| E\left(k_{1}, k_{2}\right)|\Psi>|^{2}
$$

where

$$
\begin{gathered}
E\left(k_{1}, k_{2}\right)=e^{\frac{\pi}{2}\left(c_{k_{1}}^{\dagger} c_{k_{2}}-h . c\right)} \\
\left|\Psi>=\sum_{\{k\}} C_{k_{1}, k_{2}, \ldots \ldots . . k_{L}}\right| k_{1} \otimes k_{2} \otimes \ldots \ldots \otimes k_{L}>
\end{gathered}
$$

Quantum distance

- $d(k, k)=0, d\left(k_{1}, k_{2}\right)=d\left(k_{2}, k_{1}\right)$
- Triangle inequality $d\left(k_{1}, k_{2}\right)+d\left(k_{2}, k_{3}\right) \geq d\left(k_{3}, k_{1}\right)$ is also satisfied. Can be proven by Ptolemy inequality.
- $\left|1>=E\left(k_{2}, k_{3}\right)\right| G S>,\left|2>=E\left(K_{3}, k_{1}\right)\right| G S>$, $\left|3>=E\left(k_{1}, K_{2}\right)\right| G S>$
- It can be shown that $<1|2>=<2| 3>=<3 \mid 1>$. This condition helps to prove triangle inequality.

Ptolemay inquality

Four normalized Hilbert space vectors $|\Psi>,|1>| 2>$,, and $| 3>$ can constructed. Six distances $d_{i j}$ between any four distinct points $i, j=1,2,3,4$ satisfy the following Ptolemy inequality

$$
d_{i j} d_{k l}+d_{i k} d_{j l} \geq d_{i l} d_{j l}
$$

Theorem (Ptolemy's Inequality) Let
$\begin{aligned} & A B C D \text { be a quadrilateral. We have } \\ & \qquad A B \times C D+D A \times B C \geq A C \times B D\end{aligned}$
with equality if and only if $A B C D$ is a
cyclic quadrilateral.

Ptolemaic distance space

- All these distances induced on the pair of physical paramter space is a metric space. It is also called Ptolemaic metric or we can call it distance space.
- We have distance space. The question is what to do with it. What information we can extract for the physical system?
- How to characterize distance space mathematically?
- we can view this distance space as a network or a graph:

Geometric Phase

- Our exchange operator generated states

$$
\left|G S>=\left|\Psi_{1}>,\left|\Psi_{2}>=E(12)\right| G S>,,\left|\Psi_{3}>=E(13)\right| G S>, \ldots \ldots\right.\right.
$$

- The third order Bargmann Invariant:

$$
B^{3}\left(\left|\Psi_{1}>,\left|\Psi_{2}>,\right| \Psi_{3}>\right)=\operatorname{Tr}\left(\rho\left(\Psi_{1}\right) \rho\left(\Psi_{2}\right) \rho_{(} \Psi_{3}\right)\right)
$$

- This satisfies additive properties of phases.
- Total geometric phase can be computed.
- The question is how to express the third order Bargmann invriant as $B^{(3)}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}, \mathbf{k}_{\mathbf{3}}\right)$?
- Can it be written as expectation value of some operator $C\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}, \mathbf{k}_{\mathbf{3}}\right)$ where C is:

$$
C\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}, \mathbf{k}_{\mathbf{3}}\right)=E\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) E\left(\mathbf{k}_{\mathbf{2}}, \mathbf{k}_{\mathbf{3}}\right)
$$

- This form works for mean-field state but not the correlated states.

Application:Quantum distance in the $\mathrm{t}-\mathrm{V}$ modle

- The hamiltonian is

$$
H=\sum_{i}^{L}\left(-t\left(c_{i}^{\dagger} c_{i+1}+h . c\right)+V n_{i} n_{j}\right)
$$

- for $\mathrm{V}=0$

$$
\left|F S>=\prod_{k_{n} \leq k_{f}} C_{k_{n}}^{\dagger}\right| 0>
$$

- $c_{k_{n}}=\sum_{i} c_{i} e^{-i k_{n} i}$ and $k_{n}=\frac{2 \pi n}{L}$

Di stance Matrix at $V=0, \infty$

At $V=0$:

$$
D=\left[\begin{array}{c|cc}
& k_{\text {in }} & k_{\text {out }} \\
k_{\text {in }} & 0 & I \\
k_{\text {out }} & I & 0
\end{array}\right]
$$

Distance Matrix at $V=\infty$ (CDW state):

$$
D_{i j}=\left[\begin{array}{cc}
0 & i=j \\
1 & i=j+\frac{L}{2} \\
\sqrt{\frac{3}{4}} & i \neq j, i \neq j+\frac{L}{2}
\end{array}\right]
$$

At an arbitary V :

$$
D=\left[\begin{array}{cc}
\Delta & \Delta_{e} \\
\Delta_{e} & \Delta
\end{array}\right]
$$

Distance Matrix

Figure: (a)-(f) Distance matrices obtained from numerical computation for interaction strengths $V=0.1$ (a), $V=1$ (b), $V=2$ (c), $V=3$ (d), $V=4$ (e) and $V=12$ (f).

Distance Matrix

Figure: Distance $d(-\pi, k)$ between $k=-\pi$ and the other k modes in the Brillouin zone (BZ) for different values of the interaction strength V. $\delta=d(-\pi,-\pi / 2)-d(-\pi,-\pi / 2-2 \pi / L)$, gives a measure of the discontinuity across the Fermi points. It is studied as a function of interaction strength V for different system sizes.

Properties of NN distances

- $\mathrm{V}=0$: all zero except fermi point (delta function sigularity at k_{f})
- intermediate V : this singularity remains but smmoothen out.
- $V=\infty$: all NN distances are equal.

Behaviour of triangles

Particle triangles:
Particle-Hole triangles:

Understanding Distances

Define
a radius R in terms sum of NN dist :
$2 \pi R=\sum_{i} d\left(k_{i}, k_{i+1}\right)$
NN distance represnted by an angle:
$\theta_{i, i+1}=\frac{d\left(k_{i}, k_{i+1}\right)}{R}$

Unit Circle representation

- $V=0$ all the points collaps into $\theta=0, \pi$.
- Small V: they spread out but points in the feri sea and those outside its are well separated
- In the corss over regions $(2 \leq V \leq 3)$: the separation starts closing.
- In the insilating state: the sepration is indistinguishable.
- $V=\infty$: they are eqyally spaced.

Summary

- We presented an approach how to construct distance space for the many body state.
- We have studied properties of distances and tried to extract from it possible cross over transition.
- The Quantum distance probes the shape of the ground state wave function
- Our expresssion of the Quantum distance is very general and can be applied in one band Hubbard model. Other approaches fail to study geometry for such cases.
- We can apply in spin systems/bose system
- We are unable to parametrize the thrid order Bargmann invariant in terms of BZ vectors.

