# From the SYK model to a theory of the strange metal

International Centre for Theoretical Sciences, Bengaluru

Subir Sachdev December 8, 2017

Talk online: sachdev.physics.harvard.edu







#### Magnetotransport in a model of a disordered strange metal

Aavishkar A. Patel, <sup>1, 2</sup> John McGreevy, <sup>3</sup> Daniel P. Arovas, <sup>3</sup> and Subir Sachdev<sup>1, 4, 5</sup>

<sup>1</sup>Department of Physics, Harvard University, Cambridge MA 02138, USA

<sup>2</sup>Kavli Institute for Theoretical Physics, University of California, Santa Barbara CA 93106-4030, USA

<sup>3</sup>Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

<sup>4</sup>Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

<sup>5</sup>Department of Physics, Stanford University, Stanford CA 94305, USA



**Aavishkar Patel** 

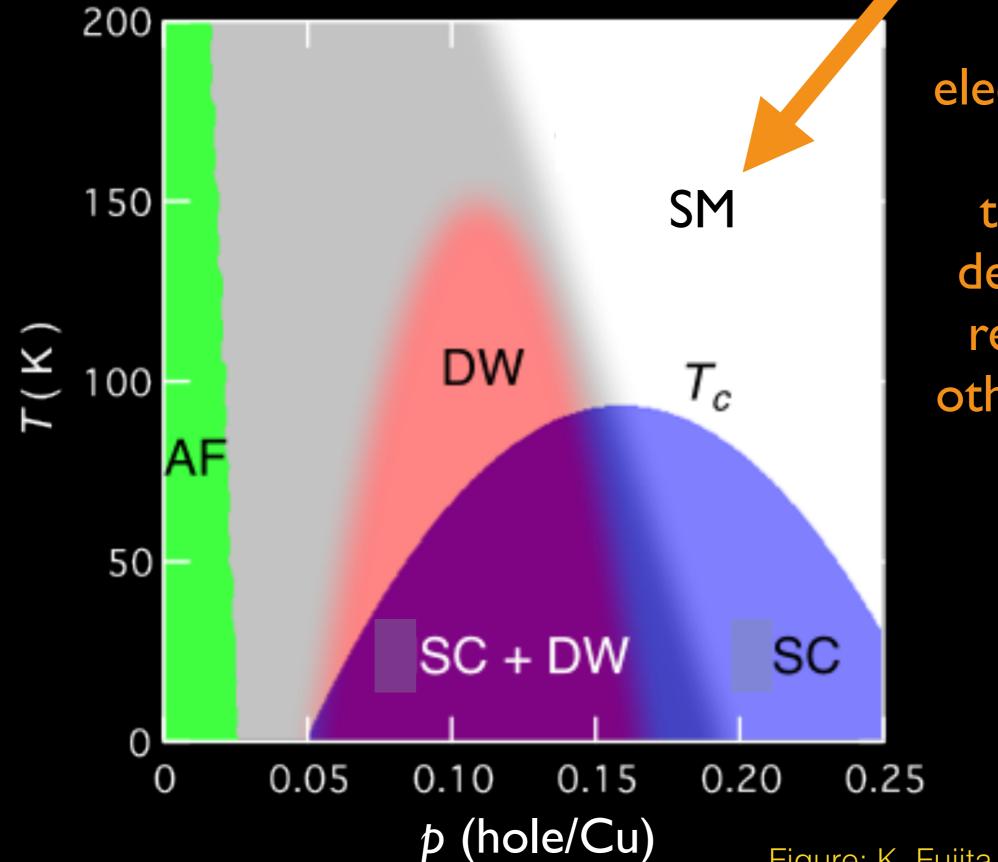
### Quantum matter with quasiparticles:

The quasiparticle idea is the key reason for the many successes of quantum condensed matter physics:

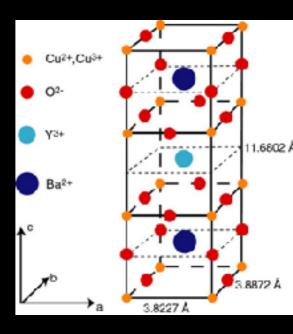
- Fermi liquid theory of metals, insulators, semiconductors
- Theory of superconductivity (pairing of quasiparticles)
- Theory of disordered metals and insulators (diffusion and localization of quasiparticles)
- Theory of metals in one dimension (collective modes as quasiparticles)
- Theory of the fractional quantum Hall effect (quasiparticles which are `fractions' of an electron)

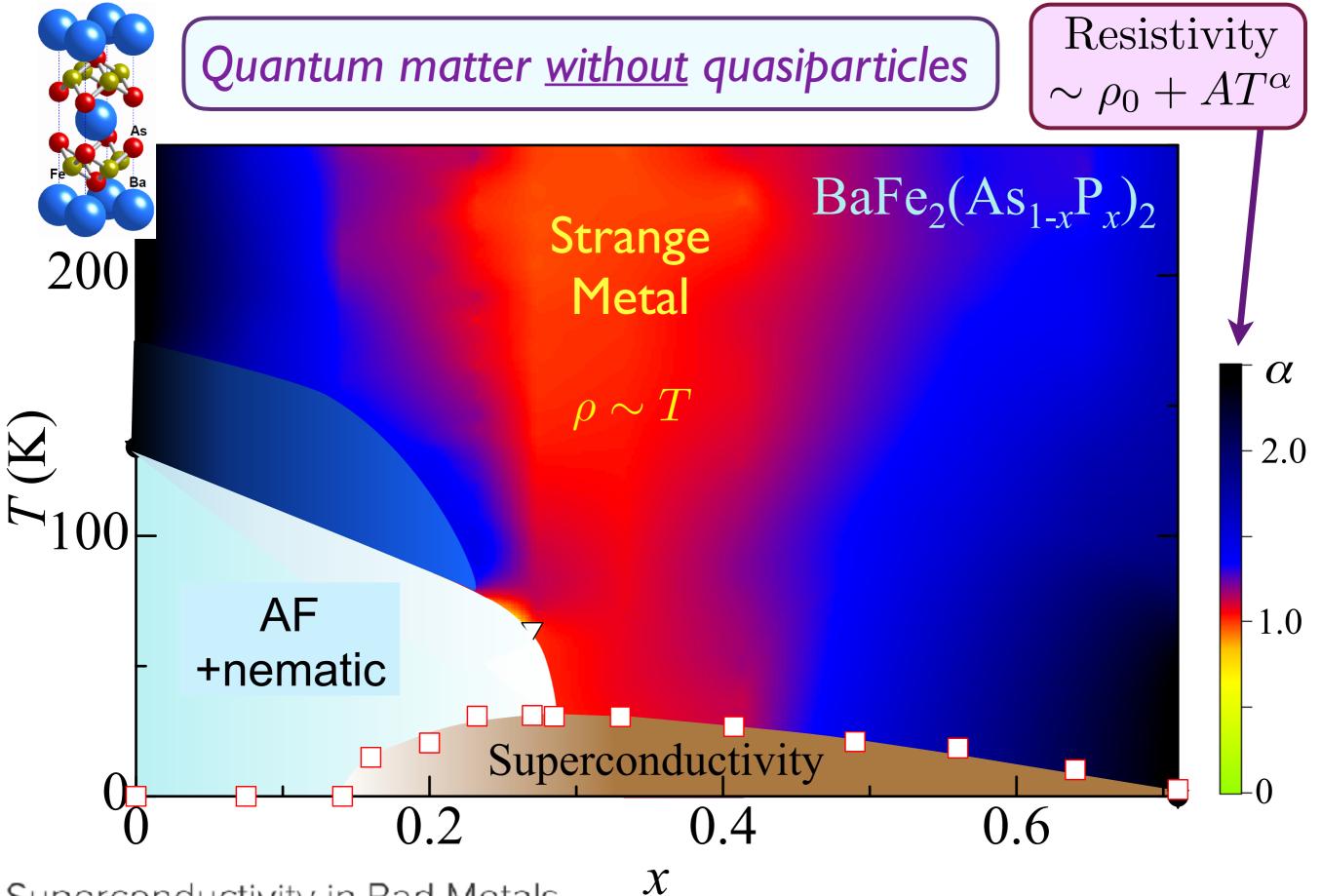
#### Quantum matter without quasiparticles

#### Strange metal



Entangled electrons lead to "strange" temperature dependence of resistivity and other properties





Superconductivity in Bad Metals

V. J. Emery and S. A. Kivelson Phys. Rev. Lett. **74**, 3253 – Published 17 April 1995 S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, *PRB* 81, 184519 (2010)



"Strange",





or "Incoherent",

metal has a resistivity,  $\rho$ , which obeys

 $\rho \sim T$ ,

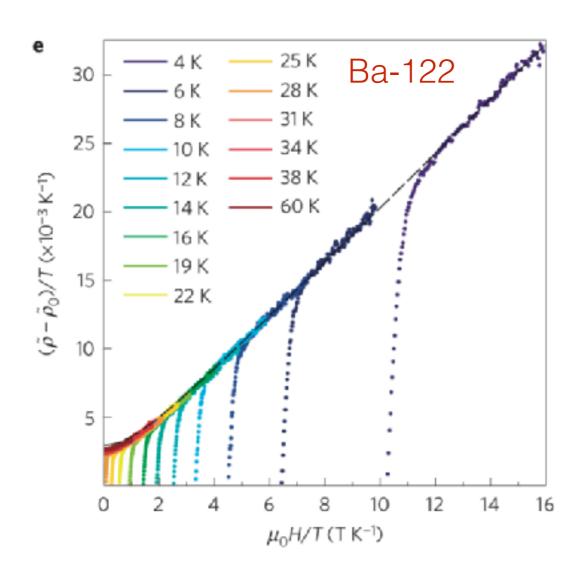
and

in some cases  $\rho \gg h/e^2$ 

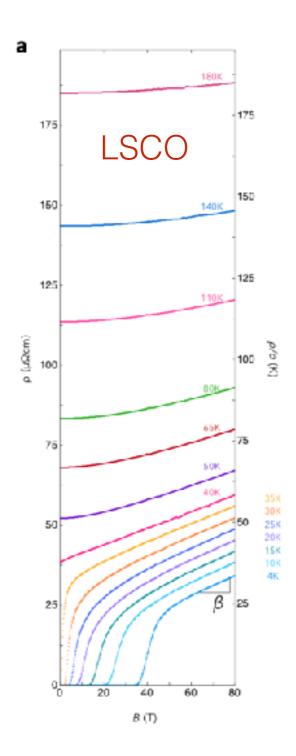
(in two dimensions), where  $h/e^2$  is the quantum unit of resistance.

#### Strange metals just got stranger...

#### B-linear magnetoresistance!?



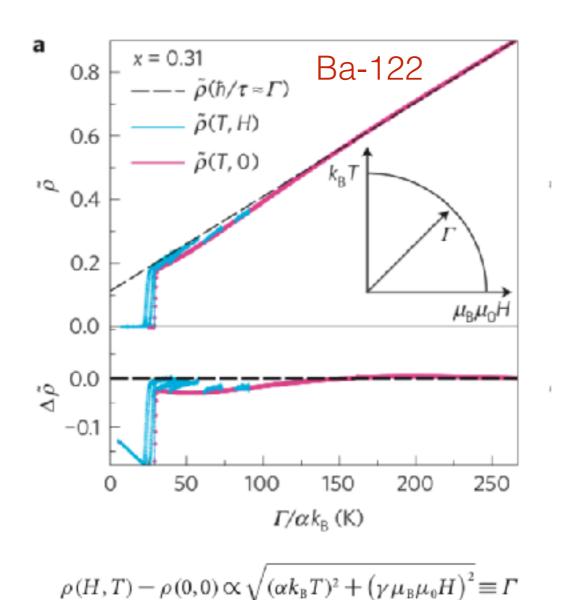
I. M. Hayes et. al., Nat. Phys. 2016



P. Giraldo-Gallo et. al., arXiv:1705.05806

#### Strange metals just got stranger...

#### Scaling between B and T!?



I. M. Hayes et. al., Nat. Phys. 2016

## Quantum matter with quasiparticles:

• Quasiparticles are additive excitations:

The low-lying excitations of the many-body system can be identified as a set  $\{n_{\alpha}\}$  of quasiparticles with energy  $\varepsilon_{\alpha}$ 

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

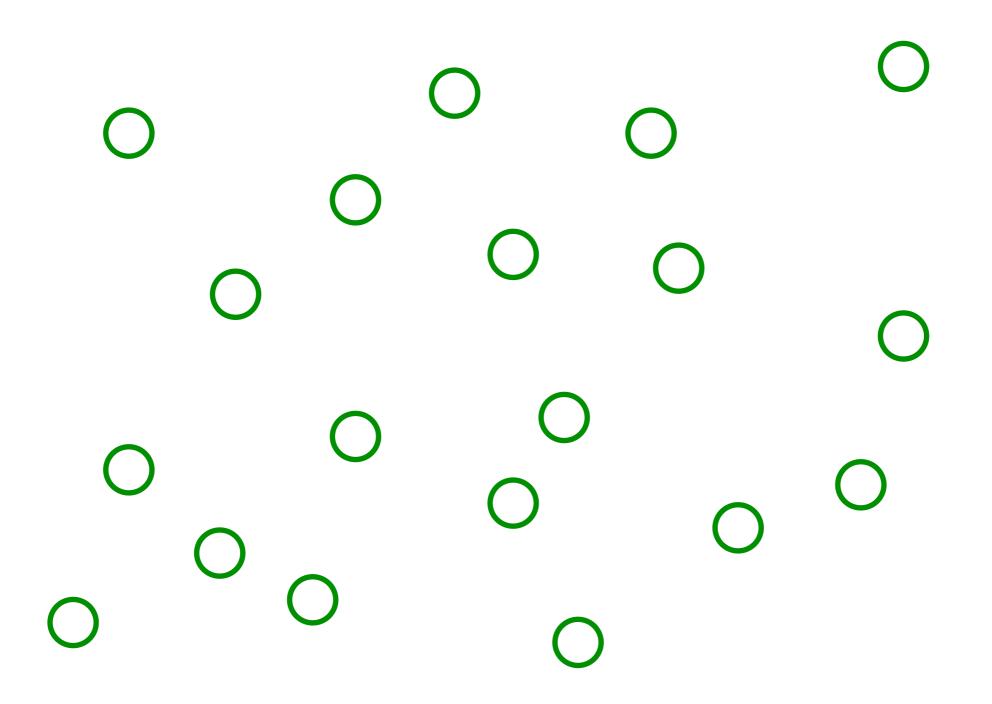
In a lattice system of N sites, this parameterizes the energy of  $\sim e^{\alpha N}$  states in terms of poly(N) numbers.

## Quantum matter with quasiparticles:

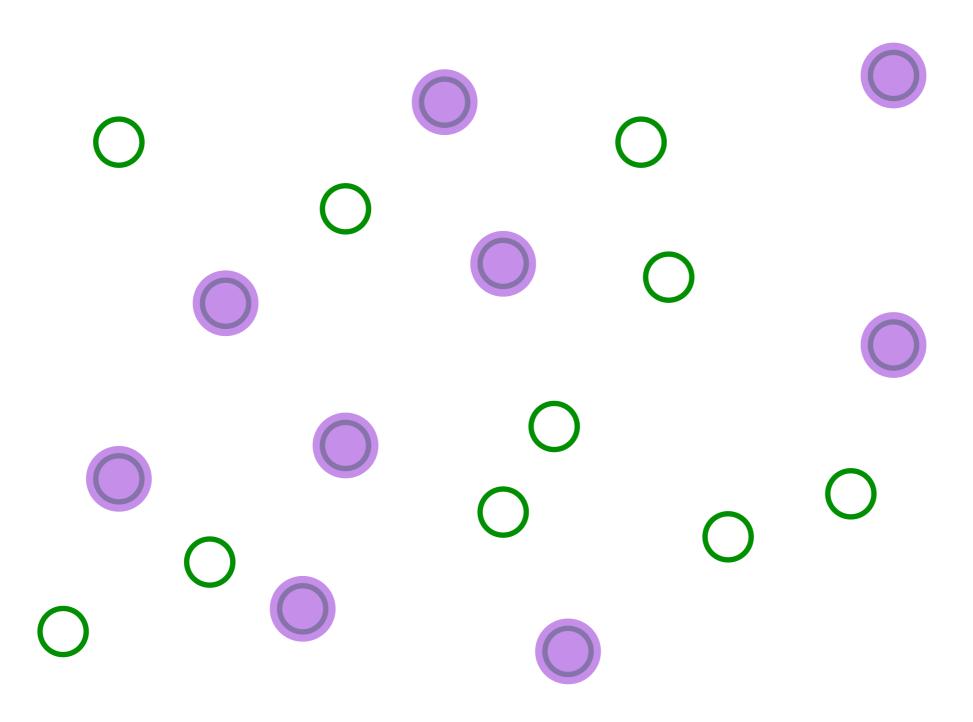
• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time diverges as

$$au_{
m eq} \sim rac{\hbar E_F}{(k_B T)^2} \quad , \quad {
m as} \ T o 0,$$

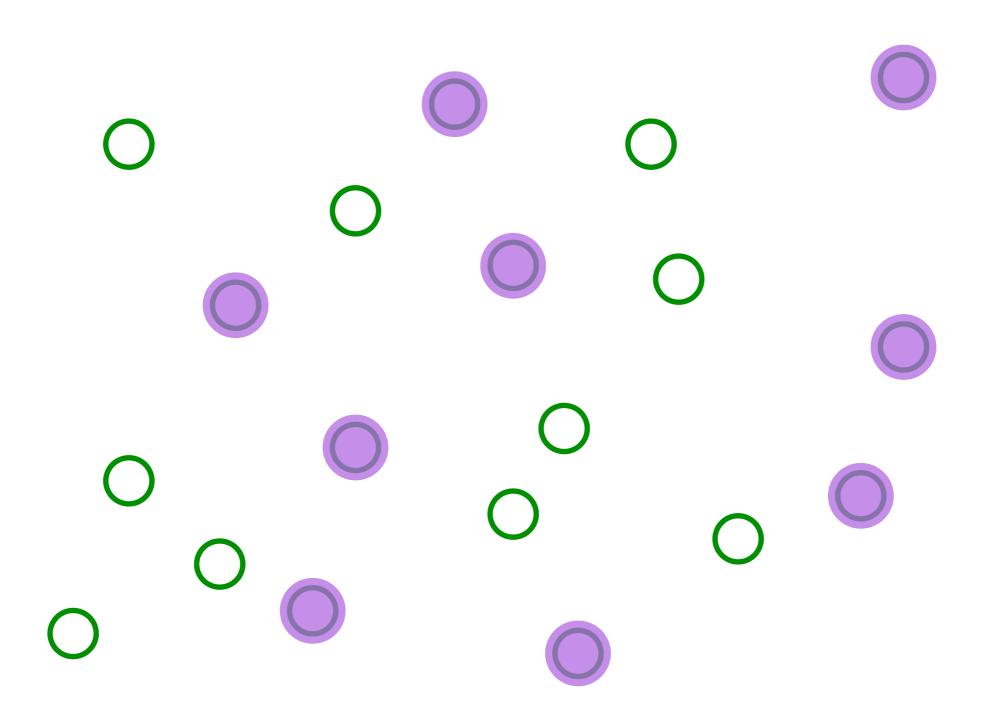
where  $E_F$  is the Fermi energy.

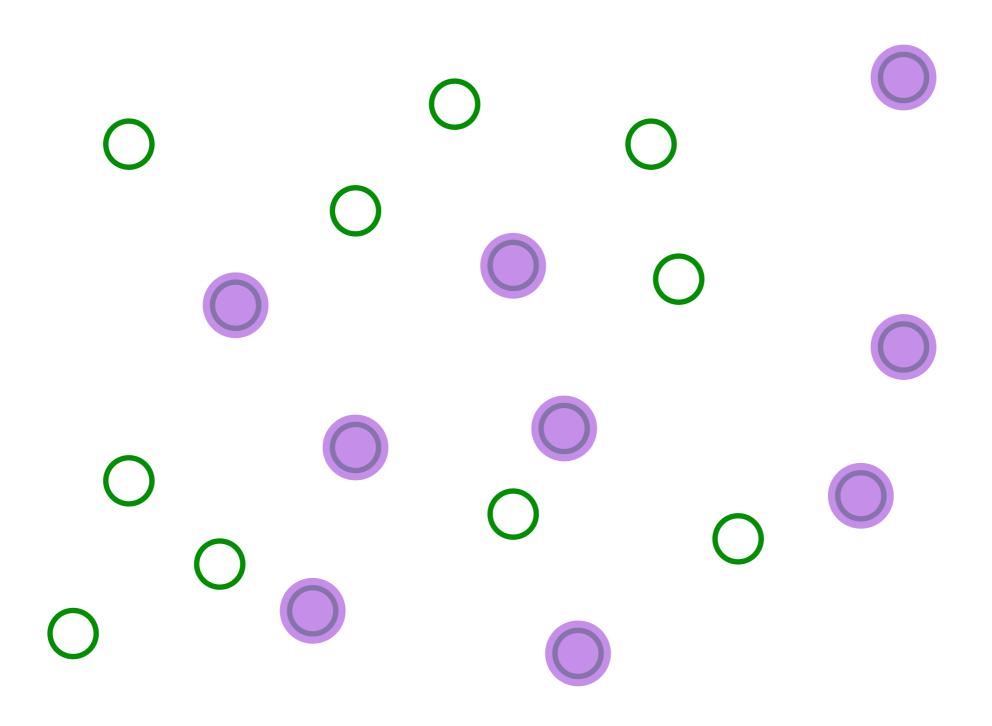


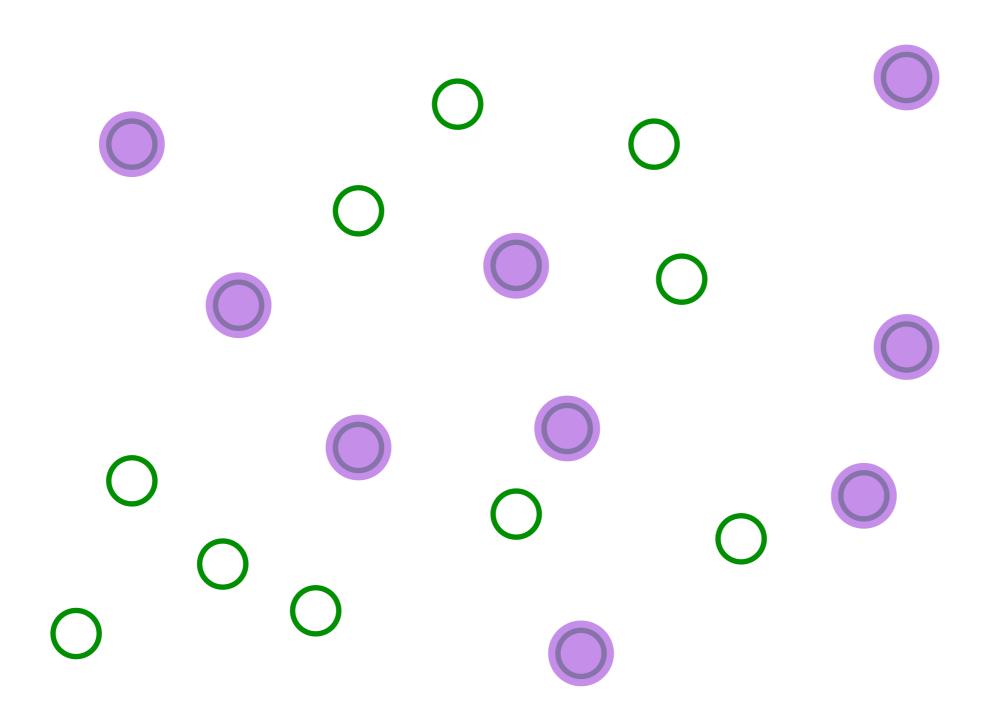
Pick a set of random positions

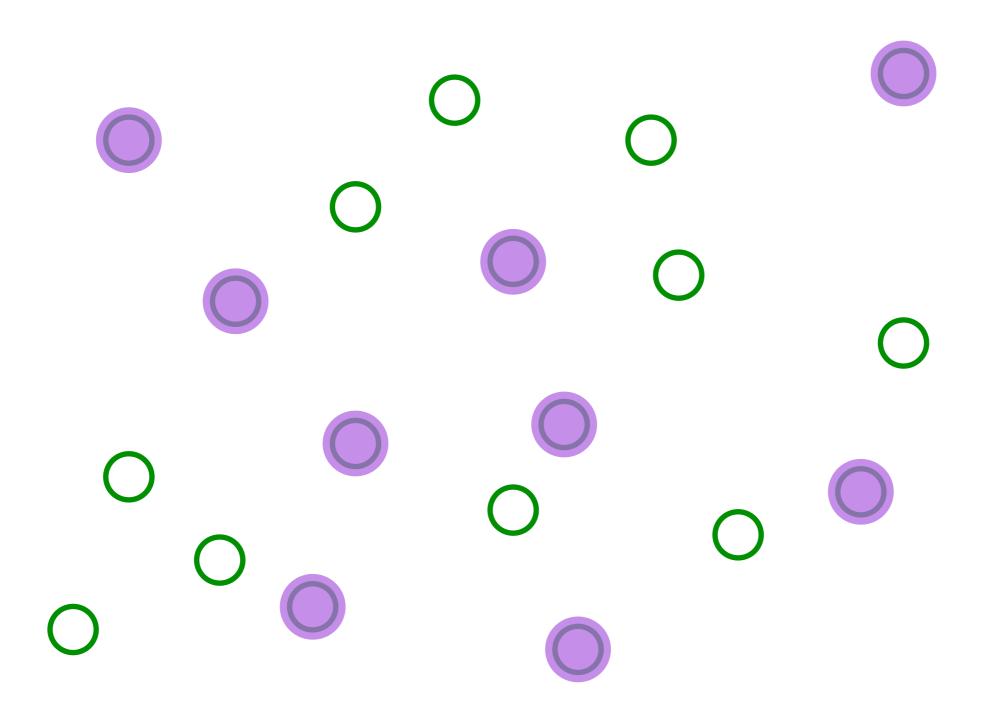


Place electrons randomly on some sites









$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j + \dots$$

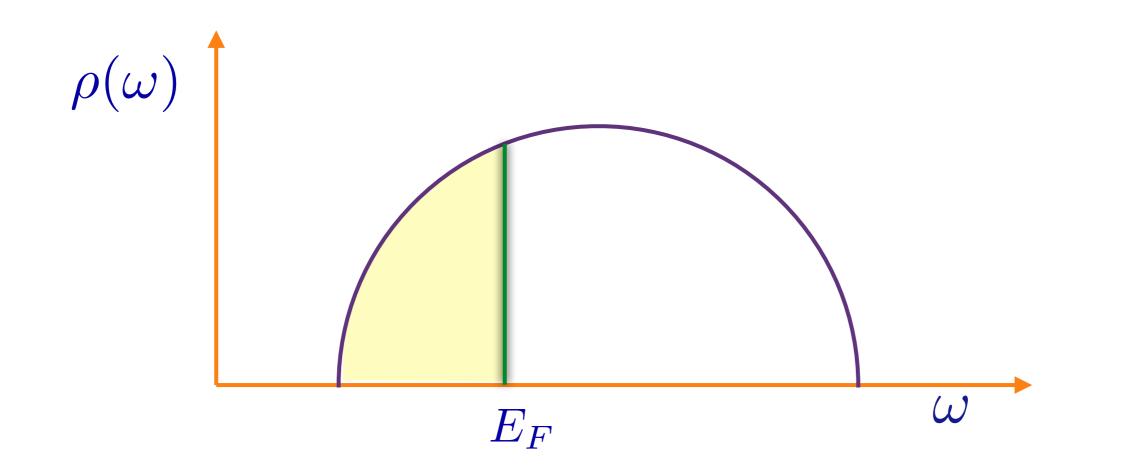
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$

$$\frac{1}{N} \sum_i c_i^{\dagger} c_i = \mathcal{Q}$$

 $t_{ij}$  are independent random variables with  $\overline{t_{ij}} = 0$  and  $|t_{ij}|^2 = t^2$ 

Fermions occupying the eigenstates of a  $N \times N$  random matrix

Let  $\varepsilon_{\alpha}$  be the eigenvalues of the matrix  $t_{ij}/\sqrt{N}$ . The fermions will occupy the lowest  $N\mathcal{Q}$  eigenvalues, upto the Fermi energy  $E_F$ . The density of states is  $\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha})$ .





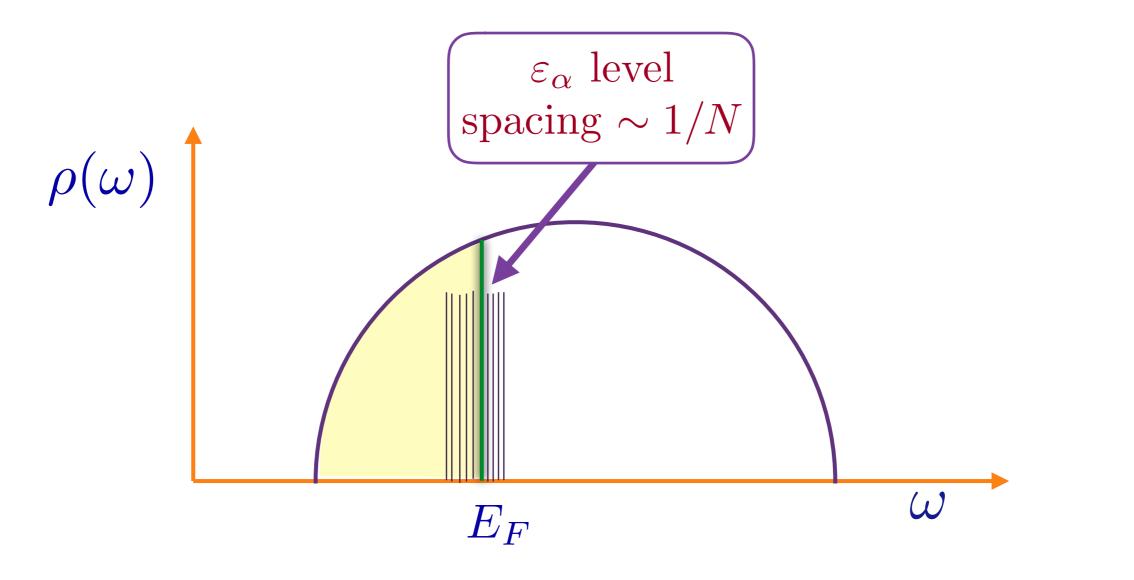
Quasiparticle excitations with spacing  $\sim 1/N$ 

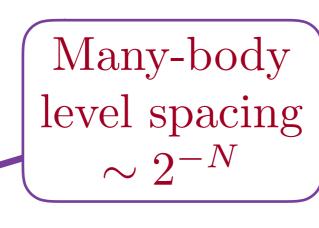
There are  $2^N$  many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where  $n_{\alpha} = 0, 1$ . Shown are all values of E for a single cluster of size N = 12. The  $\varepsilon_{\alpha}$  have a level spacing  $\sim 1/N$ .

Let  $\varepsilon_{\alpha}$  be the eigenvalues of the matrix  $t_{ij}/\sqrt{N}$ . The fermions will occupy the lowest NQ eigenvalues, upto the Fermi energy  $E_F$ . The density of states is  $\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha})$ .





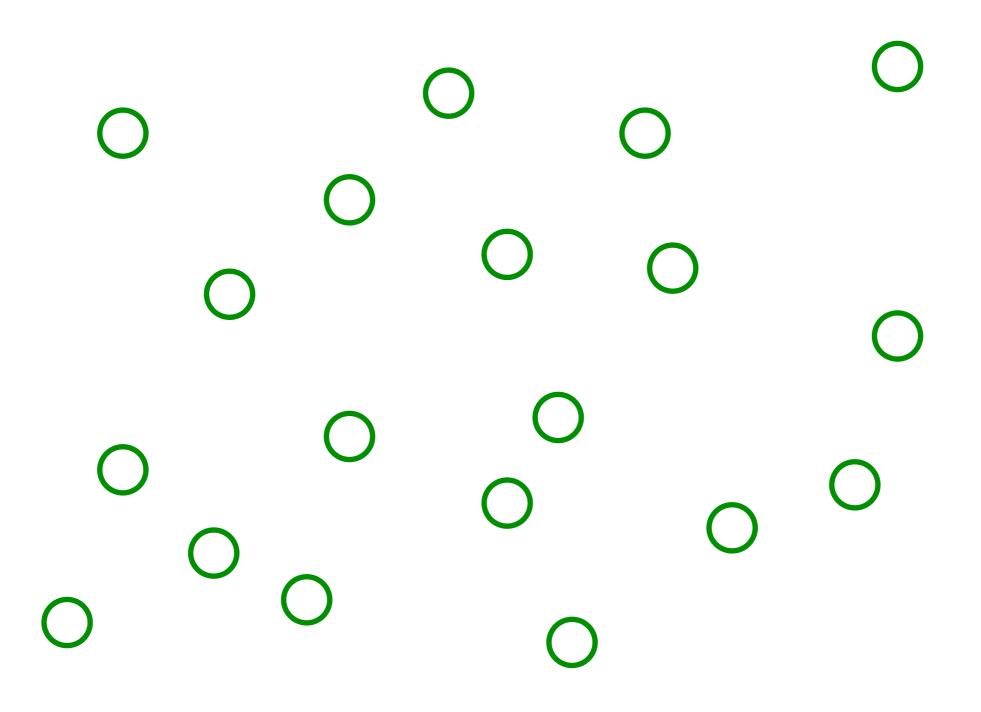
Quasiparticle excitations with spacing  $\sim 1/N$ 

There are  $2^N$  many body levels with energy

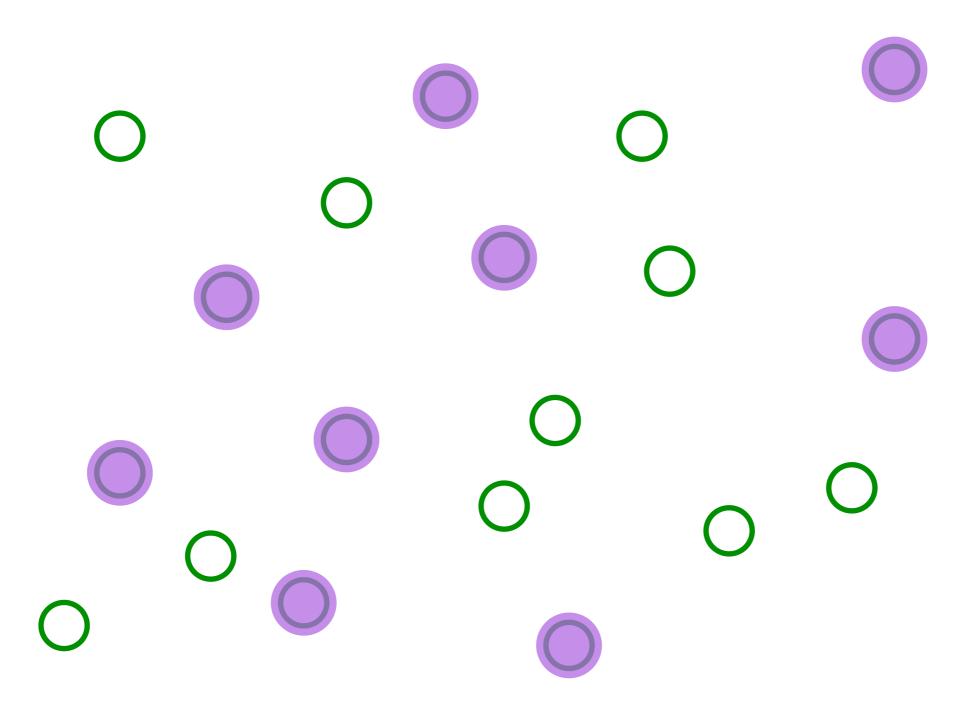
$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where  $n_{\alpha} = 0, 1$ . Shown are all values of E for a single cluster of size N = 12. The  $\varepsilon_{\alpha}$  have a level spacing  $\sim 1/N$ .

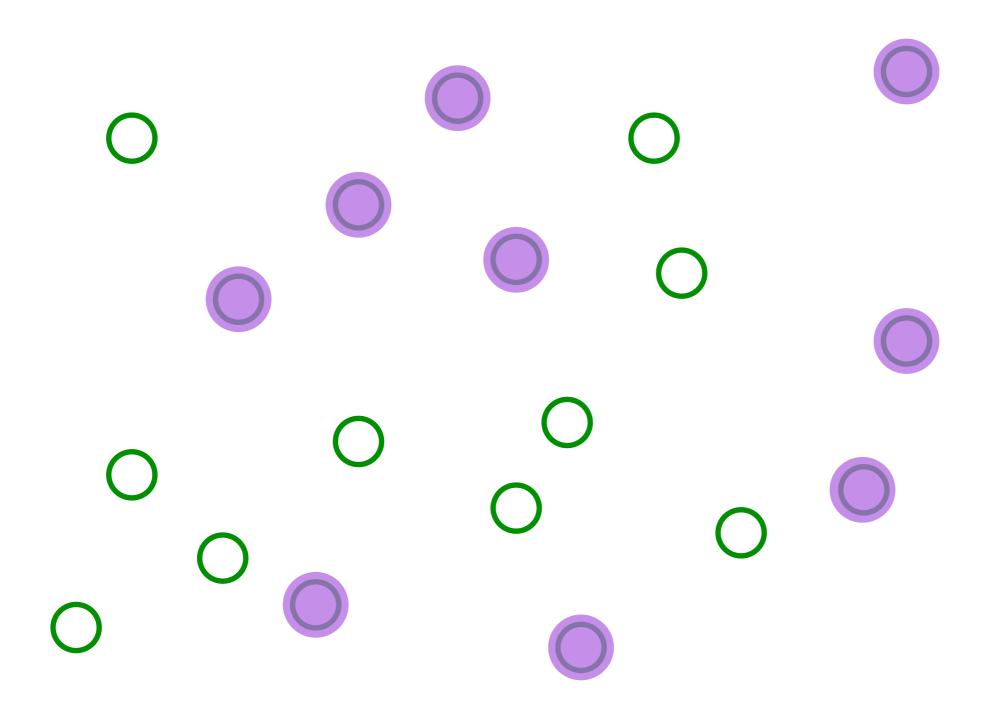
#### The Sachdev-Ye-Kitaev (SYK) model

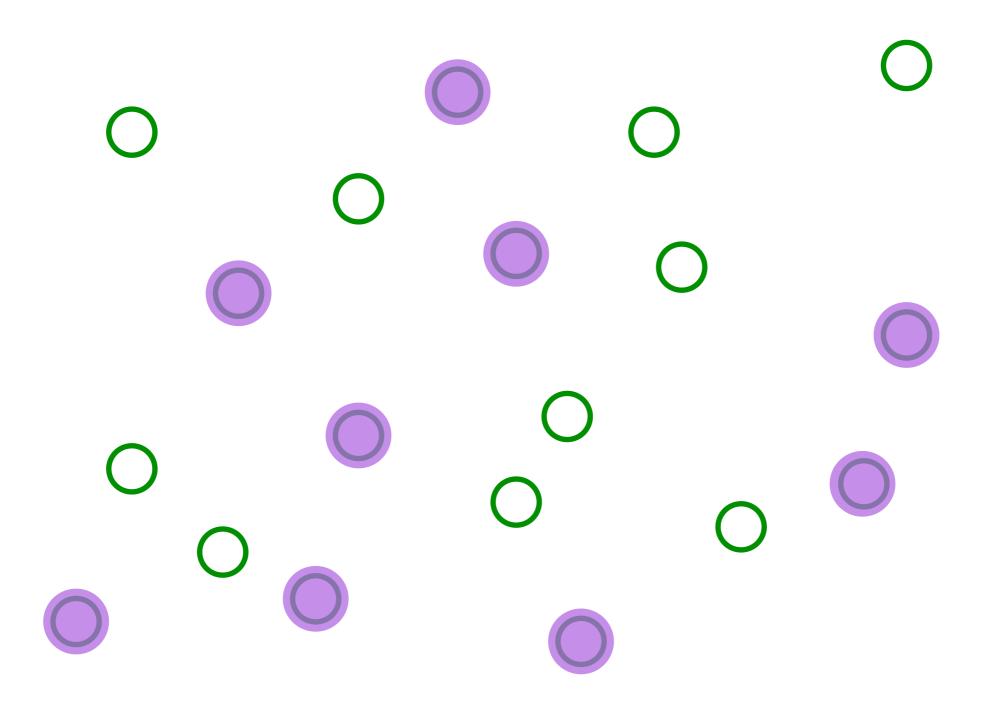


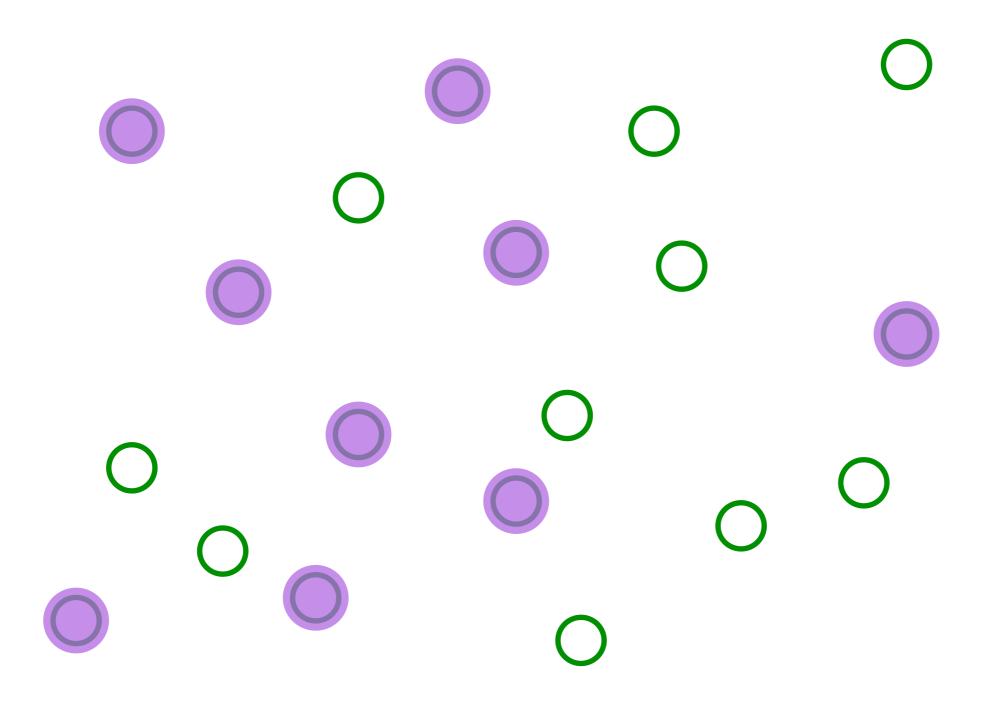
Pick a set of random positions

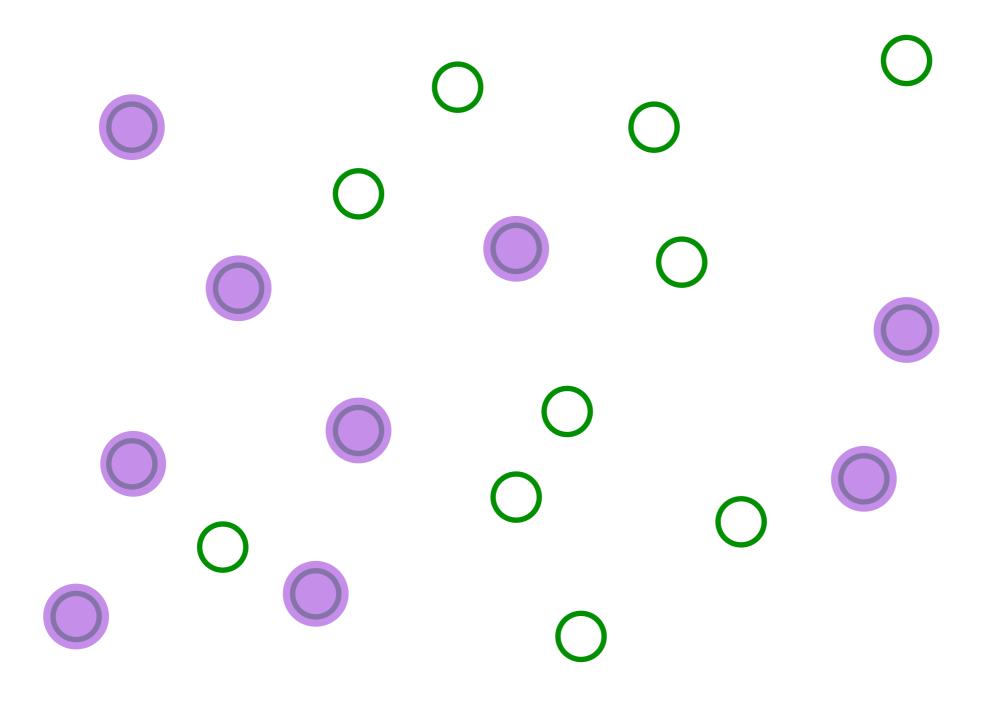


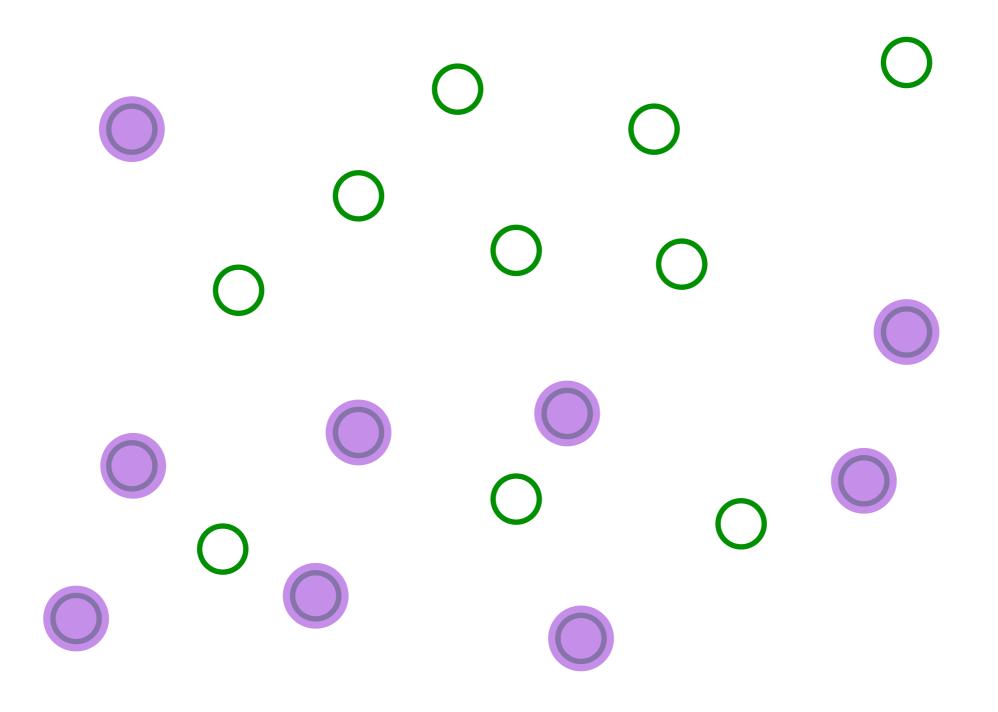
Place electrons randomly on some sites

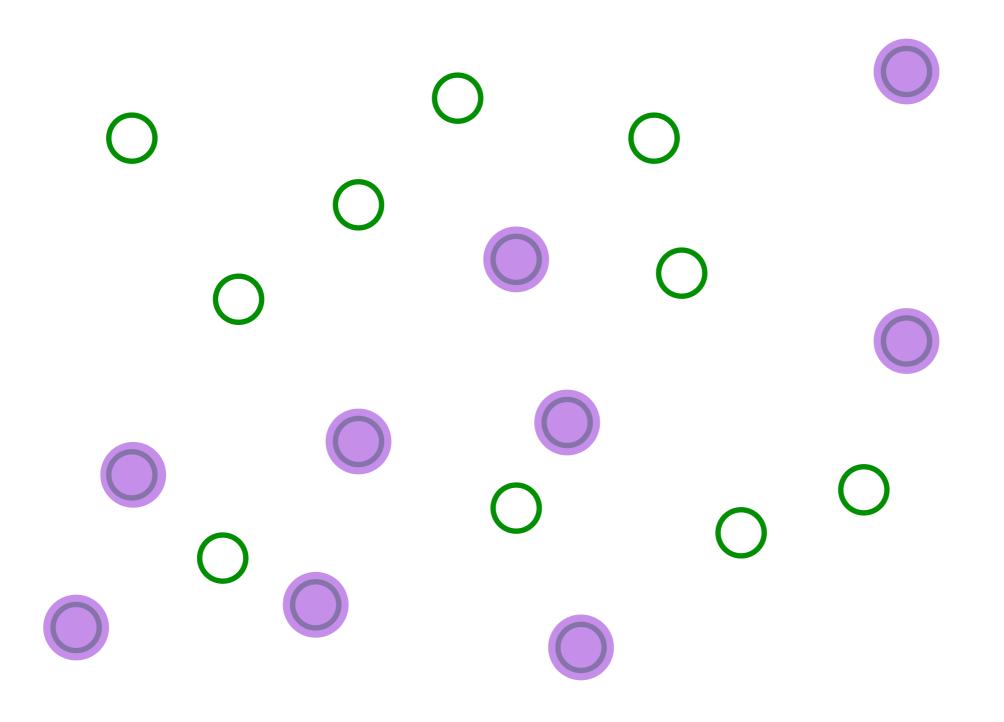


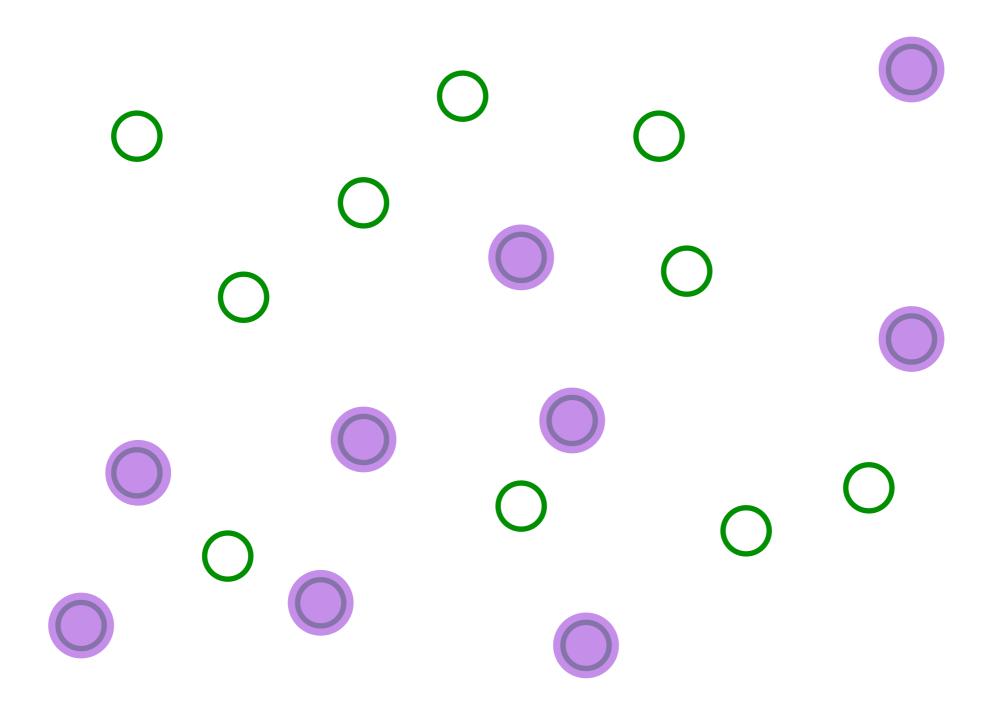










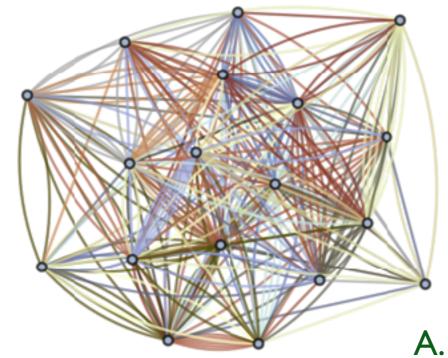


This describes both a strange metal and a black hole!

(See also: the "2-Body Random Ensemble" in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. **53**, 385 (1981))

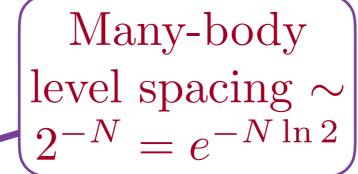
$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} U_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_{\ell} - \mu \sum_i c_i^{\dagger} c_i$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\mathcal{Q} = \frac{1}{N} \sum_i c_i^{\dagger} c_i$$

 $U_{ij;k\ell}$  are independent random variables with  $\overline{U_{ij;k\ell}} = 0$  and  $\overline{|U_{ij;k\ell}|^2} = U^2$  $N \to \infty$  yields critical strange metal.



S. Sachdev and J. Ye, PRL **70**, 3339 (1993)

A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)



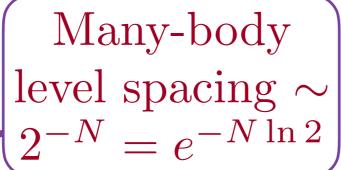
There are  $2^N$  many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N=12. The  $T\to 0$  state has an entropy  $S_{GPS}=Ns_0$  with

$$s_0 = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848...$$
<  $\ln 2$ 

where G is Catalan's constant, for the half-filled case Q = 1/2.

Non-quasiparticle excitations with spacing  $\sim e^{-Ns_0}$ 

GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)



admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N=12. The  $T\to 0$  state has an entropy  $S_{GPS}=Ns_0$  with

$$s_0 = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848\dots$$

There are  $2^N$  many body levels

with energy E, which do not

No quasiparticles!

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

PRB 63, 134406 (2001)

Non-quasiparticle excitations with spacing  $\sim e^{-Ns_0}$ 

Feynman graph expansion in  $J_{ij...}$ , and graph-by-graph average, yields exact equations in the large N limit:

$$G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)}, \quad \Sigma(\tau) = -J^2 G^2(\tau) G(-\tau)$$
$$G(\tau = 0^-) = \mathcal{Q}.$$

Low frequency analysis shows that the solutions must be gapless and obey

$$\Sigma(z) = \mu - \frac{1}{A}\sqrt{z} + \dots$$
 ,  $G(z) = \frac{A}{\sqrt{z}}$ 

for some complex A. The ground state is a non-Fermi liquid, with a continuously variable density  $\mathcal{Q}$ .

• Low energy, many-body density of states  $\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E-E_0)N\gamma})$ 

(for Majorana model)

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

D. Stanford and E. Witten, 1703.04612

A. M. Garica-Garcia, J.J.M. Verbaarschot, 1701.06593

D. Bagrets, A. Altland, and A. Kamenev, 1607.00694

• Low energy, many-body density of states  $\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E-E_0)N\gamma})$ 

• Low temperature entropy  $S = Ns_0 + N\gamma T + \dots$ 

A. Kitaev, unpublished J. Maldacena and D. Stanford, 1604.07818

#### The SYK model

• Low energy, many-body density of states  $\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E-E_0)N\gamma})$ 

• Low temperature entropy  $S = Ns_0 + N\gamma T + \dots$ 

• T=0 fermion Green's function is incoherent:  $G(\tau)\sim \tau^{-1/2}$  at large  $\tau$ . (Fermi liquids with quasiparticles have the coherent:  $G(\tau)\sim 1/\tau$ )

S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

#### The SYK model

• Low energy, many-body density of states  $\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E-E_0)N\gamma})$ 

- Low temperature entropy  $S = Ns_0 + N\gamma T + \dots$
- T=0 fermion Green's function is incoherent:  $G(\tau) \sim \tau^{-1/2}$  at large  $\tau$ . (Fermi liquids with quasiparticles have the coherent:  $G(\tau) \sim 1/\tau$ )
- T > 0 Green's function has conformal invariance  $G \sim e^{-2\pi\mathcal{E}T\tau} (T/\sin(\pi k_B T\tau/\hbar))^{1/2};$  $\mathcal{E}$  measures particle-hole asymmetry.

A. Georges and O. Parcollet PRB **59**, 5341 (1999) S. Sachdev, PRX, **5**, 041025 (2015)

### The SYK model

• Low energy, many-body density of states  $\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E-E_0)N\gamma})$ 

- Low temperature entropy  $S = Ns_0 + N\gamma T + \dots$
- T=0 fermion Green's function is incoherent:  $G(\tau) \sim \tau^{-1/2}$  at large  $\tau$ . (Fermi liquids with quasiparticles have the coherent:  $G(\tau) \sim 1/\tau$ )
- T > 0 Green's function has conformal invariance  $G \sim e^{-2\pi\mathcal{E}T\tau} (T/\sin(\pi k_B T\tau/\hbar))^{1/2};$  $\mathcal{E}$  measures particle-hole asymmetry.
- The last property indicates  $\tau_{\rm eq} \sim \hbar/(k_B T)$ , and this has been found in a recent numerical study.

• If there are no quasiparticles, then

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• If there are no quasiparticles, then

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• If there are no quasiparticles, then

$$\tau_{\rm eq} = \# \frac{\hbar}{k_B T}$$

S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

• If there are no quasiparticles, then

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• If there are no quasiparticles, then

$$\tau_{\rm eq} = \# \frac{\hbar}{k_B T}$$

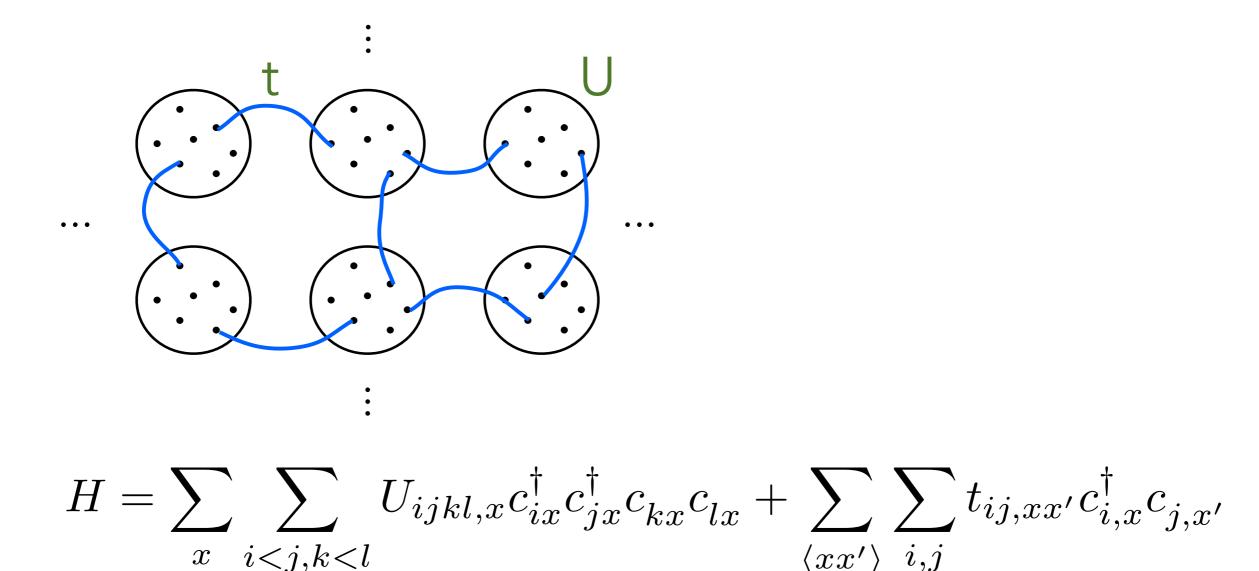
• Systems without quasiparticles are the fastest possible in reaching local equilibrium, and all many-body quantum systems obey, as  $T \to 0$ 

$$au_{\rm eq} > C \frac{\hbar}{k_B T} \,.$$

S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

- In Fermi liquids  $\tau_{\rm eq} \sim 1/T^2$ , and so the bound is obeyed as  $T \to 0$ .
- This bound rules out quantum systems with e.g.  $\tau_{eq} \sim \hbar/(Jk_BT)^{1/2}$ .
- There is no bound in classical mechanics ( $\hbar \to 0$ ). By cranking up frequencies, we can attain equilibrium as quickly as we desire.

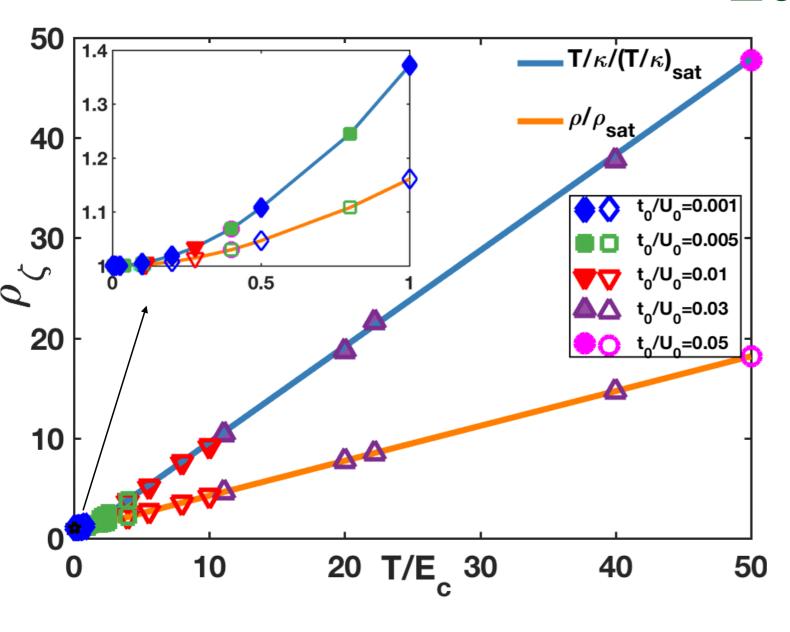
Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: <u>Xue-Yang Song</u>, <u>Chao-Ming Jian</u>, <u>Leon Balents</u>



$$\overline{|U_{ijkl}|^2} = \frac{2U^2}{N^3} \qquad \overline{|t_{ij,x,x'}|^2} = t_0^2/N.$$

Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents

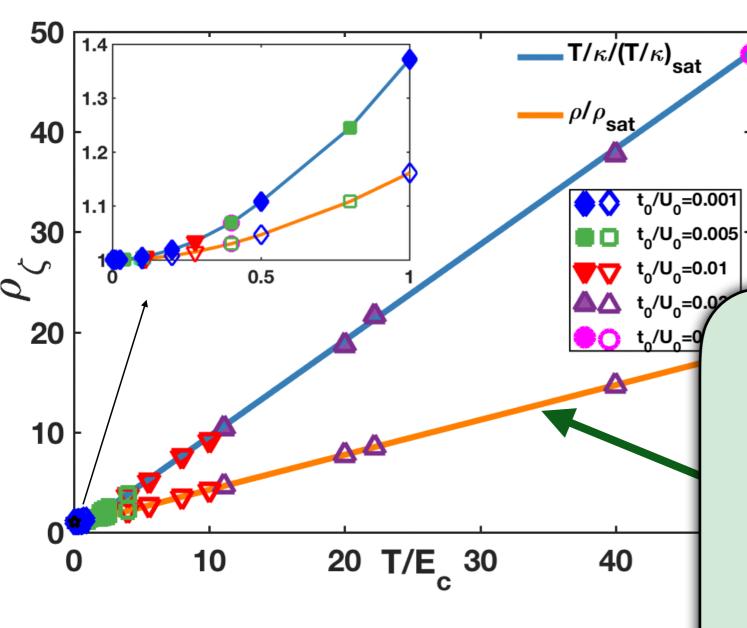
#### Low 'coherence' scale



$$E_c \sim \frac{t_0^2}{U}$$

Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents

Low 'coherence' scale



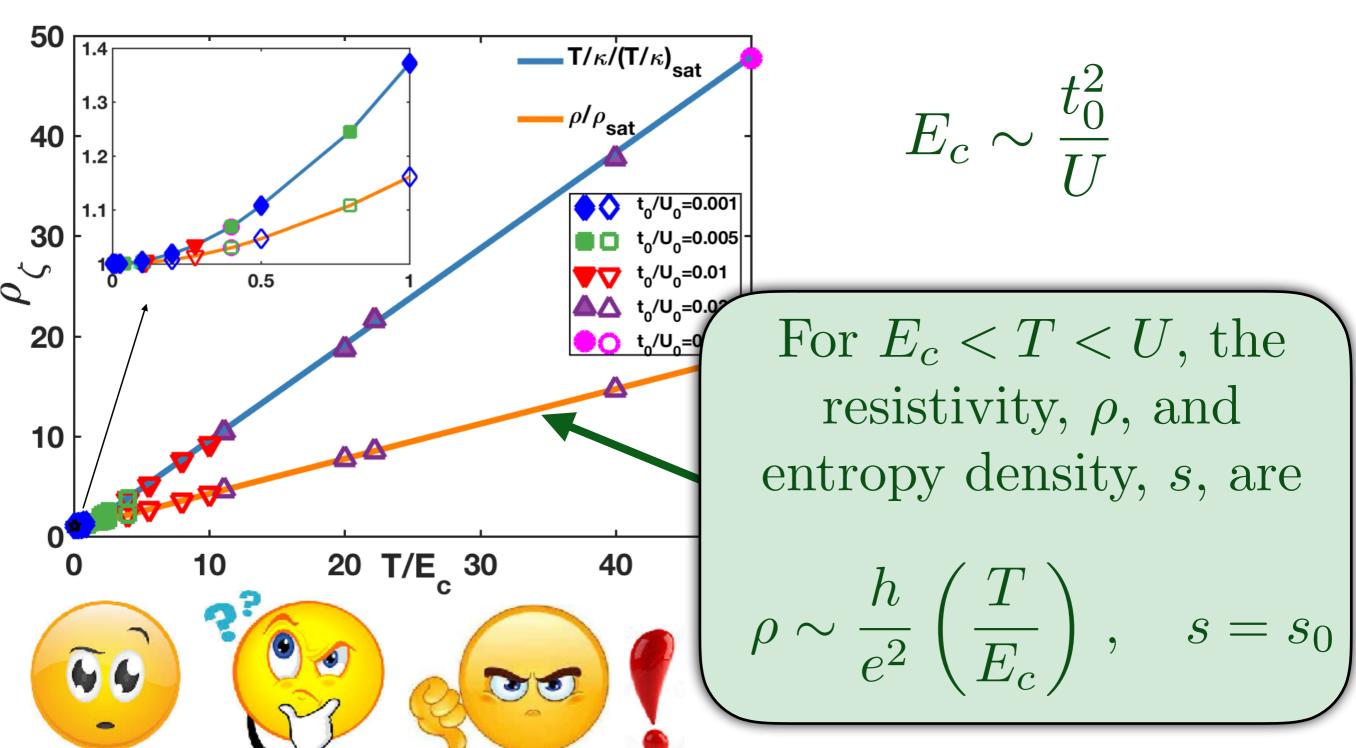
$$E_c \sim \frac{t_0^2}{U}$$

For  $E_c < T < U$ , the resistivity,  $\rho$ , and entropy density, s, are

$$\rho \sim \frac{h}{e^2} \left( \frac{T}{E_c} \right) , \quad s = s_0$$

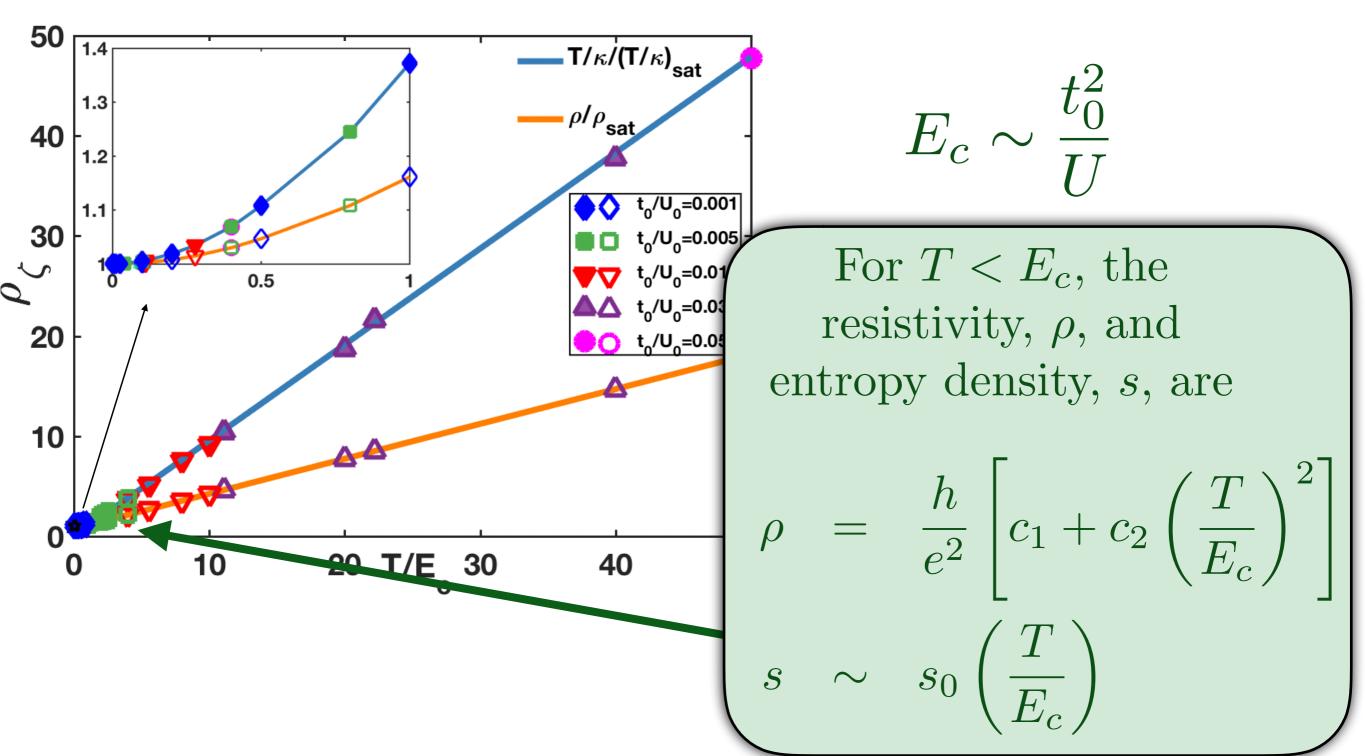
Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents

Low 'coherence' scale



Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents

Low 'coherence' scale

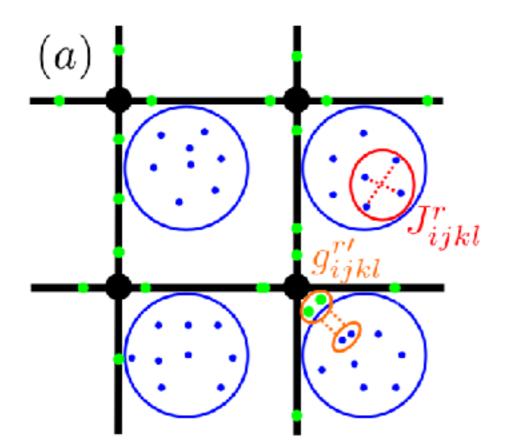


### Infecting a Fermi liquid and making it SYK

 Can we build a bridge between the 0-dimensional SYK model and a more conventional FS-based system?

$$H = -t \sum_{\langle rr' \rangle; i=1}^{M} (c_{ri}^{\dagger} c_{r'i} + \text{h.c.}) - \mu_{c} \sum_{r; i=1}^{M} c_{ri}^{\dagger} c_{ri} - \mu \sum_{r; i=1}^{N} f_{ri}^{\dagger} f_{ri}$$

$$+ \frac{1}{NM^{1/2}} \sum_{r; i,j=1}^{N} \sum_{k,l=1}^{M} g_{ijkl}^{r} f_{ri}^{\dagger} f_{rj} c_{rk}^{\dagger} c_{rl} + \frac{1}{N^{3/2}} \sum_{r; i,j,k,l=1}^{N} J_{ijkl}^{r} f_{ri}^{\dagger} f_{rj}^{\dagger} f_{rk}^{\dagger} f_{rl}.$$



A. A. Patel, J. McGreevy, D. P. Arovas and S. Sachdev, to appear...

See also: D. Ben-Zion and J. McGreevy, arXiv: 1711.02686

### Infecting a Fermi liquid and making it SYK

$$\Sigma(\tau - \tau') = -J^2 G^2(\tau - \tau') G(\tau' - \tau) - \frac{M}{N} g^2 G(\tau - \tau') G^c(\tau - \tau') G^c(\tau' - \tau),$$

$$G(i\omega_n) = \frac{1}{i\omega_n + \mu - \Sigma(i\omega_n)}, \quad \text{($f$ electrons)}$$

$$\Sigma^{c}(\tau - \tau') = -g^{2}G^{c}(\tau - \tau')G(\tau - \tau')G(\tau' - \tau),$$

$$G^{c}(i\omega_{n}) = \sum_{k} \frac{1}{i\omega_{n} - \epsilon_{k} + \mu_{c} - \Sigma^{c}(i\omega_{n})} \cdot \text{(c electrons)}$$

#### Exactly solvable in the large N,M limits!

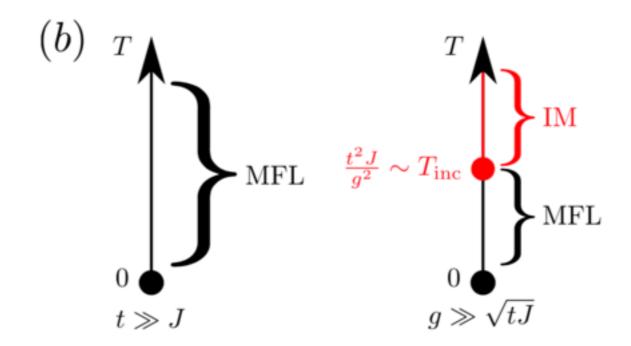
Low-T phase: c electrons form a Marginal Fermi-liquid (MFL), f electrons are local SYK models

$$\Sigma^{c}(i\omega_{n}) = \frac{ig^{2}\nu(0)T}{2J\cosh^{1/2}(2\pi\mathcal{E})\pi^{3/2}} \left(\frac{\omega_{n}}{T}\ln\left(\frac{2\pi Te^{\gamma_{E}-1}}{J}\right) + \frac{\omega_{n}}{T}\psi\left(\frac{\omega_{n}}{2\pi T}\right) + \pi\right),$$

$$\Sigma^{c}(i\omega_{n}) \to \frac{ig^{2}\nu(0)}{2J\cosh^{1/2}(2\pi\mathcal{E})\pi^{3/2}}\omega_{n}\ln\left(\frac{|\omega_{n}|e^{\gamma_{E}-1}}{J}\right), \quad |\omega_{n}| \gg T \quad (\nu(0) \sim 1/t)$$

### Infecting a Fermi liquid and making it SYK

 High-T phase: c electrons form an "incoherent metal" (IM), with local Green's function, and no notion of momentum; f electrons remain local SYK models



$$G^{c}(\tau) = -\frac{C_{c}}{\sqrt{1 + e^{-4\pi\mathcal{E}_{c}}}} \left(\frac{T}{\sin(\pi T \tau)}\right)^{1/2} e^{-2\pi\mathcal{E}_{c}T\tau}, \quad G(\tau) = -\frac{C}{\sqrt{1 + e^{-4\pi\mathcal{E}}}} \left(\frac{T}{\sin(\pi T \tau)}\right)^{1/2} e^{-2\pi\mathcal{E}T\tau}, \quad 0 \le \tau < \beta$$

$$C = \cosh^{1/4}(2\pi\mathcal{E}) \frac{\pi^{1/4}}{J^{1/2}} \left(1 - \frac{M}{N} \frac{\Lambda \nu(0)}{2\pi} \frac{\cosh(2\pi\mathcal{E})}{\cosh(2\pi\mathcal{E}_{c})}\right)^{1/4}, \quad C_{c} = \frac{\cosh^{1/2}(2\pi\mathcal{E})\Lambda^{1/2}\nu^{1/2}(0)}{2^{1/2}Cg},$$

$$(\Lambda \sim t, \quad \nu(0) \sim 1/t)$$

### Linear-in-T resistivity

**Both** the MFL and the IM are not translationally-invariant and have linear-in-T resistivities!

$$\sigma_0^{\text{MFL}} = 0.120251 \times MT^{-1}J \times \left(\frac{v_F^2}{g^2}\right) \cosh^{1/2}(2\pi\mathcal{E}). \ (v_F \sim t)$$

$$\sigma_0^{\text{IM}} = (\pi^{1/2}/8) \times MT^{-1}J \times \left(\frac{\Lambda}{\nu(0)g^2}\right) \frac{\cosh^{1/2}(2\pi\mathcal{E})}{\cosh(2\pi\mathcal{E}_c)}.$$

[Can be obtained straightforwardly from Kubo formula in the large-N,M limits]

The IM is also a "Bad metal" with  $\,\sigma_0^{\mathrm{IM}}\ll 1\,$ 

### Magnetotransport: Marginal-Fermi liquid

 Thanks to large N,M, we can also exactly derive the linear-response Boltzmann equation for non-quantizing magnetic fields...

$$(1 - \partial_{\omega} \operatorname{Re}[\Sigma_{R}^{c}(\omega)]) \partial_{t} \delta n(t, k, \omega) + v_{F} \hat{k} \cdot \mathbf{E}(t) \ n_{f}'(\omega) + v_{F} (\hat{k} \times \mathcal{B} \hat{z}) \cdot \nabla_{k} \delta n(t, k, \omega) = 2 \delta n(t, k, \omega) \operatorname{Im}[\Sigma_{R}^{c}(\omega)],$$
$$(\mathcal{B} = eBa^{2}/\hbar) \text{ (i.e. flux per unit cell)}$$

$$\sigma_L^{\text{MFL}} = M \frac{v_F^2 \nu(0)}{16T} \int_{-\infty}^{\infty} \frac{dE_1}{2\pi} \operatorname{sech}^2\left(\frac{E_1}{2T}\right) \frac{-\operatorname{Im}[\Sigma_R^c(E_1)]}{\operatorname{Im}[\Sigma_R^c(E_1)]^2 + (v_F/(2k_F))^2 \mathcal{B}^2},$$

$$\sigma_H^{\text{MFL}} = -M \frac{v_F^2 \nu(0)}{16T} \int_{-\infty}^{\infty} \frac{dE_1}{2\pi} \operatorname{sech}^2\left(\frac{E_1}{2T}\right) \frac{(v_F/(2k_F))\mathcal{B}}{\operatorname{Im}[\Sigma_R^c(E_1)]^2 + (v_F/(2k_F))^2 \mathcal{B}^2}.$$

$$\sigma_L^{\text{MFL}} \sim T^{-1} s_L((v_F/k_F)(\mathcal{B}/T)), \quad \sigma_H^{\text{MFL}} \sim -\mathcal{B}T^{-2} s_H((v_F/k_F)(\mathcal{B}/T)).$$

$$s_{L,H}(x \to \infty) \propto 1/x^2, \quad s_{L,H}(x \to 0) \propto x^0.$$

Scaling between magnetic field and temperature in orbital magnetotransport!

### Macroscopic magnetotransport in the MFL

 Let us consider the MFL with additional macroscopic disorder (charge puddles etc.)

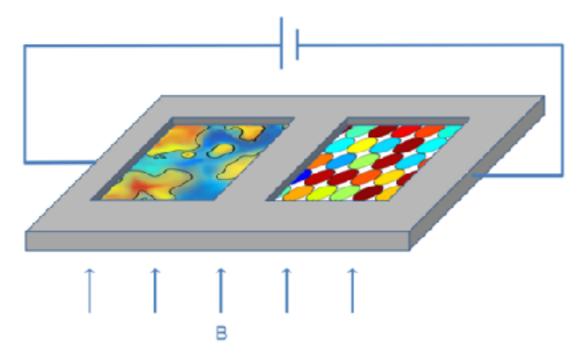


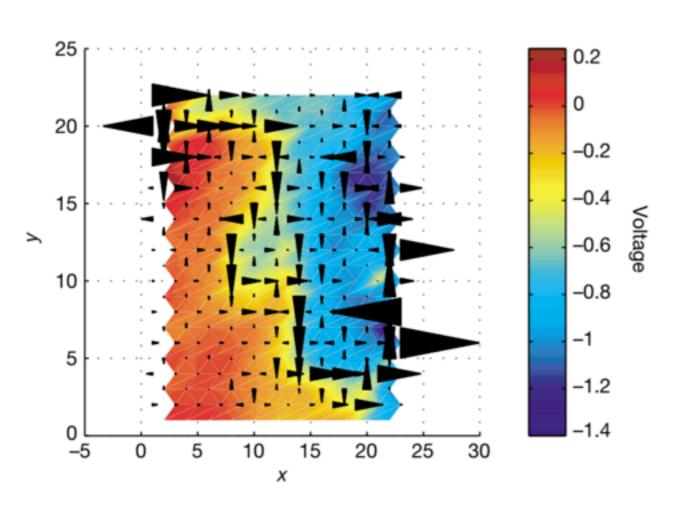
Figure: N. Ramakrishnan et. al., arXiv: 1703.05478

 No macroscopic momentum, so equations describing charge transport are just

$$\nabla \cdot \mathbf{I}(\mathbf{x}) = 0, \quad \mathbf{I}(\mathbf{x}) = \sigma(\mathbf{x}) \cdot \mathbf{E}(\mathbf{x}), \quad \mathbf{E}(\mathbf{x}) = -\nabla \Phi(\mathbf{x}).$$

 Very weak thermoelectricity for large FS, so charge effectively decoupled from heat transport.

### Physical picture

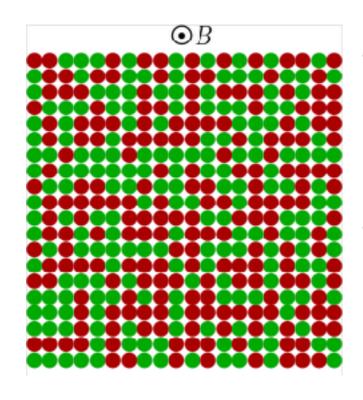


**Figure 3** Visualization of currents and voltages at large magnetic field in a  $10 \times 10$  random network of disks with radii 1 (arbitrary units), where the potential difference U=-1 V. The black arrows represent the currents, and arrow size depicts the magnitude of the current. The major current path is perpendicular to the applied voltage for a significant proportion of the time, which implies that the magnetoresistance is provided internally by the Hall effect, which is therefore linear in H.

• Current path length increases linearly with *B* at large *B* due to local Hall effect, which causes the global resistance to increase linearly with *B* at large *B*.

Exact numerical solution of charge-transport equations in a random-resistor network. (M. M. Parish and P. Littlewood, Nature 426, 162 (2003))

### Solvable toy model: two-component disorder



- Two types of domains a,b with different carrier densities and lifetimes randomly distributed in approximately equal fractions over sample.
- Effective medium equations can be solved exactly

$$\left(\mathbb{I} + \frac{\sigma^a - \sigma^e}{2\sigma_L^e}\right)^{-1} \cdot (\sigma^a - \sigma^e) + \left(\mathbb{I} + \frac{\sigma^b - \sigma^e}{2\sigma_L^e}\right)^{-1} \cdot (\sigma^b - \sigma^e) = 0.$$

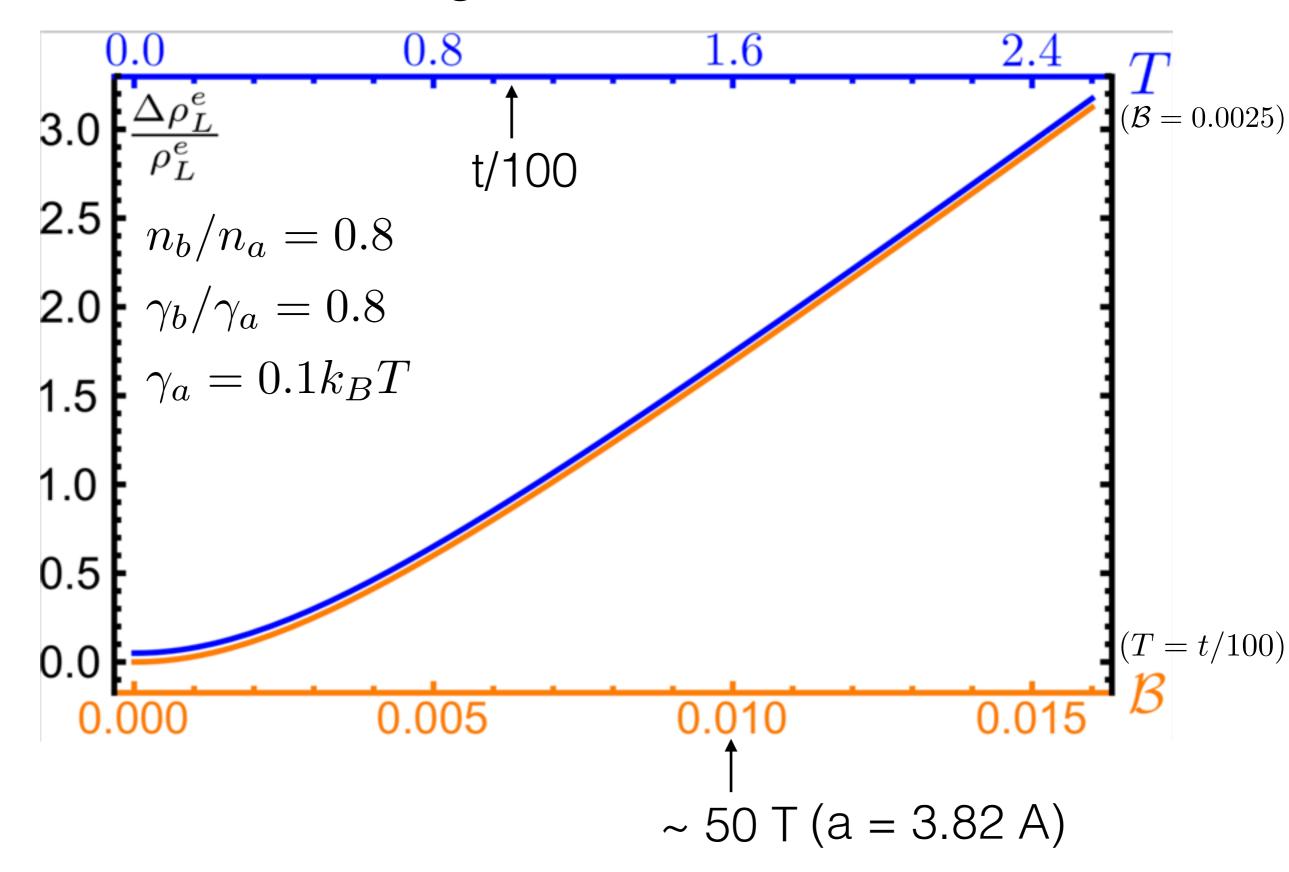
$$\rho_{L}^{e} \equiv \frac{\sigma_{L}^{e}}{\sigma_{L}^{e2} + \sigma_{H}^{e2}} = \frac{\sqrt{(\mathcal{B}/m)^{2} \left(\gamma_{a} \sigma_{0a}^{\text{MFL}} - \gamma_{b} \sigma_{0b}^{\text{MFL}}\right)^{2} + \gamma_{a}^{2} \gamma_{b}^{2} \left(\sigma_{0a}^{\text{MFL}} + \sigma_{0b}^{\text{MFL}}\right)^{2}}}{\gamma_{a} \gamma_{b} (\sigma_{0a}^{\text{MFL}} \sigma_{0b}^{\text{MFL}})^{1/2} \left(\sigma_{0a}^{\text{MFL}} + \sigma_{0b}^{\text{MFL}}\right)}},$$

$$\rho_{H}^{e} \equiv -\frac{\sigma_{H}^{e}/\mathcal{B}}{\sigma_{L}^{e2} + \sigma_{H}^{e2}} = \frac{\gamma_{a} + \gamma_{b}}{m \gamma_{a} \gamma_{b} \left(\sigma_{0a}^{\text{MFL}} + \sigma_{0b}^{\text{MFL}}\right)}. \quad (m = k_{F}/v_{F} \sim 1/t)$$

 $\gamma_{a,b} \sim T$  (i.e. effective transport scattering rates)

$$\rho_L^e \sim \sqrt{c_1 T^2 + c_2 B^2}$$

### Scaling between B and T



• No quasiparticle decomposition of low-lying states:

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

- Thermalization and many-body chaos in the shortest possible time of order  $\hbar/(k_BT)$ .
- These are also characteristics of black holes in quantum gravity.

# Magnetotransport in strange metals

- Engineered a model of a Fermi surface coupled to SYK quantum dots which leads to a marginal Fermi liquid with a linear-in-T resistance, with a magnetoresistance which scales as  $B \sim T$ .
- Macroscopic disorder then leads to linear-in-B magnetoresistance, and a combined dependence which scales as  $\sim \sqrt{B^2 + T^2}$
- Higher temperatures lead to an incoherent metal with a local Green's function and a linear-in-T resistance, but negligible magnetoresistance.