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FERMI LIQUIDS, AND THEIR PHASE TRANSITIONS
From Chapter 18 of
Quantum Phase Transitions, Second Edition
Cambridge University Press

Subir Sachdev
Department of Physics, Harvard Unwversity, Cambridge MA 02138

The Fermi liquid is perhaps the most familiar quantum many-body state of solid
state physics. It is the generic state of fermions at non-zero density, and is found
in all metals. Its basic characteristics can already be understood in a simple free
fermion picture. Non-interacting fermions occupy the lowest energy single particle
states, consistent with the exclusion principle. This leads to the fundamental con-
cept of the Fermi surface: a surface in momentum space separating the occupied and
empty single fermion states. The lowest energy excitations then consist of quasi-
particle excitations which are particle-like outside the Fermi surface, and hole-like
inside the Fermi surface. Landau’s Fermi liquid theory is a careful justification for
the stability of this simple picture in the presence of interactions between fermions.

The purpose of this chapter is to describe two paradigms of symmetry break-
ing quantum transitions in Fermi liquids. In the first class, studied in Section II,
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the broken symmetry is related to the point-group symmetry of the crystal, while
translational symmetry is preserved; consequently the order parameter resides at
zero wavevector. In the second class, studied in Section III, the order parameter is
at a finite wavevector, and so translational symmetry is also broken. We will find
that these transitions have distinct effects on the Fermi surface, and so lead to very
different critical theories. We will study both critical theories using a simple ex-
ample in each class, both motivated by the physics of the cuprate superconductors.
For the first class we will consider the case of Ising nematic ordering, while in the
second class we will consider the onset of spin density wave order.

Among our aims is to understand the possible breakdown of Landau’s Fermi
liquid theory in Fermi gases. The most prominent example of this breakdown is
in spatial dimension d = 1, where we generically obtain (not necessarily near any
quantum phase transitions) a different quantum state known as the Tomonaga-
Luttinger liquid. We will meet examples of Fermi liquid breakdown in d > 2 in the
present chapter.

A comprehensive theoretical treatment of symmetry breaking transitions in a
Fermi liquid was given by Hertz [1], although many important points were antic-
ipated in earlier work [2-5]. We will review this treatment here, adapted to our
field-theoretic approach. A key step in Hertz’s work is to completely integrate out
the fermionic excitations near the Fermi surface, resulting in an effective action for
the order parameter characterizing the symmetry breaking alone. Such an approach
seems natural from the perspective of the classical phase transitions, in which we
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need only pay attention to the low energy fluctuations of the order parameter. How-
ever, here we also have the low energy quasiparticles near the Fermi surface: they
are not associated directly with the broken symmetry, but their existence is pro-
tected by the requirement of the presence of a Fermi surface. It seems dangerous
to integrate them out, and it would be preferable to make them active participants
in the critical theory. This is a subtle question which we will address carefully in
the present chapter. The main conclusion will be that the Hertz’s strategy remains
largely correct in d > 3, but that it fails badly in the important case of d = 2.
This conclusion applies to both classes of symmetry breaking transitions in a Fermi
liquid: with order parameters at zero and non-zero momentum.

I. FERMI LIQUID THEORY

Let us begin with a review of some basic ideas from the Fermi liquid theory
of interacting fermions in d dimensions. We consider spin-1/2 fermions c¢y, with
momentum k and spin a =1, | and dispersion ;. Thus the non-interacting fermions
are described by the action

dk 0
SC — /dT/ (271‘)616;2& (E + 5k> Cka s (1)
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FIG. 1: Two views of the Fermi surface of the cuprate superconductors (hole and electron
doped). The chemical potential is included in the dispersion €, and so the Fermi surface
is determined by €, = 0. The left panel has the momentum k£ = (0,0) (the “I" point”) in
the center of the square Brillouin zone, while the right panel has the I' point at the left
edge. The momenta with both up and down electron states occupied are shaded gray.

As an example it is useful to keep in mind the dispersion e, appropriate for the
cuprate superconductors, which is shown in Fig. 1. The fermion Green’s function
under the free fermion action S. has the simple form

1
GO(kawn) — — i e (2)

After analytically continuing to real frequencies, we observe that this Green’s func-
tion has a pole at energy €5 with residue 1. Thus there are quasiparticle excitations
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with residue A = 1, much like those found in the strong or weak coupling expansions
of the quantum Ising model. However, unlike those excitations, these quasiparti-
cles can have both positive and negative energies, as €, can have either sign; the
Fermi surface is the locus of points where €5 changes sign. The positive energy
qausiparticles are electron-like, while those with negative energy are hole-like 1.e.
they correspond to the absence of an electron. Note that the existence of negative
energy quasiparticles is not an indication of the instability of the ground state. All
true excitation energies are positive: the excitations are electron-like on one side of
the Fermi surface, and hole-like on the other side. It is just convenient to combine
the electron and hole quasiparticles within a single Green’s function, by identifying
hole-like quasiparticles with negative energy electron-quasiparticles.

We now wish to examine the stability of quasiparticles to interactions between
them. In keeping with the strategy followed in this book, this should be preceded
by an effective action for the low energy quasiparticles. The latter is usually done
by a gradient expansion, leading to an effective field theory. However, here we face
a unique difficulty: there are zero energy quasiparticles along a d — 1 dimensional
Fermi surtace identified by € = 0. It would therefore seem that we should expand
about all points on the Fermi surface. This is indeed the strategy followed in text-
book treatments of Fermi liquid theory: we measure momenta, k£, from the Fermi
surface, choose a cutoff so that |k, | < A, and then perform an RG which reduces the
value of A [6]. This procedure is illustrated in Fig. 2. Formally, for each direction
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FIG. 2: Traditional low energy limit of Fermi liquid theory. The Fermi surface has one
dimensional chiral fermions on every point, moving along the direction x . There fermions
are present for momenta |k | < A; i.e. in a momentum shell of width 2A around the Fermi

surface.

7, we define the position of the Fermi surface by the wavevector kg (n), so that
n=kr(n)/lkr(n)|. Then we identify wavevectors near the Fermi surface by

k=kr(h) + k. n (3)

Now we should expand in small momenta k. For this, we define the infinite set of
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fields 144 (k1 ), which are labeled by the spin a and the direction 7, related to the
fermions ¢ by

1
Cr, = \/T—F%a(h), (4)

where k and k| are related by (3), and S is the area of the Fermi surface. Inserting
(4) into (1), expanding in k, , and Fourier transforming to real space z, , we obtain
the low energy theory

SrL —/dQ /dxﬁbm T (— (e 0 >wﬁa($J_)v (5)

(9:@

where the Fermi velocity is energy gradient on the Fermi surface vp(n) =

For each n, (5) describes fermions moving along the single dimension x, with the
Fermi velocity: this is a one-dimensional chiral fermion; the ‘chiral’ refers to the fact
that the fermion only moves in the positive x| direction, and not the negative x |
direction. In other words, the low energy theory of the Fermi liquid is an infinite set
of one-dimensional chiral fermions, one chiral fermion for each point on the Fermi
surface.

Apart from the free Fermi term in (5), Landau’s Fermi liquid theory also allows
for contact interactions between chiral fermions along different directions [6]. These
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are labeled by the Landau parameters, and lead only to shifts in the quasiparticle
energies which depend upon the densities of the other quasiparticles. Such shifts are
important when computing the response of the Fermi liquid to external density or
spin perturbations. However, the resulting fixed-point action of Fermi liquid theory
does not offer a route to computing the decay ot quasiparticles: the stability of the
quasiparticles is implicitly assumed in the fixed point theory. Our primary purpose
here is to verify the stability of the quasiparticles, so that we will be prepared for
the breakdown of Fermi liquid theory at quantum critical points. So we refer the
reader to the many textbook treatments of the traditional formulation of Landua’s
Fermi liquid theory, and turn to an alternative analysis below.

A shortcoming of the effective action (5) is that it only includes the dispersion of
the fermions transverse to the Fermi surface. Thus, if we discretize the directions n,
and pick a given point on the Fermi surface, the Fermi surface is effectively flat at
that point. We will shortly see that the curvature of the Fermi surface is important
in understanding the decay and breakdown of quasiparticles. Thus we have to take
the continuum scaling limit in a manner which keeps the curvature of the Fermi
surface fixed, and does not scale it to zero. For this, as shown in Fig. 3, we focus

attention on a single arc of the Fermi surface in the vicinity of any chosen point ko.

We will show in Section I A that the results are independent of the choice of EO on
the Fermi surface, but we defer that issue for now. Then we will choose our cutoft
A to scale towards the single point kg (the cutoff will be defined more carefully
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FIG. 3: Alternative low energy formulation of Fermi liquid theory. We focus on an ex-

tended patch of the Fermi surface, and expand in momenta about the point Eo on the
Fermi surface. This yields a theory of d-dimensional fermions v in (7), with dispersion
(14). The co-ordinate y represents the d — 1 dimensions parallel to the Fermi surface.

below), rather than scaling to all points on the Fermi surface, as we did for (5).

With EO chosen as Fig. 3, let us now define our low energy theory and scaling
limit |[7]. Unlike the one-dimensional chiral fermions which appeared in (5), we
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will now use a d dimensional fermion ,(x,y). Here x is the one dimensional co-
ordinate orthogonal to the Fermi surface, and g represents the (d — 1)-dimensional
transverse co-ordinates. After Fourier transformations, this fermion is related to
the underlying fermions c, simply by

Ya(k) = ¢t 150 (6)

In other words, we only shift the origin of momentum space from k=0to k= Eo.

Inserting (6) in (1), and expanding the dispersion in the vicinity of ko (contrast to
the expansion away from all points on the Fermi surface in (5)), we obtain the low
energy theory

So = /dT /d:l: /dd_ly zb:; (C(% — iUF% — gvi> Ya- (7)

We have added a co-efficient ¢ to the temporal gradient term for future convenience:
we are interested in (¢ = 1, but will see later that in non-Fermi liquid states it is
convenient to allow ¢ to renormalize. Notice the additional second-order gradients
in y which were missing from (5): the co-efficient « is proportional to the curvature

of the Fermi surface at ky. Also, as we have already noted, the fermion field in (7)
is d-dimensional, while that in (5) in one-dimensional. One benefit of (7) is now
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immediately evident: it has zero energy excitations when

and so (8) defines the position of the Fermi surface, which is then part of the low
energy theory including its curvature. Note that (7) now includes an extended
portion of the Fermi surface; contrast that with (5), where the one-dimensional
chiral fermion theory for each n describes only a single point on the Fermi surtace.

The gradient terms in (7) define a natural momentum space cutoff, and associated
scaling limit. We will take such a limit at fized ¢, vp and k. Notice that momenta
in the x direction scale as the square of the momenta in the y direction, and so we
can choose v k2 + %k, < A*. Notice that as we reduce A, we scale towards the

single point EO on the Fermi surface, as we required above.

[t now a simple matter to apply the RG analysis to the fermion theory in (7).
At fixed ¢, vg and k, the action (7) is invariant under the following rescalings of
spacetime:

Note that we have chosen the directions parallel to the Fermi surface as the ones
defining the primary length scale, with dim|y] = —1, and the transverse direction
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has dim|[x] = —2. The temporal direction rescaling implies that we have the dy-
namic exponent z = 2 when measured relative to the y spatial directions. The RG
invariance of (7) also requires the field rescaling

wl _ we(d—l—l)ﬁ/Q. (10)

We now have the tools needed to determine the role of fermion interactions. The
simplest contact interaction has the form

Sy = ug /dT/d:E/dd Ly UTOlw, v, (11)

Apply the RG rescalings in (10) we find
upy = uget=9¢, (12)

In other words, the interaction between the fermions ug is irrelevant in all dimension
d > 1. This strongly suggests that the Fermi liquid picture of non-interacting
fermions is indeed RG stable.

Let us understand the stability of Fermi liquid theory a bit better by computing
corrections to the fermion Green’s function in (2). Let us write the interaction
corrected Green’s function as

(13)
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where now
]{2
ek = Upky + m?y. (14)

To first order in ug, the fermion self energy is real (for real frequencies), and so only
modifies the quasiparticle dispersion and residue, A, but does not destabilize the
existence of the quasiparticle pole.

So let us move to second order in ug. First, we use an RG argument. We are
interested in the imaginary part of the self energy, and let us assume for now at
small w

ImY(k = 0,w) ~ ugw?. (15)

We determine p by scaling arguments. From (13) we know that dim|[¥]| = z = 2,
and so conclude from matching dimensions in (15) that p = d. However, there is a
subtlety here: scaling arguments only yield the powerlaws of singular corrections,
and do not say anything about analytic backgrounds that may be allowed from the
structure of the theory. Here, a term with p = 2 is permitted because Im>: is an
even function of w. So the proper conclusion is

p = min(d, 2). (16)

The above scaling argument is fine as it stands, but cannot substitute for the
insight gained by an explicit computation. The Feynman diagram contributing to
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FIG. 4: Feynman diagram for the decay of quasiparticles at order u3. The dashed line is
the interaction ug, and a, b are spin labels.

the quasiparticle decay at order uZ is indicated in Fig. 4. We evaluate it in two

stages. First we evaluate the fermion loop of the fermions with spin label b; this
gives us the fermion polarizability

dk de,,
(g, wn) = / / "Gk + g en + wn)Golk, ). (17)

(2m)¢

This enters the self-energy by

We first explicitly evaluate Il(q,w,). We will only be interested in terms that
are singular in ¢ and w,,, and will drop regular contributions from regions of high
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momentum and frequency. In this case, it is permissible to reverse the conventional
order of integrating over frequency first in (17), and to first integrate over k.. It is
a simple matter to perform the integration over k, in using the method of residues
to yield

1 di1k de,, sen (€, + wy,) — sgn(e,
vr J (2m) @ (Cwn + WEQy + i/ﬁ:qg/Z + i1Kq, - ky)
 |wnl di 1k, 1

) | 19
d—1 : : K, -k (
2mvp ) (2m) (Cwn + Upq, + mqg/Z + IKq,y, - ky)

We now integrate along the component of Ey parallel to the direction of ¢, to obtain

dd_zky
(27)d—2

(20)

Note that in d = 2 the last non-universal factor is not present, and the result for II
is universal with A2 = 1. Note also that ¢ has dropped out of the result II: this
will be important in our subsequent treatment of quantum critical points.
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Now we insert (20) into (18). After evaluating the integral over ¢, we obtain

Y(k,wy) = i o /dd_lq?! /den 50 (€n + wWn)|€n|

2mvik ) (2m)d-1 s qy|
2 d—1
: o Up / A" qy 1
= isgn(wy,)w? =
(@n) dmvek ) (2m)41 |q,]
2
. isgn(wn)will;;%fim—? o d>2. (21)
F

Again, ¢ has dropped out. This result is in perfect accord with the scaling arguments
in (15) and (16).

Let us consider the important case d = 2. There is an infrared divergence in the
qy integral in (21) at small g,. This is only cutoff after we include a self-consistent
damping of the quasiparticle propagators in the Feynman diagram of Fig. 4, rather

than the bare propagators we have used above. After including this damping, we
expect that (15) will be modified to

A
ImX¥(k, w) ~ uiw? log ( ) , d=2; (22)

ugo w[

thus the scaling result is modified by a logarithm in d = 2.
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With{ImY ~ uéw? (up to logarithms)), we can now easily examine the fate of the

quasiparticles from . From , we see that the quasiparticle pole is always
broadened: the width of the quasiparticle peak is ~ u%si for a quasiparticle with
energy w = €x. Thus the quasiparticle width vanishes as the square of the distance
from the Fermi surface. Asymptotically close to the Fermi surface, the quasiparticle
width is much smaller than the quasiparticle energy: this is sufficient to regard the
quasiparticle as a sharp excitation, and confirm the validity of Landau’s Fermi liquid
theory:.

An important and frequently used diagnostic of the stability of the quasiparticle

is the discontinuity in the fermion momentum distribution function n(k) = <c;~rC Cka,)-

This can be computed from the real frequency Green’s function G(k,w) by (here
we set ( = 1)

(23)

(24)

we find a step discontinuity in the momentum distribution function at the Fermi
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surface

of strength A.

n(k) = A0(—er) + ...

18
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The Fermi liquid
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The Fermi liquid

£ f (aT v u>f

\K~
2m
+ 4 Fermi terms

Empty states

Occupied states

e Fermi wavevector obeys the Luttinger relation k% ~ Q, the
fermion density

e Sharp particle and hole of excitations near the Fermi surface
with energy w ~ |¢q|?, with dynamic exponent z = 1.

e The phase space density of fermions is effectively one-dimensional,
so the entropy density S ~ T'. It is useful to write thisis as .S ~
T(4=9)/2 with violation of hyperscaling exponent 6 = d — 1.
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Entanglement entropy of the Fermi liquid

B
A P
/
1

Logarithmic violation of “area law”: Sg = 1—2(k rP)In(kpP)

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.

D. Gioev and . Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle, Physical Review Letters 105,050502 (2010)
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for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.
The prefactor 1/12 is universal: it is independent of the shape of the
entangling region, and of the strength of the interactions.
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e k% ~ Q, the fermion density

e Sharp fermionic excitations
near Fermi surface with
w~ lqg|?, and z = 1.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy
Sg ~ k% 'Pln P.
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Iron pnictides:

a new class of high temperature superconductors
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Quantum criticality of Ising-nematic ordering in a metal
p Y

Occupied states

Cl
&

J \ Empty states

A metal with a Fermi surface
with full square lattice symmetry
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Quantum criticality of Ising-nematic ordering in a metal

N

> X

Spontaneous elongation along y direction:
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Quantum criticality of Ising-nematic ordering in a metal

N

LD
N

> X

Spontaneous elongation along x direction:
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Ising-nematic order parameter

O ~ /d2k (cos ky — cos k) CLJCka

Measures spontaneous breaking of square lattice
point-group symmetry of underlying Hamiltonian
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Quantum criticality of Ising-nematic ordering in a metal

N

LD
N

> X

Spontaneous elongation along x direction:
Ising order parameter ¢ > 0.
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Quantum criticality of Ising-nematic ordering in a metal

N

o
(N

Spontaneous elongation along y direction:
Ising order parameter ¢ < O.

> X
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Quantum criticality of Ising-nematic ordering in a metal
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Fe

Pomeranchuk instability as a function of coupling r




Quantum criticality of Ising-nematic ordering
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Quantum criticality of Ising-nematic ordering in a metal
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Quantum criticality of Ising-nematic ordering in a metal
T * 4
\
. Quantum ¢
. critical ,

criticality ?

Phase diagram as a function of 1" and r
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Quantum criticality of Ising-nematic ordering in a metal
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Phase diagram as a function of 1" and r
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Quantum criticality of Ising-nematic ordering in a metal

/.l' \ /
N /

. Quantum ¢
. critical ,

Strongly-coupled
“non-Fermi liquid” r
metal with no
quasiparticles

Phase diagram as a function of 7" and r
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Quantum criticality of Ising-nematic ordering in a metal

Strongly-coupled
“non-Fermi liquid”
metal with no
quasiparticles

Phase diagram as a function of 7" and r
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Quantum criticality of Ising-nematic ordering in a metal

/.l' \ /
N Y4

v Strange .
'« Metal

Strongly-coupled
“non-Fermi liquid” r
metal with no
quasiparticles

Phase diagram as a function of 7" and r
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Quantum criticality of Ising-nematic ordering

Effective action for Ising order parameter

Sy = / d°rdr [(0:0)* + (Ve)® + (A — A)o” + ug”|
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Quantum criticality of Ising-nematic ordering

Effective action for Ising order parameter

Sy = / d°rdr [(0:0)* + (Ve)® + (A — A)o” + ug”|

Effective action for electrons:

Ny |
A
S, — / DS ) DI R VA
a=1 )

i< j

1y
L J 53 / drel (0 + e1) i

a=1 k
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Quantum criticality of Ising-nematic ordering

Coupling between Ising order and electrons

Ny
Spe =—9¢ / dT L L ¢q (cos k, — cos ky)CL_I_q/Q,aCk_q/Q’a

a=1 k,q

for spatially dependent ¢

A A

SER

(¢) > 0 (@) <0
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Quantum criticality of Ising-nematic ordering

Sy = / d°rdr [(0:0)° + 2 (VP)* + (X — Ae)p” + ug”|

Ny
S, = Z Z/chLa (0r + €K) Cka

a=1 k

Ny
Spe = —¢ / dT Z Z hq (cos ky — cos ky)cf{+q/2,ack_q/2,a

a=1 k,q
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Quantum criticality of Ising-nematic ordering

e ¢ fluctuation at wavevector ¢ couples most efficiently to fermions
near ::]{70.
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Quantum criticality of Ising-nematic ordering

e ¢ fluctuation at wavevector ¢ couples most efficiently to fermions
near ::]{70.

e Eixpand fermion kinetic energy at wavevectors about ::EO and
boson (¢) kinetic energy about ¢ = 0.
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Quantum criticality of Ising-nematic ordering

—

f\y
o

Lo, 0] =
Wl (0r — 0, — 02) vy + 0L (8; + i, — 02) Y
1
=0 (Whos +9le- ) + 5 5 (0y0)

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Quantum criticality of Ising-nematic ordering

V(0 —i0y — 02) ¥y + T (0- +10, — 0) 1

1
292 (ay¢)2

o (vlvy +uly )

One loop ¢ self-energy with N fermion flavors:

) N /d% do) !
; W — ) .
o\ q Pl ar2 or —i(Q+w) +ky +qu + (ky + )7 [—zQ — Ky + kgﬂ
Ny |w|

AT |qy| Landau-damping
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Quantum criticality of Ising-nematic ordering

(0- — 0y — 02) by + 1 (0- + 10, — 02) ¥_

— ¢ (MMM

1

¢i¢—) 27

Electron self-energy at order 1/Ny:

d?q dw

9 (ay¢)2

1

5/
Ny

2

472 21

—1
V3N

(

g2

4mr

—i(w+ Q) + ke + qe + (ky + qy)?)

2/3
) sen(Q)|Q)2/?
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d%q de 1
ik, wy, :)\2/ / - Golk + q, €, + wy, 45
W) =2 ] Gyt | 2w v el | o
This can be evaluated by the same methods used for (18). Integrating over ¢, we find the

analog of (21)

Y(k,w )—z)\_2/ dd_l% /den Sgn(€n+wn)IQy’

vp ) 2m)H ) 2m gyl A+ len]
N / g, (\%’3 + 7\%])
=1 sgn(wy, ¢, | In . 46
TURY g ( ) (27_‘_)d_1‘ y‘ ’qy’3 ( )

Evaluation of the g, integral yields a result which agrees with (42) and (43) in d = 2, and
with the expected logarithmic corrections in d = 3. In the physically important case of
d = 2, the g, integral evaluates to

)2
Tupyl/3v/3

S(k,wn) = sgn(wn)|wa|*?, d=2, (47)

in agreement with (43).
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Quantum criticality of Ising-nematic ordering

V(0 —i0y — 02) ¥y + T (0- +10, — 0) 1

1
292 (ay¢)2

o (vlvy +uly )

Electron self-energy at order 1/Ny:

2
T—gr S
[—i(w + Q) + ky + gz + (ky + qy)?] qg 1
E ‘C]y’_
.2 92 2/ 2/3 d/3 - : :
— —@\/ng (E) sgn(Q)|Q| [N \Q|/ in dimension d]
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Quantum criticality of Ising-nematic ordering

(0- — 0y — 02) by + 1 (0- + 10, — 02) ¥_

1 )
DGw) = — | Giaw) = :
P el T g i (@)Wl
T
g

In the boson case, g5 ~ wl/? with z, = 3/2.
In the fermion case, q; ~ g5 ~ wl/?f with zp = 3/d.

Note zr < 2z, for d > 2 = Fermions have higher energy than
bosons, and perturbation theory in g is OK.
Strongly-coupled theory in d = 2.
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Quantum criticality of Ising-nematic ordering

(0- — 0y — 02) by + 1 (0- + 10, — 02) ¥_

1
vl ) g7 On0)
) 1/Ny > — !
D(q,w) s Jw| GrlGw) = Gz + q2 — isgn(w)|w|?/3 /Ny

In both cases ¢, ~ qz ~ w'/? with z = 3/2. Note that the
bare term ~ w in G;l is irrelevant.

( Strongly-coupled theory without quasiparticles. j
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Quantum criticality of Ising-nematic ordering

(07 — 0y — 02) by + 1 (0r + 10, — 02) h_
1

9 (ay¢)2

¢i¢—) 27

Simple scaling argument for z = 3/2.

Wednesday, January 15, 14



Quantum criticality of Ising-nematic ordering

Wl (% — 0y — 02) s + T (8 +1i0, — %) P

1
292 (ay¢)2

o (vlvy +uly )

Simple scaling argument for z = 3/2.
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Quantum criticality of Ising-nematic ordering

Wl (% — 0y — 02) s + T (8 +1i0, — %) P

1
292 (ay¢)2

o (vlvy +uly )

Simple scaling argument for z = 3/2.

1/2

Under the rescaling x — x/s, y — y/s /%, and 7 — 7/5%, we

find invariance provided

¢ — ¢s
w N ¢8(22+1)/4

g — gS(S—Zz)/4

So the action is invariant provided z = 3/2.
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ﬂ «
Fermi
liquid

e k% ~ Q, the fermion density

e Sharp fermionic excitations
near Fermi surface with
w~ lqg|?, and z = 1.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy
Sg ~ k% 'Pln P.
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NFL

FL ¢ |
Fermi Nematic
liquid QCP

e Fermi surface
o k% ~ O, the fermion density with k¢ ~ Q.
e Sharp fermionic excitations
near Fermi surface with n(k) 1

w ~ |q|*, and z = 1.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy
SE ~ k%_lplnp.
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o . NFL

\)/
Fermi Nematic
liquid QCP
e Fermi surface
e k% ~ Q, the fermion density with k¢ ~ Q.
e Sharp fermionic excitations e Diffuse fermionic
near Fermi surface with excitations with z = 3/2
w ~ |q|*, and z = 1. to three loops.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

e Lintanglement entropy
SE ~ k%_lplnp.

M. A. Metlitski and S. Sachdev,
Phys. Rev. B 82, 075127 (2010)
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ﬂ Vs
Fermi
liquid

e k% ~ Q, the fermion density

NFL
Nematic

QCP

e Fermi surface
with k% ~ Q.

e Sharp fermionic excitations
near Fermi surface with
w~ lqg|?, and z = 1.

e Diffuse termionic
excitations with z = 3/2
to three loops.

e Entropy density S ~ T(4=0)/z
with violation of hyperscaling
exponent 6 = d — 1.

with 0 = d — 1.

e Lintanglement entropy
SE ~ k%_lplnp.
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FL . NIFL .
Fermi Nematic
liquid QCP
e Fermi surface
e k% ~ Q, the fermion density with k¢ ~ Q.
e Sharp fermionic excitations e Diffuse fermionic
near Fermi surface with excitations with z = 3/2
w ~ |q|*, and z = 1. to three loops.

e Entropy density S ~ T(d=0)/2 | ¢ § ~ T(d=0)/z
with violation of hyperscaling with 0 = d — 1.
exponent 6 = d — 1.

e Lintanglement entropy o Sp ~ kiflP In P.
SE ~ k%_lplnp.
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Entanglement entropy of the non-Fermi liquid

\

A P

/

Logarithmic violation of “area law”: Sg = Cg kpPIn(kpP)

B

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.
The prefactor Cg is expected to be universal but # 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B. Swingle, Physical Review Letters 105,050502 (2010)
Y. Zhang, T. Grover, and A.Vishwanath, Physical Review Letters 107,067202 (2011)
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Entanglement entropy of the non-Fermi liquid

B

A P

A

Logarithmic violation of “area law”: Sg = Cg kpPIn(kpP)

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.
The prefactor Cg is expected to be universal but # 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B. Swingle, Physical Review Letters 105,050502 (2010)
Y. Zhang, T. Grover, and A.Vishwanath, Physical Review Letters 107,067202 (2011)
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Entanglement entropy of the non-Fermi liquid

\

A P

/

Logarithmic violation of “area law”: Sg = Cg kpPIn(kpP)

B

for a circular Fermi surface with Fermi momentum kg,
where P is the perimeter of region A with an arbitrary smooth shape.
The prefactor Cg is expected to be universal but # 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B. Swingle, Physical Review Letters 105,050502 (2010)
Y. Zhang, T. Grover, and A.Vishwanath, Physical Review Letters 107,067202 (2011)
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FL . NFL )
Fermi Nematic
liquid QCP
e Fermi surface
e k% ~ Q, the fermion density with k% ~ Q.
e Sharp fermionic excitations e Diffuse fermionic
near Fermi surface with excitations with z = 3/2
()~ ‘q|z7 and z = 1. to three lOOpS.

e Entropy density S ~ T(4=0)/z | o S ~ T(d=0)/=
with violation of hyperscaling with 60 = d — 1.
exponent 6 = d — 1.

e Intanglement entropy o Sp ~ k%_lP In P.
SE ~/ k%_lplnp.
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