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• Fermi wavevector obeys the Luttinger relation kdF ⇠ Q, the

fermion density

• Sharp particle and hole of excitations near the Fermi surface

with energy ! ⇠ |q|z, with dynamic exponent z = 1.

• The phase space density of fermions is e↵ectively one-dimensional,

so the entropy density S ⇠ T . It is useful to write this is as S ⇠
T (d�✓)/z

, with violation of hyperscaling exponent ✓ = d� 1.
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Fermi liquids, and their phase transitions

From Chapter 18 of

Quantum Phase Transitions, Second Edition

Cambridge University Press

Subir Sachdev
Department of Physics, Harvard University, Cambridge MA 02138

The Fermi liquid is perhaps the most familiar quantum many-body state of solid
state physics. It is the generic state of fermions at non-zero density, and is found
in all metals. Its basic characteristics can already be understood in a simple free
fermion picture. Non-interacting fermions occupy the lowest energy single particle
states, consistent with the exclusion principle. This leads to the fundamental con-
cept of the Fermi surface: a surface in momentum space separating the occupied and
empty single fermion states. The lowest energy excitations then consist of quasi-
particle excitations which are particle-like outside the Fermi surface, and hole-like
inside the Fermi surface. Landau’s Fermi liquid theory is a careful justification for
the stability of this simple picture in the presence of interactions between fermions.

The purpose of this chapter is to describe two paradigms of symmetry break-
ing quantum transitions in Fermi liquids. In the first class, studied in Section II,
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the broken symmetry is related to the point-group symmetry of the crystal, while
translational symmetry is preserved; consequently the order parameter resides at
zero wavevector. In the second class, studied in Section III, the order parameter is
at a finite wavevector, and so translational symmetry is also broken. We will find
that these transitions have distinct e↵ects on the Fermi surface, and so lead to very
di↵erent critical theories. We will study both critical theories using a simple ex-
ample in each class, both motivated by the physics of the cuprate superconductors.
For the first class we will consider the case of Ising nematic ordering, while in the
second class we will consider the onset of spin density wave order.

Among our aims is to understand the possible breakdown of Landau’s Fermi
liquid theory in Fermi gases. The most prominent example of this breakdown is
in spatial dimension d = 1, where we generically obtain (not necessarily near any
quantum phase transitions) a di↵erent quantum state known as the Tomonaga-
Luttinger liquid. We will meet examples of Fermi liquid breakdown in d � 2 in the
present chapter.

A comprehensive theoretical treatment of symmetry breaking transitions in a
Fermi liquid was given by Hertz [1], although many important points were antic-
ipated in earlier work [2–5]. We will review this treatment here, adapted to our
field-theoretic approach. A key step in Hertz’s work is to completely integrate out
the fermionic excitations near the Fermi surface, resulting in an e↵ective action for
the order parameter characterizing the symmetry breaking alone. Such an approach
seems natural from the perspective of the classical phase transitions, in which we
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need only pay attention to the low energy fluctuations of the order parameter. How-
ever, here we also have the low energy quasiparticles near the Fermi surface: they
are not associated directly with the broken symmetry, but their existence is pro-
tected by the requirement of the presence of a Fermi surface. It seems dangerous
to integrate them out, and it would be preferable to make them active participants
in the critical theory. This is a subtle question which we will address carefully in
the present chapter. The main conclusion will be that the Hertz’s strategy remains
largely correct in d � 3, but that it fails badly in the important case of d = 2.
This conclusion applies to both classes of symmetry breaking transitions in a Fermi
liquid: with order parameters at zero and non-zero momentum.

I. FERMI LIQUID THEORY

Let us begin with a review of some basic ideas from the Fermi liquid theory
of interacting fermions in d dimensions. We consider spin-1/2 fermions cka with
momentum k and spin a =", # and dispersion "k. Thus the non-interacting fermions
are described by the action

Sc =

Z
d⌧

Z
d

d
k

(2⇡)d
c

†
ka

✓
@

@⌧

+ "k

◆
cka, (1)
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FIG. 1: Two views of the Fermi surface of the cuprate superconductors (hole and electron
doped). The chemical potential is included in the dispersion "k, and so the Fermi surface
is determined by "k = 0. The left panel has the momentum k = (0, 0) (the “� point”) in
the center of the square Brillouin zone, while the right panel has the � point at the left
edge. The momenta with both up and down electron states occupied are shaded gray.

As an example it is useful to keep in mind the dispersion "k appropriate for the
cuprate superconductors, which is shown in Fig. 1. The fermion Green’s function
under the free fermion action Sc has the simple form

G0(k,!n) =
1

�i!n + "k
(2)

After analytically continuing to real frequencies, we observe that this Green’s func-
tion has a pole at energy "k with residue 1. Thus there are quasiparticle excitations
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with residue A = 1, much like those found in the strong or weak coupling expansions
of the quantum Ising model. However, unlike those excitations, these quasiparti-
cles can have both positive and negative energies, as "k can have either sign; the
Fermi surface is the locus of points where "k changes sign. The positive energy
qausiparticles are electron-like, while those with negative energy are hole-like i.e.

they correspond to the absence of an electron. Note that the existence of negative
energy quasiparticles is not an indication of the instability of the ground state. All
true excitation energies are positive: the excitations are electron-like on one side of
the Fermi surface, and hole-like on the other side. It is just convenient to combine
the electron and hole quasiparticles within a single Green’s function, by identifying
hole-like quasiparticles with negative energy electron-quasiparticles.

We now wish to examine the stability of quasiparticles to interactions between
them. In keeping with the strategy followed in this book, this should be preceded
by an e↵ective action for the low energy quasiparticles. The latter is usually done
by a gradient expansion, leading to an e↵ective field theory. However, here we face
a unique di�culty: there are zero energy quasiparticles along a d � 1 dimensional
Fermi surface identified by "k = 0. It would therefore seem that we should expand
about all points on the Fermi surface. This is indeed the strategy followed in text-
book treatments of Fermi liquid theory: we measure momenta, k?, from the Fermi
surface, choose a cuto↵ so that |k?| < ⇤, and then perform an RG which reduces the
value of ⇤ [6]. This procedure is illustrated in Fig. 2. Formally, for each direction
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FIG. 2: Traditional low energy limit of Fermi liquid theory. The Fermi surface has one
dimensional chiral fermions on every point, moving along the direction x?. There fermions
are present for momenta |k?| < ⇤; i.e. in a momentum shell of width 2⇤ around the Fermi
surface.

n̂, we define the position of the Fermi surface by the wavevector ~

kF (n̂), so that

n̂ = ~

kF (n̂)/|~kF (n̂)|. Then we identify wavevectors near the Fermi surface by

~

k = ~

kF (n̂) + k? n̂ (3)

Now we should expand in small momenta k?. For this, we define the infinite set of
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fields  n̂a(k?), which are labeled by the spin a and the direction n̂, related to the
fermions c by

c~ka =
1p
SF

 n̂a(k?), (4)

where ~k and k? are related by (3), and SF is the area of the Fermi surface. Inserting
(4) into (1), expanding in k?, and Fourier transforming to real space x?, we obtain
the low energy theory

SFL =

Z
d⌦n̂

Z
dx? 

†
n̂a(x?)

✓
@

@⌧

� ivF (n̂)
@

@x?

◆
 n̂a(x?), (5)

where the Fermi velocity is energy gradient on the Fermi surface vF (n̂) = |rk"~kF (n̂)|.
For each n̂, (5) describes fermions moving along the single dimension x? with the
Fermi velocity: this is a one-dimensional chiral fermion; the ‘chiral’ refers to the fact
that the fermion only moves in the positive x? direction, and not the negative x?
direction. In other words, the low energy theory of the Fermi liquid is an infinite set
of one-dimensional chiral fermions, one chiral fermion for each point on the Fermi
surface.

Apart from the free Fermi term in (5), Landau’s Fermi liquid theory also allows
for contact interactions between chiral fermions along di↵erent directions [6]. These
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are labeled by the Landau parameters, and lead only to shifts in the quasiparticle
energies which depend upon the densities of the other quasiparticles. Such shifts are
important when computing the response of the Fermi liquid to external density or
spin perturbations. However, the resulting fixed-point action of Fermi liquid theory
does not o↵er a route to computing the decay of quasiparticles: the stability of the
quasiparticles is implicitly assumed in the fixed point theory. Our primary purpose
here is to verify the stability of the quasiparticles, so that we will be prepared for
the breakdown of Fermi liquid theory at quantum critical points. So we refer the
reader to the many textbook treatments of the traditional formulation of Landua’s
Fermi liquid theory, and turn to an alternative analysis below.

A shortcoming of the e↵ective action (5) is that it only includes the dispersion of
the fermions transverse to the Fermi surface. Thus, if we discretize the directions n̂,
and pick a given point on the Fermi surface, the Fermi surface is e↵ectively flat at
that point. We will shortly see that the curvature of the Fermi surface is important
in understanding the decay and breakdown of quasiparticles. Thus we have to take
the continuum scaling limit in a manner which keeps the curvature of the Fermi
surface fixed, and does not scale it to zero. For this, as shown in Fig. 3, we focus
attention on a single arc of the Fermi surface in the vicinity of any chosen point ~k0.
We will show in Section IA that the results are independent of the choice of ~k0 on
the Fermi surface, but we defer that issue for now. Then we will choose our cuto↵
⇤ to scale towards the single point k0 (the cuto↵ will be defined more carefully
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FIG. 3: Alternative low energy formulation of Fermi liquid theory. We focus on an ex-
tended patch of the Fermi surface, and expand in momenta about the point ~k0 on the
Fermi surface. This yields a theory of d-dimensional fermions  in (7), with dispersion
(14). The co-ordinate y represents the d� 1 dimensions parallel to the Fermi surface.

below), rather than scaling to all points on the Fermi surface, as we did for (5).

With ~

k0 chosen as Fig. 3, let us now define our low energy theory and scaling
limit [7]. Unlike the one-dimensional chiral fermions which appeared in (5), we

Wednesday, January 15, 14



10

will now use a d dimensional fermion  a(x, y). Here x is the one dimensional co-
ordinate orthogonal to the Fermi surface, and ~y represents the (d� 1)-dimensional
transverse co-ordinates. After Fourier transformations, this fermion is related to
the underlying fermions cka simply by

 a(k) = c~k0+~k,a (6)

In other words, we only shift the origin of momentum space from ~

k = 0 to ~k = ~

k0.
Inserting (6) in (1), and expanding the dispersion in the vicinity of ~k0 (contrast to
the expansion away from all points on the Fermi surface in (5)), we obtain the low
energy theory

S0 =

Z
d⌧

Z
dx

Z
d

d�1
y  

†
a

✓
⇣

@

@⌧

� ivF
@

@x

� 

2
r2

y

◆
 a. (7)

We have added a co-e�cient ⇣ to the temporal gradient term for future convenience:
we are interested in ⇣ = 1, but will see later that in non-Fermi liquid states it is
convenient to allow ⇣ to renormalize. Notice the additional second-order gradients
in y which were missing from (5): the co-e�cient  is proportional to the curvature

of the Fermi surface at ~k0. Also, as we have already noted, the fermion field in (7)
is d-dimensional, while that in (5) in one-dimensional. One benefit of (7) is now
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immediately evident: it has zero energy excitations when

vF kx + 

k

2
y

2
= 0, (8)

and so (8) defines the position of the Fermi surface, which is then part of the low
energy theory including its curvature. Note that (7) now includes an extended
portion of the Fermi surface; contrast that with (5), where the one-dimensional
chiral fermion theory for each n̂ describes only a single point on the Fermi surface.

The gradient terms in (7) define a natural momentum space cuto↵, and associated
scaling limit. We will take such a limit at fixed ⇣, vF and . Notice that momenta
in the x direction scale as the square of the momenta in the y direction, and so we
can choose v

2
F k

2
x + 

2
k

4
y < ⇤4. Notice that as we reduce ⇤, we scale towards the

single point ~k0 on the Fermi surface, as we required above.
It now a simple matter to apply the RG analysis to the fermion theory in (7).

At fixed ⇣, vF and , the action (7) is invariant under the following rescalings of
spacetime:

x

0 = xe

�2`
, y

0 = ye

�`
, ⌧

0 = ⌧e

�2` (9)

Note that we have chosen the directions parallel to the Fermi surface as the ones
defining the primary length scale, with dim[y] = �1, and the transverse direction
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has dim[x] = �2. The temporal direction rescaling implies that we have the dy-
namic exponent z = 2 when measured relative to the y spatial directions. The RG
invariance of (7) also requires the field rescaling

 

0 =  e

(d+1)`/2
. (10)

We now have the tools needed to determine the role of fermion interactions. The
simplest contact interaction has the form

S1 = u0

Z
d⌧

Z
dx

Z
d

d�1
y  †

a 
†
b b a. (11)

Apply the RG rescalings in (10) we find

u

0
0 = u0e

(1�d)`
. (12)

In other words, the interaction between the fermions u0 is irrelevant in all dimension
d > 1. This strongly suggests that the Fermi liquid picture of non-interacting
fermions is indeed RG stable.

Let us understand the stability of Fermi liquid theory a bit better by computing
corrections to the fermion Green’s function in (2). Let us write the interaction
corrected Green’s function as

G(k,!) =
1

�⇣! + "k � ⌃(k,!) , (13)
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where now

"k = vF kx + 

k

2
y

2
. (14)

To first order in u0, the fermion self energy is real (for real frequencies), and so only
modifies the quasiparticle dispersion and residue, A, but does not destabilize the
existence of the quasiparticle pole.

So let us move to second order in u0. First, we use an RG argument. We are
interested in the imaginary part of the self energy, and let us assume for now at
small !

Im⌃(k = 0,!) ⇠ u

2
0!

p
. (15)

We determine p by scaling arguments. From (13) we know that dim[⌃] = z = 2,
and so conclude from matching dimensions in (15) that p = d. However, there is a
subtlety here: scaling arguments only yield the powerlaws of singular corrections,
and do not say anything about analytic backgrounds that may be allowed from the
structure of the theory. Here, a term with p = 2 is permitted because Im⌃ is an
even function of !. So the proper conclusion is

p = min(d, 2). (16)

The above scaling argument is fine as it stands, but cannot substitute for the
insight gained by an explicit computation. The Feynman diagram contributing to
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FIG. 4: Feynman diagram for the decay of quasiparticles at order u

2
0. The dashed line is

the interaction u0, and a, b are spin labels.

the quasiparticle decay at order u

2
0 is indicated in Fig. 4. We evaluate it in two

stages. First we evaluate the fermion loop of the fermions with spin label b; this
gives us the fermion polarizability

⇧(q,!n) =

Z
d

d
k

(2⇡)d

Z
d✏n

2⇡
G0(k + q, ✏n + !n)G0(k, ✏n). (17)

This enters the self-energy by

⌃(k, ✏n) = u

2
0

Z
d

d
q

(2⇡)d

Z
d!n

2⇡
⇧(q,!n)G0(k + q, ✏n + !n). (18)

We first explicitly evaluate ⇧(q,!n). We will only be interested in terms that
are singular in q and !n, and will drop regular contributions from regions of high
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momentum and frequency. In this case, it is permissible to reverse the conventional
order of integrating over frequency first in (17), and to first integrate over kx. It is
a simple matter to perform the integration over kx in using the method of residues
to yield

⇧(q,!n) =
1

2vF

Z
d

d�1
ky

(2⇡)d�1

Z
d✏n

2⇡

sgn(✏n + !n)� sgn(✏n)⇣
⇣!n + ivF qx + iq

2
y/2 + i~qy · ~ky

⌘

=
|!n|
2⇡vF

Z
d

d�1
ky

(2⇡)d�1

1⇣
⇣!n + ivF qx + iq

2
y/2 + i~qy · ~ky

⌘
. (19)

We now integrate along the component of ~ky parallel to the direction of ~qy to obtain

⇧(q,!n) =
|!n|

2⇡vF|qy|
Z

d

d�2
ky

(2⇡)d�2

=
|!n|

2⇡vF|qy|⇤
d�2 (20)

Note that in d = 2 the last non-universal factor is not present, and the result for ⇧
is universal with ⇤d�2 = 1. Note also that ⇣ has dropped out of the result ⇧: this
will be important in our subsequent treatment of quantum critical points.
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Now we insert (20) into (18). After evaluating the integral over qx we obtain

⌃(k,!n) = i

u

2
0

2⇡v2F

Z
d

d�1
qy

(2⇡)d�1

Z
d✏n

2⇡

sgn(✏n + !n)|✏n|
|qy|

= i sgn(!n)!
2
n

u

2
0

4⇡v2F

Z
d

d�1
qy

(2⇡)d�1

1

|qy|

= i sgn(!n)!
2
n

u

2
0

4⇡v2F
⇤d�2

, d > 2. (21)

Again, ⇣ has dropped out. This result is in perfect accord with the scaling arguments
in (15) and (16).

Let us consider the important case d = 2. There is an infrared divergence in the
qy integral in (21) at small qy. This is only cuto↵ after we include a self-consistent
damping of the quasiparticle propagators in the Feynman diagram of Fig. 4, rather
than the bare propagators we have used above. After including this damping, we
expect that (15) will be modified to

Im⌃(k,!) ⇠ u

2
0!

2 log

✓
⇤

u0|!|
◆

, d = 2; (22)

thus the scaling result is modified by a logarithm in d = 2.
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With Im⌃ ⇠ u

2
0!

2 (up to logarithms) , we can now easily examine the fate of the
quasiparticles from (13). From (13), we see that the quasiparticle pole is always
broadened: the width of the quasiparticle peak is ⇠ u

2
0"

2
k for a quasiparticle with

energy ! = "k. Thus the quasiparticle width vanishes as the square of the distance
from the Fermi surface. Asymptotically close to the Fermi surface, the quasiparticle
width is much smaller than the quasiparticle energy: this is su�cient to regard the
quasiparticle as a sharp excitation, and confirm the validity of Landau’s Fermi liquid
theory.

An important and frequently used diagnostic of the stability of the quasiparticle
is the discontinuity in the fermion momentum distribution function n(k) = hc†kackai.
This can be computed from the real frequency Green’s function G(k,!) by (here
we set ⇣ = 1)

n(k) =

Z 0

�1

d!

(2⇡)
ImG(k,!). (23)

Assuming a pole in the Green’s function of the form

G(k,!) =
A

�! + "k + ic!

2
+ . . . (24)

we find a step discontinuity in the momentum distribution function at the Fermi
Wednesday, January 15, 14
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surface

n(k) = A✓(�"k) + . . . (25)

of strength A.

A. Independence on choice of ~k0

Our theory of the Fermi liquid state is now contained in the action S0+S1 defined
by (7) and (11). It focused on an arc of the Fermi surface, as shown in Fig. 3, and

then expanded in gradients about the point ~k0 on the Fermi surface. To complete
our discussion, we now wish to show that the theory is independent of the choice of
~

k0.
As shown in Fig. 5, we could equally well have defined the theory about the point

~

k

0
0 on the Fermi surface. Consistency requires that the fermion Green’s function at

the point P should have the same value whether it is computed using the theory at
~

k0 or at ~k00. This section will show that this is indeed the case.
Note that such a consistency requirement is not present for the representation

in terms of chiral one-dimensional fermions in Fig. 2. There, each point in the
momentum space is associated only with a single one-dimensional theory. It is our
use of a d-dimensional theory which induces our redundant description.

n(k)

kkF

A
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Logarithmic violation of “area law”: SE =

1

12

(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor 1/12 is universal: it is independent of the shape of the

entangling region, and of the strength of the interactions.

B

A P

Entanglement entropy of the Fermi liquid

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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|�

�� kF !

FL 
Fermi 
liquid

• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .
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Electronic nematicity above the structural and
superconducting transition in BaFe2(As12xPx)2
S. Kasahara1,2, H. J. Shi1, K. Hashimoto1{, S. Tonegawa1, Y. Mizukami1, T. Shibauchi1, K. Sugimoto3,4, T. Fukuda5,6,7, T. Terashima2,
Andriy H. Nevidomskyy8 & Y. Matsuda1

Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures
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Japan. 8Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, USA. {Present address: Institute for Materials Research, Tohoku University, Sendai 980-8577,
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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Coupling between Ising order and electrons
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• � fluctuation at wavevector ~q couples most e�ciently to fermions

near ±~k0.

• Expand fermion kinetic energy at wavevectors about ±~k0 and
boson (�) kinetic energy about ~q = 0.
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(a)

(b)
Electron self-energy at order 1/N
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answer using scaling arguments; we expect

Im⌃ ⇠ �

2
!

p
. (42)

Matching scaling dimensions with dim[⌃] = 2 (because dim[kx] = dim[k2
y] = 2), dim[!] = 3

and (41), we obtain

p =
d

3
. (43)

In d = 3, the integer value of p suggests that there should be additional logarithms, and

we will indeed see this in an explicit computation below. Examination of the quasiparticle

spectral weight using (13), and as discussed below (22) shows that the quasiparticles are

only marginally well defined with a width of the same order as the quasiparticle energy upon

approaching the Fermi surface. Such states were named ‘marginal Fermi liquids’ [8], but the

present argument shows this terminology is a misnomer in the RG sense: the coupling � is

irrelevant and not marginal. The RG argument also has a bonus in implying that higher

orders in � will only produce higher powers of ! in the self-energy; perturbation theory

about the Gaussian fixed point directly yields the terms most important in the infrared

already at low order in the expansion.

The situation is very di↵erent in d = 2. In this case Im⌃ ⇠ !

2/3, and so it is now clear

from (22) that quasiparticle is no longer well defined, and we are dealing with a non-Fermi

liquid. Applying (23), we find that the momentum distribution function does not have a

step discontinuity on the Fermi surface; there is a weaker power-law singularity with

n(k) ⇠ sgn(�"k)|"k|1/3. (44)

Importantly, the scaling dimension of the boson-fermion coupling � is 0, and so it is not

clear whether perturbation theory in � is reliable. The implication is that the critical theory

should be formulated at a fixed �, and that the perturbative Hertz approach has broken

down. We will turn to a discussion of the needed critical field theory in Section IIC.

However, before we turn to that crucial question, we need to verify the scaling estimate

for the self energy in (42) by an explicit computation. The needed contribution to the self

energy at order �2 is given by the Feynman diagram in Fig. 8 which evaluates to

⌃(k,!n) = �

2

Z
d

d
q

(2⇡)d

Z
d✏n

2⇡

1

q

2
y + �|✏n|/|qy|G0(k + q, ✏n + !n) (45)

This can be evaluated by the same methods used for (18). Integrating over qx we find the

18

FIG. 8: Order �2 contribution to the fermion self energy.

analog of (21)

⌃(k,!n) = i

�

2

vF

Z
d

d�1
qy

(2⇡)d�1

Z
d✏n

2⇡

sgn(✏n + !n)|qy|
|qy|3 + �|✏n|

= i

�

2

⇡vF�
sgn(!n)

Z
d

d�1
qy

(2⇡)d�1
|qy| ln

✓ |qy|3 + �|!n|
|qy|3

◆
. (46)

Evaluation of the qy integral yields a result which agrees with (42) and (43) in d = 2, and

with the expected logarithmic corrections in d = 3. In the physically important case of

d = 2, the qy integral evaluates to

⌃(k,!n) =
�

2

⇡vF�
1/3

p
3
sgn(!n)|!n|2/3 , d = 2, (47)

in agreement with (43).

C. Non-Fermi liquid criticality in d = 2

Section II B established that a perturbative analysis in the fermion-boson coupling �, in

the spirit of the familiar “random-phase-approximation” (RPA) of many body physics, led

to a valid theory of the Ising-nematic quantum critical point in d = 3. However, the RPA-

like Hertz approach broke down in d = 2. Here we will provide a field-theoretic description

of the quantum criticality in d = 2, using the approach proposed in Ref. [7].

An important feature of the discussion in Section II B was that the low energy fermion

modes at the Fermi surface point ~k0 coupled most strongly to � fluctuations with momenta

parallel to the Fermi surface. This is clear from the ky dependence of SHG in (37). Physically,

this is because a fermion at ~k0 scattered by � by momentum k tangent to the Fermi surface

only changes its energy ⇠ k

2, while in all other directions its energy change ⇠ k. Consistent

with this, if we compute the induced four-point � vertex in the theory S0 + SHG + S �, we
find an enhancement dependent upon on the � momenta only if the momenta are parallel

or anti-parallel. This suggests that all couplings between � fluctuations with non-collinear

momenta, such as e. g. those induced by the u term in (33), are formally irrelevant, just as

19

Wednesday, January 15, 14



(a)

(b)
Electron self-energy at order 1/N

f

:

⌃(

~k,⌦) = � 1

N
f

Z
d2q

4⇡2

d!

2⇡

1

[�i(! + ⌦) + k
x

+ q
x

+ (k
y

+ q
y

)

2
]

"
q2
y

g2
+

|!|
|q

y

|

#

= �i
2p
3N

f

✓
g2

4⇡

◆2/3

sgn(⌦)|⌦|2/3

Quantum criticality of Ising-nematic ordering

L =  †
+

�
@
⌧

� i@
x

� @2
y

�
 + +  †

�
�
@
⌧

+ i@
x

� @2
y

�
 �

� �
⇣
 †
+ + +  †

� �

⌘
+

1

2g2
(@

y

�)2

⇠ |⌦|d/3 in dimension d.

Wednesday, January 15, 14



Quantum criticality of Ising-nematic ordering

L =  †
+

�
@
⌧

� i@
x

� @2
y

�
 + +  †

�
�
@
⌧

+ i@
x

� @2
y

�
 �

� �
⇣
 †
+ + +  †

� �

⌘
+

1

2g2
(@

y

�)2

Schematic form of � and fermion Green’s functions in d dimensions

D(~q,!) =
1/N

f

q2? +
|!|
|q?|

, G
f

(~q,!) =
1

q
x

+ q2? � isgn(!)|!|d/3/N
f

In the boson case, q2? ⇠ !1/zb with z
b

= 3/2.
In the fermion case, q

x

⇠ q2? ⇠ !1/zf with z
f

= 3/d.

Note z
f

< z
b

for d > 2 ) Fermions have higher energy than
bosons, and perturbation theory in g is OK.
Strongly-coupled theory in d = 2.
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Schematic form of � and fermion Green’s functions in d = 2
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⇠ !1/z
, with z = 3/2. Note that the

bare term ⇠ ! in G�1
f

is irrelevant.

Strongly-coupled theory without quasiparticles.
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Simple scaling argument for z = 3/2.
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Under the rescaling x ! x/s, y ! y/s

1/2
, and ⌧ ! ⌧/s

z
, we

find invariance provided

� ! � s

 !  s

(2z+1)/4

g ! g s

(3�2z)/4

So the action is invariant provided z = 3/2.
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FL 
Fermi 
liquid

• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .

Wednesday, January 15, 14



• Fermi surface

with kdF ⇠ Q.

• Di↵use fermionic

excitations with z = 3/2
to three loops.

• S ⇠ T (d�✓)/z

with ✓ = d� 1.

• SE ⇠ kd�1
F P lnP .
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Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is expected to be universal but 6= 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B

A P

Entanglement entropy of the non-Fermi liquid

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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