Phases of baryonic matter

Sourendu Gupta

ILGTI: TIFR

NN Interactions 2010, Mumbai, India. November 26, 2010

Outline

Zero baryon density

Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken flavour symmetry

Finite Baryon Density

The phase diagram Lattice simulations Summing the series

Experimental tests

Summary

Inside the cave

QCD: theory of strong interactions

SU(3) gauge theory of interacting quarks and gluons. Theory of gluons classically scale free, quantum corrections generate a scale: Λ_{QCD} .

Inside the cave

QCD: theory of strong interactions

SU(3) gauge theory of interacting quarks and gluons. Theory of gluons classically scale free, quantum corrections generate a scale: Λ_{QCD} .

A theorist's reflex

Given Hamiltonian compute eigenstates, S-matrix elements: talks by Doi and Beane.

Compute physics in a heat-bath: $Z(T, \mu) = \text{Tr exp}[-\beta(H - \mu B)]$. Thermodynamics and phase transitions straightforward (but tedious).

The physicist's reflex

"We didn't have flint when when I was a kid, we had to rub two sticks together. "

How many flavours

Decoupling

If some $m \gg \Lambda_{QCD}$ then that quark is not approximately chiral. In QCD two flavours are light $(m_{u,d} \ll \Lambda_{QCD})$ and one is medium heavy $(m_s \simeq \Lambda_{QCD})$. The rest are heavy $(m_{c,b,t} \gg \Lambda_{QCD})$.

What phase diagram?

Do we have a two flavour phase diagram or a three flavour phase diagram, or something else?

m

m

The three flavour phase diagram

m

The Columbia plot

Brown et al, PRL 65, 2491 (1990)

The Columbia plot

Brown et al, PRL 65, 2491 (1990)

The Columbia plot

Brown et al, PRL 65, 2491 (1990)

Lattice results for the Columbia Plot

$$\ln N_f = 2 + 1:$$

$$m_{\pi}^{crit} \begin{cases} = 0.07 m_{\pi} & (N_t = 4) \\ < 0.12 m_{\pi} & (N_t = 6) \end{cases}$$

Endrodi etal, 0710.0988 (2007) Similarly for $N_f = 3$.

Karsch etal, hep-lat/0309121 (2004)

Broken flavour symmetry

1. Two independent lattice computations (now) agree on the position of the crossover temperature for physical quark mass $(m_{\pi} \simeq 140 \text{ MeV})$:

$$T_c \simeq 170$$
 MeV.

Aoki etal, hep-lat/0611014 (2006); HotQCD, 2010.

2. No significant change in T_c as $m_{\pi^0}/m_{\pi^{\pm}}$ is changed from 1 to 0.78 (physical value bracketed). Gavai, SG, hep-lat/0208019 (2002)

$$\frac{T_c}{\Lambda_{\overline{MS}}} = \begin{cases} 0.49 \pm 0.02 & (m_{\pi^0}^2/m_{\pi^\pm}^2 = 1) \\ 0.49 \pm 0.02 & (m_{\pi^0}^2/m_{\pi^\pm}^2 = 0.78) \end{cases}$$

Both results extrapolated to the physical value of $m_{\pi}/m_{
ho}$.

Outline

Zero baryon density

Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken flavour symmetry

Finite Baryon Density

The phase diagram Lattice simulations Summing the series

Experimental tests

Summary

Lattice setup

Lattice simulations impossible at finite baryon density: **sign problem**. Basic algorithmic problem in all Monte Carlo simulations: no solution yet.

Bypass the problem; make a Taylor expansion of the pressure:

$$P(T,\mu) = P(T) + \chi_B^{(2)}(T) \frac{\mu^2}{2!} + \chi_B^{(4)}(T) \frac{\mu^4}{4!} + \cdots$$

Series expansion coefficients evaluated at $\mu=$ 0. Implies

$$\chi_B^2(T,\mu) = \chi_B^{(2)}(T) + \chi_B^{(4)}(T)\frac{\mu^2}{2!} + \chi_B^{(6)}(T)\frac{\mu^4}{4!} + \cdots$$

Series fails to converge at the critical point.

, Gavai, SG, hep-lat/0303013 (2003)

Series diverges

Radius of convergence of the series as a function of order $(a^{-1} = 1200 \text{ MeV})$

Gavai, SG, 0806.2233 (2008)

Dependence on quark mass

$$a^{-1} = 800, 1200 \text{ MeV}$$

SG, hep-lat/0608022 (2006)

The critical point of QCD

The critical point of QCD

Direct test of extrapolation

Falcone, Laermann, Lombardo, Lattice 2010

Critical divergence: summation bad, resummation good

Infinite series diverges, but truncated series finite and smooth: sum is bad. Resummations needed to reproduce critical divergence. Padé resummation useful Gavai, SG, 0806.2233 (2008).

Critical divergence: summation bad, resummation good

Infinite series diverges, but truncated series finite and smooth: sum is bad. Resummations needed to reproduce critical divergence. Padé resummation useful Gavai, SG, 0806.2233 (2008).

Outline

Zero baryon density

Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken flavour symmetry

Finite Baryon Density

The phase diagram Lattice simulations Summing the series

Experimental tests

Summary

The fireball thermalizes

Thermal fit: T = 160.5 MeV, $\mu = 20$ MeV.

Andronic et al, nucl-th/0511071

Event distributions of conserved charges

STAR, 1004.4959

- Fluctuations of conserved quantities are Gaussian: provided large volume and equilibrium
- Proton number a substitute for baryon number: how good?
- Is this Gaussian due (entirely or largely) to thermal fluctuations?

Look beyond Gaussian

STAR: QM 2009, Knoxville

- Higher cumulants scale down with larger powers of V.
- N_{part} is a proxy for V.
- Cumulants observed to scale correctly as N_{part}.
- Can one connect to QCD?

How to compare experiment with lattice QCD

The cumulants of the distribution are related to Taylor coefficients—

$$[B^{2}] = T^{3}V\left(\frac{\chi^{(2)}}{T^{2}}\right), \quad [B^{3}] = T^{3}V\left(\frac{\chi^{(3)}}{T}\right), \quad [B^{4}] = T^{3}V\chi^{(4)}.$$

V is unknown, so direct measurement of QNS not possible. Define variance $\sigma^2 = [B^2]$, skew $S = [B^3]/\sigma^3$ and Kurtosis, $\mathcal{K} = [B^4]/\sigma^4$. Construct the ratios

$$S\sigma = \frac{[B^3]}{[B^2]}, \qquad \mathcal{K}\sigma^2 = \frac{[B^4]}{[B^2]}, \qquad \frac{\mathcal{K}\sigma}{\mathcal{S}} = \frac{[B^4]}{[B^3]}.$$

These are comparable with experiment provided lattice data extrapolated to relevant T and μ : use Padé approximants.

SG, 0909.4630

Extrapolate lattice data to finite μ

Surprising agreement with lattice QCD:

- implies non-thermal sources of fluctuations are very small
- T does not vary across the freezeout surface.
- tests QCD in non-perturbative thermal region

Gavai, SG, 1001.3796

STAR Collaboration, 1004.4959 (2010)

Outline

Zero baryon density

Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken flavour symmetry

Finite Baryon Density

The phase diagram Lattice simulations Summing the series

Experimental tests

Summary

The sign problem in QCD can be evaded

Lattice and experiments agree

