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Typically in equilibrium statistical mechanics  you are equipped with some model 
expression for the energy of the system of interest: E(σ), where σ is the 
microscopic state of the system.

So we calculate the partition function of the system and then from that the associated free energy, 
in the Helmholtz, Gibbs or the grand canonical ensemble.  

Mostly the system is in contact with a heat bath at constant temperature T

In general this is a formidable task, and some approximation methods like mean-field 
theory or computer simulation techniques must be employed.

Entropic sampling is one technique that can 
be employed in a Monte Carlo simulation to 

compute the free energy of the system. 
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A reminder on importance sampling Monte Carlo

The canonical partition function is given by Z =
�

σ

e−βE(σ)

The probability for a closed system to be in a macrostate σ is  P (σ) =
e−βE(σ)

Z

In numerical simulations, 
the partition function is approximated by Z =

M�

i=1

e−βE(σi)

and the average of any operator  by < O >=
M�

i=1

O(σi)
e−βE(σi)

Z

The accuracy of these estimates depend on the “representative” subset M that is used 

In importance sampling the idea is to pick a representative set of conformations 
which are not completely random, but biased towards conformations which are 
significantly populated in equilibrium.

A particularly important situation is when P (σi) ∝ e−βE(σi)

The  average of the operator is now 

< O >=
�

σ O(σ)e−βE(σ)

�
σ e−βE(σ)

=

�
σ O(σ)e−βE(σ) P (σ)

P (σ)
�

σ e−βE(σ) P (σ)
P (σ)

=
�M

i O(σi)e−βE(σi)/P (σi)�M
i e−βE(σi)/P (σi)

=
�M

i O(σi)
M
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How do we generate P (σi) ∝ e−βE(σi)

The most common way is to generate this as the stationary  distribution of a Markov process

From the master equation for probability 
distributions, 

Pn+1(σ) = Pn(σ) +
�

σ�

(Pn(σ�)Wσ�σ − Pn(σ)Wσσ�)

we see that the stationarity is ensured by the detailed balance condition.

The Metropolis algorithm, in which P(σ) is proportional to the 
canonical distribution will give a stationary distribution if Wσσ� = min(1, e−β(E(σ�)−E(σ)))

•The problem of calculating Z is not solved 
•The sampling of high energy states are poor
•Contribution to averages from high energy states are not always negligible 
•Estimates of free energy away from the  equilibrium (or a minimum in energy) will be bad 
•Low probability to cross barriers
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The canonical partition function can be written as Z =
�

σ

e−βE(σ) =
�

E

ρ(E)e−βE

where,  ρ(E) is the density of states with ρ(E) = e−S(E)/kB

The sampling in  configuration space an now be replaced with 
that in energy space

P (E) =
e(S(E)/kB−βE)

Z

Entropic Sampling 

If we can compute ρ(E), we can obtain Z(T) from it Laplace transform.

Remember we cannot use the Metropolis importance sampling scheme to get ρ(E) as the statistics at 
high E is bad  

Let us say that instead of the canonical distribution we sample with 

The transition rates will now be 

Note that  ϕ(E)=βE will be the usual Boltzmann sampling  and an umbrella potential will be the umbrella 
sampling 

Entropic sampling is obtained when we set 

Wσσ� = min[1, e−(φ(E(σ�))−φ(E(σ)))]

φ(E) = S(E)/kB

P (E) ∝ e(S(E)/kB−φ(E))

which means that the distribution is now P(E)=constant  and we simply execute a random walk in 
energy space !

The trouble is that we do not know what S(E) is !!
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Lee’s algorithm for entropic sampling 
J. Lee New Monte Carlo algorithm: entropic sampling Phys. Rev. Lett. 71 211 (1993).

The idea here is to start with a ϕ(E) and take it to S(E)/kB iteratively 

φk(E)→ S(E)/kB for k →∞

First we choose a suitable energy range [Emin,Emax],  which we subdivide into Nbin bins of equal size, 
which serves as a discretization of E.       Ei is thus the energy of the i’th bin

1. As a start we set Φ(0)=Φ(0)(Ei)=0 and histogram Hi =0  for all i.

2. Now, carry out a series of NMC Monte Carlo sweeps, where a histogram Hi is collected.
 Hi is thus the number of micro-states visited falling into the i’th energy bin.
 In the first iteration step all trial moves will be accepted. 

3.  At the  end of the NMC Monte Carlo sweeps, Φ is updated: 
Φi(k+1) = Φi(k) + (1 − δ0,Hi ) · ln(Hi)	

So, ln(Hi) is added to Φ(k) unless the i’th bin was not visited. Notice, that the bins which have been 
visited now is less favored in the Metropolis algorithm. 

4. Reset the histogram, Hi = 0, and repeat step 2,3 above. This iterative procedure can go on until a kmax 
where a reasonable flat histogram Hi has been obtained (P(kmax)(E) ≃ constant).
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The obtained Φi(kmax) is now an estimate for S(Ei)/kB, which can be used for many purposes, e.g. for 
numerical evaluation of the internal energy at any temperature T.

In general,  Lee’s procedure is safe,   i.e. it is converging,   but slowly.
 
The practical usage has thus been limited.

Once the construction of  the function ϕ(E) is completed we carry out a “production” run to collect 
an “entropic ensemble” of macrostates.

The canonical average at any temperature can then be calculated by re-weighting  

< O >=
�M

i=1 O(σi)e(−βE(σi)+φ(E(σi))

�M
i=1 e(−βE(σi)+φ(E(σi))

Thus,   by one sampling run we have the averages at all temperatures . 
Since the sampling is through a random walk in energy space, we sample all rare events . 
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Wang-Landau method
•This is a variation of the Lee’s algorithm.

• The basis is still the entropic sampling idea.

• The major difference is that Φi is updated after every MCS, making the stochastic process highly 
non-Markovian.

•Φi is updated by a convergence factor f, which is adjusted iteratively. 

•The energy histogram is updated as well, but not directly used in the update of Φi as in Lee’s 
algorithm. 

•A flatness criteria on the energy histograms is used to update f. 

1.  Set Φ(0) = Φ(0)(Ei) = 0 and Hi = 0 for all i, like in the Lee algorithm, and the convergence factor is 
initialized, e.g. fi = 0.5.

2. Carry out a series of Nk Monte Carlo sweeps.  For each update (k), Ei is identified and Φi updated:         
Φi(k+1) = Φi(k) + fi	


3. After the Nk MCS the histogram i updated: 
the current energy Ei is identified and         Hi(l+1) = Hi(l) + 1

4. Return to 2 and perform these iterations Nl times.

5. Check, if the histogram {Hi} is flat. 
If  NO: return to 2 and continue with another Nk × Nl updates. 
If  YES: Update convergence factor f = 0.5 × f and start again with the histogram Hi = 0 for all i. 
If f gets below some criteria, e.g. fmin ∼ 10−8,  stop,   otherwise     return to 2.
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The algorithm does not have the same strong theoretical foundation as Lee’s algorithm

 E.g.  continuous update of ϕ(E) implies that the Metropolis algorithm has completely lost its 
original meaning as a Markov process transition probability to ensure a particular stationary 
probability distribution. 

It has just become an importance sampling machine which ensures that the already visited energy 
bins are penalized. 

However, in the limit of f → 0 the algorithm starts to look like Lee’s algorithm and we are on safe 
theoretical ground. 

We don’t know which convergence criteria are necessary to acquire a particular accuracy in the 
estimate of the density of states.

But  IT WORKS very efficiently!

Few points to note about Wang Landau method  

Hi > η

Nbin�

i=1

Hi/Nbin

The method has been extended to “expanded ensembles” 

As a flatness criteria, Wang and Landau used the relation                       for all i, where 
flatness parameter η ≃ 0.8 − 0.9. 
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The expanded ensemble is usually characterized by some reaction coordinate D, which groups states 
of a system to sub-states with different values of reaction coordinate. 

We can then determine the multi-dimensional density of state ρ(E,D) by constructing the histogram, 
now not only in E but also in D

Each sub-state of the expanded ensemble is weighted by the probability density g(D), where D is a 
reaction coordinate

For example:  if we want to look at the free energy of  a polymer as a function of its radius of gyration 

1.  Set up a usual Metropolis MC simulation for the polymer 

2.  After N  MC moves, sample the energy E and radius of gyration R of the polymer and construct 

the histogram H(E,R).

3. Update ϕ(E,R)  until the two dimensional histogram H(E,R) is flat.

4. The two dimensional density of state is now obtained as exp(ϕ(E,R))  from which g(R) =
�

E

exp(φ(E,R))
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Wang-Landau sampling  along a reaction coordinate - an example from polymer  Physics 

How to calculate the free energy of a polymer as a function of radius of gyration 

Here the reaction coordinate is the radius of gyration Rg and the density of states ρ(E) is now 
replaced by probability ρ(E,Rg).

Our aim is to get the equilibrium distribution of Rg of a PE, from which the free  energy F(Rg) can be 
calculated as, F (Rg) = −kBT ln g(Rg)

To simplify the numerical process we compute a reduced probability density g(Rg) and  sample, 
instead of histogram in energy space H(E), a histogram H(Rg).

A  histogram in (E,Rg) space H(E,Rg) should be  used to compute this probability, from which we can 
compute the free energy F(Rg ,T ).

In the simulations we will use the variable                                and write  the 
transition probability between two states as Wσσ� = min[1, e−β((φ(Rg)+E(Rg))−(φ(R�

g)+E�(Rg)))]

φ(Rg) = −kBT ln g(Rg)
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0. Choose a range of Rg values and bin it to intervals labelled by i 

1.  Set Φ(0) = Φ(0)(Rg) = 0 and H(Rg)= 0 for all i,  the convergence factor is initialized, e.g. fi = 0.5.

2. Carry out a series of Nk Monte Carlo sweeps.  For each update (k), Rg is identified and Φi is 
updated:         Φi(k+1) = Φi(k) + fi	


3. After the Nk MCS the histogram i updated: 
the current energy Ei is identified and         Hi(l+1) = Hi(l) + 1

4. Return to 2 and perform these iterations Nl times.

5. Check, if the histogram {Hi} is flat. 
If  NO: return to 2 and continue with another Nk × Nl updates. 
If  YES: Update convergence factor f = 0.5 × f and start again with the histogram Hi = 0 for all i. 
If f gets below some criteria, e.g. fmin ∼ 10−8,  stop,   otherwise     return to 2.

The procedure is now
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Umbrella sampling to compute the free energy of a polymer 

We saw that the distribution function and the free energy are related through 
F (Rg) = −kBT lnP (Rg)

P(Rg) is given by P (Rg) =< δ(R−Rg) > −
�

e−βEδ(R−Rg)dR�
e−βEdR

We also saw that the idea of umbrella sampling is to use a bias potential. 

Here we will use a harmonic bias  potential    V(Rg) =C(Rg-R0)2/2 

By varying the value of R0 we can sample the entire range of Rg values, including regions where the 
canonical probability  is small. 

The biased sampling probability is then   Pb(Rg) =< δ(R−Rg) >b=
�

e−β(E+V )δ(R−Rg)dR�
e−β(E+V )dR

The unbiased probability is then given by 

P (Rg) = < δ(R−Rg) >=
�

e−β(E+V )δ(R−Rg)eβV dR�
e−β(E+V )eβV dR

=
�
eβV δ(R − Rg)

�
b

�eβV � b

=
eβV �δ(R − Rg)�b

�eβV � b
=

eβV Pb(Rg)
�eβV � b

βF (Rg) = −βV − lnPb(Rg) + ln
�
eβV

�
b

The free energy is then given by 
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Thank you for your attention 
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