Quantum Geometry of Correlated Many-Body State

S. R. Hassan

The Institute of Mathematical Sciences, CIT Campus, Tharamani, Chennai

ICTS Meeting, GEOMETRIC PHASES IN OPTICS AND TOPOLOGICAL MATTER, Bangalore, 23rd January, 2020

In Collaboration with: Ankita Chakrabarti (AC), R. Shankar (RS)

SRH, RS, AC, PRB 98 (23), 235134 (2018)
 AC, SRH, RS, PRB,99 (8), 085138 (2019)
 SRH, AC, RS, arxive:1905.13535

Outline I

Motivation

Quantum geometry

- Quantum geoemtery of non interacting fermions
- Quantum geometry of inetracting fermions

Distances in Strongly correlated systemsApplication

What is an insulator?

Is an insulator a property of low lying excited states or just the ground state property?

Conventional way: the gap between the ground state and the first excited state. Ex: Band Insulator

Mott insulator, Anderson Insulator, or any other kind of insulator(except many body localisation) can be characterized by one definition?

Motivation

Walter Kohn's view on the insulating state

- The insulating behaviour is a property of the ground state.
- Electrons organise themselves in the ground state as to satisfy a many electrons localisation.
- The insulating state emerges whenever the ground state of the extended system breaks up into sum of function $\psi_M \ (\Psi(r_1, r_2, \cdot , r_n) = \sum_M \phi_M(r_1, r_2, \cdot , r_n))$ which are localized in disconnected region of \mathcal{R}_M of the high dimensional configuration space. Hence electronic localization in an insulator occurs in the configuration space not in the position space
- Kohn aruged that such disconnectedness is in fact a signature of the insulating wave function.

(1日) (1日) (日)

Resta prescription for Many electrons localization

- Resta and Sorrela proposed how to measure the electronic localization length to address the shape of the ground state wavefunction.
- They define the localization tensor $< r_{\alpha}r_{\beta} >_c$. It has dimension of square of length; it is an intensive quantity that characterizes the ground state.
- It is related with Quantm geoemtric tensor $\eta_{\alpha\beta}$.

Non-interacting fermions

• Consider N_B tight binding model.

$$H = \sum_{i\alpha,j\beta} t_{ij}^{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta} + h.c$$

• In momentum space \mathbf{k} (where \mathbf{k} takes values in BZ) H is:

$$H = \sum_{\mathbf{k}\alpha\beta} h(\mathbf{k})_{\alpha\beta} c^{\dagger}_{\mathbf{k}\alpha} c_{\mathbf{k}\beta}$$

The single particle Hamiltonian $h({\bf k})$ in the quasi momentum space ${\bf k}$ is $N_B\times N_B$ matrix.

- ${\rm \bullet}\,$ Its spectrum is denoted by, $h({\bf k})u^n({\bf k})=\epsilon_{{\bf n}}({\bf k}){\bf u}^{{\bf n}}({\bf k})$
- The single-particle states in the n^{th} band are denoted by $\rho^n({\bf k})={\bf u^n(k)(u^n(k)^\dagger)}$
- Basically, the single particle states, $u^n(\mathbf{k})$ define mapping from the BZ to the projective hilbert space, $\mathbf{k} \rightarrow \rho^n(\mathbf{k})$. The projective hilbert space is the space of physical states.

Space of the physical states

- Quantum theory represents the physical states by rays in a Hilbert space.
- A ray in Hilbert space is the following. Consider a vector $|u^n(\mathbf{k}) >$. Take it to be normalized $\langle u^n(\mathbf{k})|u^n\mathbf{k} \rangle >= 1$.
- $|u^n(\mathbf{k}) >$ and $e^{i\phi(\mathbf{k})}|u^n(\mathbf{k}) >$ represents the same states. So the phase is not detectable. Each state has a direction. These what we call rays.
- Correspondence between normalized vectros in a Hilbert space and the physical states is many to one.

Quantum geometry Non-interacting fermions:Bargmann invariant

- Each band of states, we associate a nth Bargmann invariant with every ordrerd sequence of n point in the BZ, $\mathbf{k} = (\mathbf{k}_1, \mathbf{k}_2, \cdots, \mathbf{k}_n)$. $B^{n}(\mathbf{k}_{1},\mathbf{k}_{2},\cdots,\mathbf{k}_{n})=Tr(\rho^{n}(\mathbf{k}_{1})\rho^{n}(\mathbf{k}_{2})\rho^{n}(\mathbf{k}_{3})\cdots\rho^{n}(\mathbf{k}_{n}))$
- The quantum distances and geometric phases in the BZ come from this map.
- Quantum distance:

$$d^{2}(\mathbf{k}_{1},\mathbf{k}_{2}) = 1 - B^{(2)}(\mathbf{k}_{1},\mathbf{k}_{2})$$

• Geometric phase:

$$\Omega(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = \frac{B^{(3)}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)}{|B^{(3)}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)|}$$

Quantum geoemtry of Interacting Fermions

- Just we have seen the single particle state is parametrized by quasi momentum ${\bf k}.$
- But in the case of many body states there is no such parmetrization. Let us consider a many body state $|\psi>$:

$$|\psi> = \sum_{\mathbf{k}} c_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \cdots \mathbf{k}_n} |\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_n, \cdots \mathbf{k}_n >$$

- We can see there is no parametrization as $|\psi({\bf k})>$ for many body state $|\psi>$.
- Then there is a natural question to ask how to generalize a concept of quantum distance in a physical paramter space such as BZ wave space.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Generalization of concept of distance on a physical parameter space for MBS

• Let us first investigate for the mean field state. The mean field state for a multiband system is written as:

$$|n> = \prod_{\mathbf{k},\alpha} (u^n_{\alpha}(\mathbf{k}) c^{\dagger}_{\mathbf{k},\alpha})|0>$$

• The density matrix at $\mathbf{k_1}$ and $\mathbf{k_2}$ are $\rho^n(\mathbf{k_1}) = \mathbf{u^n}(\mathbf{k_1})(\mathbf{u^n}(\mathbf{k_1})^\dagger$ and $\rho^n(\mathbf{k_2}) = \mathbf{u^n}(\mathbf{k_2})(\mathbf{u^n}(\mathbf{k_2})^\dagger$

• The second Bargmann invariant:

$$B^{(2)}(\mathbf{k}_1, \mathbf{k}_2) = Tr(\rho^n(\mathbf{k_1})\rho^n(\mathbf{k_2}))$$

Mean-field states

$$\begin{split} B^{(2)}(\mathbf{k_1}, \mathbf{k_2}) &= (u^{n\dagger}(\mathbf{k_1})u^n(\mathbf{k_2})(u^{n\dagger}(\mathbf{k_2})\mathbf{u^n}(\mathbf{k_1})) \\ &= - < 0 | (u^{n\dagger}(\mathbf{k_1})c_{\mathbf{k_1}})(u^{n\dagger}(\mathbf{k_2})c_{\mathbf{k_2}})(u^{n\dagger}(\mathbf{k_2})c_{\mathbf{k_2}}^{\dagger})(u^{n\dagger}(\mathbf{k_1})c_{\mathbf{k_1}}^{\dagger}) | 0 > \\ &= - < \mathbf{k_1}, \mathbf{k_2} | (u^{n\dagger}(\mathbf{k_2})c_{\mathbf{k_2}}^{\dagger})(u^{n\dagger}(\mathbf{k_1})c_{\mathbf{k_1}}^{\dagger}) | 0 > \\ &= < \mathbf{k_1}, \mathbf{k_2} | E(\mathbf{k_1}, \mathbf{k_2})c_{\mathbf{k_1}}^{\dagger}c_{\mathbf{k_2}}^{\dagger} E(\mathbf{k_1}, \mathbf{k_2}) | 0 > \end{split}$$

 $E({\bf k_1},{\bf k_2})$ is an unitary operator, which we may call certain type of exchange operator, such that

$$\begin{split} E(\mathbf{k_1}, \mathbf{k_2}) |0> &= |0> \\ E(\mathbf{k_1}, \mathbf{k_2}) |0> &= |\mathbf{k_1}, \mathbf{k_2} > \\ E(\mathbf{k_1}, \mathbf{k_2}) c^{\dagger}_{\mathbf{k_1}} c^{\dagger}_{\mathbf{k_2}} E(\mathbf{k_1}, \mathbf{k_2}) &= -c^{\dagger}_{\mathbf{k_2}} c^{\dagger}_{\mathbf{k_1}} \end{split}$$

イロト イポト イヨト イヨト

Exchange operator

- $B^{(2)}(\mathbf{k_1}, \mathbf{k_2}) = < n |E(\mathbf{k_1}, \mathbf{k_2})|n >$
- The Bargmann invarinat $B^{(2)}$ can be written as expectation value of E over many body state |n>.

•
$$E(\mathbf{k_1}, \mathbf{k_2}) = e^{\frac{\pi}{2} \sum_{\alpha} (c^{\dagger}_{\mathbf{k_1}\alpha} c_{\mathbf{k_2}\alpha} - h.c)}$$

Distance and Geometric phase

The second Bargmann invarant has been used to define a distance between two states $|\psi_1>$ and $|\psi_2>$

$$d({\bf k_1},{\bf k_2}) = \sqrt{1 - B^2({\bf k_1},{\bf k_2})^{\frac{\lambda}{2}}}$$

- λ is a real number ≥ 1
- maximum distance is 1 when states are orthogonal to each other.
- minimum distance is 0.
- satisfies the traingle inequality
- The phase of Bargmann invariant as a geometric phase is related with 3-vertex Bargmann invariant.

Quantum distance for strongly interacting fermions

- How to define the quantum distance for the correlated systems?
- We define induced distance between two points on the BZ as distance between $|\Psi>$ and $E(k_1,k_2)|\Psi>$

$$d^{2}(k_{1},k_{2}) = 1 - |\langle \Psi|E(k_{1},k_{2})|\Psi\rangle|^{2}$$

where

$$E(k_1, k_2) = e^{\frac{\pi}{2}(c_{k_1}^{\dagger} c_{k_2} - h.c)}$$

$$|\Psi\rangle = \sum_{\{k\}} C_{k_1,k_2,\ldots,k_L} |k_1 \otimes k_2 \otimes \ldots \otimes k_L \rangle$$

< 同 ト < 三 ト < 三 ト

Quantum distance

- d(k,k) = 0, $d(k_1,k_2) = d(k_2,k_1)$
- Triangle inequality $d(k_1,k_2) + d(k_2,k_3) \ge d(k_3,k_1)$ is also satisfied. Can be proven by Ptolemy inequality.
- $|1>=E(k_2,k_3)|GS>$, $|2>=E(K_3,k_1)|GS>$, $|3>=E(k_1,K_2)|GS>$
- It can be shown that <1|2>=<2|3>=<3|1>. This condition helps to prove triangle inequality.

・ 回 ト ・ ヨ ト ・ ヨ ト

Ptolemay inquality

Four normalized Hilbert space vectors $|\Psi >$, |1 >, |2 >, and |3 > can constructed. Six distances d_{ij} between any four distinct points i, j = 1, 2, 3, 4 satisfy the following Ptolemy inequality

 $d_{ij}d_{kl} + d_{ik}d_{jl} \ge d_{il}d_{jl}$

<u>Theorem (Ptolemy's Inequality)</u> Let ABCD be a quadrilateral. We have

 $AB{\times}CD{+}DA{\times}BC {\,\geq\,}AC{\times}BD$

with equality if and only if *ABCD* is a cyclic quadrilateral.

< □ > < □ > < □ > < □ > < □ > < □ >

Ptolemaic distance space

- All these distances induced on the pair of physical paramter space is a metric space. It is also called Ptolemaic metric or we can call it distance space.
- We have distance space. The question is what to do with it. What information we can extract for the physical system?
- How to characterize distance space mathematically?
- we can view this distance space as a network or a graph:

Geometric Phase

- Our exchange operator generated states $|GS>=|\Psi_1>,|\Psi_2>=E(12)|GS>,,|\Psi_3>=E(13)|GS>,.....$
- The third order Bargmann Invariant: $B^3(|\Psi_1>,|\Psi_2>,|\Psi_3>) = Tr(\rho(\Psi_1)\rho(\Psi_2)\rho(\Psi_3))$
- This satisfies additive properties of phases.
- Total geometric phase can be computed.
- The question is how to express the third order Bargmann invriant as $B^{(3)}({f k_1},{f k_2},{f k_3})?$
- Can it be written as expectation value of some operator $C(\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3})$ where C is:

$$C(\mathbf{k_1},\mathbf{k_2},\mathbf{k_3})=E(\mathbf{k_1},\mathbf{k_2})E(\mathbf{k_2},\mathbf{k_3})$$

This form works for mean-field state but not the correlated states.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Distances in Strongly correlated systems

Application

Application: Quantum distance in the t-V modle

• The hamiltonian is

$$H = \sum_{i}^{L} (-t(c_{i}^{\dagger}c_{i+1} + h.c) + Vn_{i}n_{j})$$

• for V=0

$$|FS> = \prod_{k_n \le k_f} C_{k_n}^{\dagger} |0>$$

•
$$c_{k_n} = \sum_i c_i e^{-ik_n i}$$
 and $k_n = \frac{2\pi n}{L}$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Distances in Strongly correlated systems

Application

Di stance Matrix at $V = 0, \infty$

At V = 0:

$$D = \begin{bmatrix} k_{in} & k_{out} \\ k_{in} & 0 & I \\ k_{out} & I & 0 \end{bmatrix}$$

Distance Matrix at $V = \infty$ (CDW state):

$$D_{ij} = \begin{bmatrix} 0 & i = j \\ 1 & i = j + \frac{L}{2} \\ \sqrt{\frac{3}{4}} & i \neq j, i \neq j + \frac{L}{2} \end{bmatrix}$$

At an arbitary V:

$$D = \begin{bmatrix} \Delta & \Delta_e \\ \Delta_e & \Delta \end{bmatrix}$$

イロト 不良 トイヨト イヨト

Distance Matrix

Figure: (a)-(f) Distance matrices obtained from numerical computation for interaction strengths V = 0.1 (a), V = 1 (b), V = 2 (c), V = 3 (d), V = 4 (e) and V = 12 (f).

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Distance Matrix

Figure: Distance $d(-\pi, k)$ between $k = -\pi$ and the other k modes in the Brillouin zone (BZ) for different values of the interaction strength V. $\delta = d(-\pi, -\pi/2) - d(-\pi, -\pi/2 - 2\pi/L)$, gives a measure of the discontinuity across the Fermi points. It is studied as a function of interaction strength V for different system sizes.

A 回 > < 三 >

Properties of NN distances

V=0: all zero except fermi point (delta function sigularity at k_f)
intermediate V: this singularity remains but smmoothen out.
V = ∞: all NN distances are equal.

Behaviour of triangles

Particle triangles: Particle-Hole triangles:

< ⊒ >

Understanding Distances

Define

a radius R in terms sum of NN dist : $2\pi R = \sum_{i} d(k_i, k_{i+1})$ NN distance represented by an angle: $\theta_{i,i+1} = \frac{d(k_i, k_{i+1})}{R}$ Each quasi momentum by an angle: $\theta_k = \sum_{j}^k \theta_{j,j+1}$

A (10) < A (10) < A (10) </p>

Unit Circle representation

- V = 0 all the points collaps into $\theta = 0, \pi$.
- Small V: they spread out but points in the feri sea and those outside its are well separated
- In the corss over regions ($2 \le V \le 3$): the separation starts closing.
- In the insilating state: the sepration is indistinguishable.
- $V = \infty$: they are equally spaced.

- We presented an approach how to construct distance space for the many body state.
- We have studied properties of distances and tried to extract from it possible cross over transition.
- The Quantum distance probes the shape of the ground state wave function
- Our expresssion of the Quantum distance is very general and can be applied in one band Hubbard model. Other approaches fail to study geometry for such cases.
- We can apply in spin systems/bose system
- We are unable to parametrize the thrid order Bargmann invariant in terms of BZ vectors.

< 同 ト < 三 ト < 三 ト