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1. The simplest models without quasiparticles

   A. Superfluid-insulator transition 

         of ultracold bosons in an optical lattice

    B. Conformal field theories in 2+1 dimensions and 

         the AdS/CFT correspondence

2. Metals without quasiparticles  

       A. Review of Fermi liquid theory

    B. A “non-Fermi” liquid: the Ising-nematic                      
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     C. The holographic view: charged black-branes         
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Begin with a CFT
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Holographic representation: AdS4
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Apply a chemical potential

Wednesday, January 15, 14



This is to be solved subject to the constraint

Aµ(r ! 0, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ

of the CFT3

S = SCFT + i

Z
dxdydtAµJµ

At non-zero chemical potential we simply require A⌧ = µ.

AdS4 theory of “nearly perfect fluids”
To leading order in a gradient expansion, charge transport in

an infinite set of strongly-interacting CFT3s can be described by

Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild
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Z
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Electric flux

hQi
6= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)
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The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

At T = 0, we obtain an extremal black-brane, with

a near-horizon (IR) metric of AdS2 ⇥R
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T. Faulkner, H. Liu, 
J. McGreevy, 
and D. Vegh, 
arXiv:0907.2694
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Einstein-Maxwell-dilaton theory

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).
N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].
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Holography of a non-Fermi liquid
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Holography of a non-Fermi liquid

The r ! 1 limit of the metric of the Einstein-Maxwell-

dilaton (EMD) theory has the above form with

✓ =

d2�

↵+ (d� 1)�
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d
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Holography of a non-Fermi liquid

This is the most general metric which is invariant under the

scale transformation

xi ! ⇣ xi

t ! ⇣

z
t

ds ! ⇣

✓/d
ds.

This identifies z as the dynamic critical exponent (z = 1 for

“relativistic” quantum critical points). We will see shortly

that ✓ is the violation of hyperscaling exponent.

We have used reparametrization invariance in r to define it so

that it scales as

r ! ⇣

(d�✓)/d
r .

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the
“area” of the horizon, and so S ⇠ r�d

h

r
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

r

Under rescaling r ! ⇣(d�✓)/dr, and the

temperature T ⇠ t�1
, and so

S ⇠ T (d�✓)/z
= T deff/z

where ✓ = d�de↵ , the “dimension deficit”, is now identified

as the violation of hyperscaling exponent.
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Holography of a non-Fermi liquid

N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).

The null energy condition (stability condition for gravity)

yields a new inequality

z � 1 +

✓

d

In d = 2, with ✓ = d� 1, this implies z � 3/2. So the lower

bound is precisely the value obtained from the field theory.
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).

Holography of a non-Fermi liquid

Application of the Ryu-Takayanagi minimal area formula to a dual

Einstein-Maxwell-dilaton theory yields

SE ⇠

8
<

:

P , for ✓ < d� 1

P lnP , for ✓ = d� 1

P ✓/(d�1) , for ✓ > d� 1

.

The log-violation of “area law” again prefers the value ✓ = d � 1.

Moreover, the co-e�cient of P lnP is

(i) independent of the shape of the entangling region just as expected

for a circular Fermi surface, and

(ii) has the same universal dependence on Q expected from the Lut-

tinger theorem.

ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆

Wednesday, January 15, 14



Holography of a non-Fermi liquid

Answer: need non-perturbative e↵ects of monopole operators

T. Faulkner and N. Iqbal, arXiv:1207.4208;

S. Sachdev, Phys. Rev. D 86, 126003 (2012)

Open questions:

• Is there any selection principle for the values of ✓ and
z ?

• What is the physical interpretation of metallic states
with ✓ 6= d� 1 ?

• Does the metallic state have a Fermi surface, and what
is kF ?

• Are there N2 Fermi surfaces of ‘quarks’ with kF ⇠ 1,
or 1 Fermi surface of a ‘baryon’ with kF ⇠ N2 ?

• Why is kF not observable as Friedel oscillations in cor-
relators of the density, and other gauge-neutral oper-
ators ?
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R. A. Davison, M. Goykhman, and A. Parnachev, arXiv:1312.0463.

Consider the truncation of IIB supergravity on AdS5⇥S

5
where two

of the three U(1) charges are equal and non-vanishing while the third

one is zero (S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001
(2010)). In the IR limit, the bulk metric is of the general scaling

form, but with ✓ = �z and z ! 1:
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.

This metric is conformal to AdS2⇥R

3
. From our results before, we

have

the entropy S ⇠ T and the entanglement entropy SE ⇠ P .

Key di↵erence from a Landau Fermi liquid are the equality of hydro-

dynamic and zero sound velocities, and a viscosity ⌘ = S/(4⇡).
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R. A. Davison, M. Goykhman, and A. Parnachev, arXiv:1312.0463.

Claim: all physical properties of the holographic

theory can be interpreted in a theory of a Fermi

surface of ‘baryons’ with kF ⇠ N2/3
, vF ⇠ N�2/3

,

and interactions such that the system is precisely

at the nematic quantum critical point in d = 3!
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 Strongly-coupled quantum criticality leads to a novel 
regime of quantum dynamics without quasiparticles.

 The simplest examples are conformal field theories 
in 2+1 dimensions, realized by ultracold atoms in 
optical lattices.

 Holographic theories provide an excellent 
quantitative description of quantum Monte studies of 
quantum-critical boson models

 Exciting recent progress on the description of 
transport in metallic states without quasiparticles, via 
field theory and holography
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