

A Glass Form of Martensite --Strain Glass and Strain Glass Transition

Xiaobing Ren

National Institute for Materials Science, Japan Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, China

Acknowledgements:

Y. Wang, S. Sarkar, Y.M. Zhou, D. Wang, Z. Zhang, J. Zhang, Y.C. Ji, X.D. Ding, D.Z. Xue, K. Otsuka, T. Suzuki, Y.Z. Wang, A. Saxena, T. Lookman

Smart materials (shape memory)

Martensite (strain order)

non-martensite

(strain disorder)

Structural materials (dead materials!)

(Lattice) Strain perspective of the world of crystalline materials

Strange materials? (strange properties)

Smart materials (shape memory)

strain glass

Martensite

(strain order)

non-martensite

(strain disorder)

Structural materials (dead materials!)

(Lattice) Strain perspective of the world of crystalline materials

Outline

- Disorder-order and disorder-glass transition in nature: Anticipation of strain glass transition and strain glass
- Generality of strain glass
- Signatures of strain glass and analogy with other glasses
 --unifying concepts in glasses
- Examples of "strange" properties of strain glass
- Origin of strain glass: strain domino jamming? theoretical modeling/simulations (more details:Turab Lookman talk)
- Summary

Anticipation of Strain Glass

Two large classes of transitions in nature

Crystalline structure

Where is a strain glass and generality of strain glass

Ideas borrowed from other glass systems.

- •Cluster spin glass: doping defects to a ferromagnetic system
- •Ferroelectric relaxor: doping defects to a ferroelectric system

•Strain glass \rightarrow

doping defects to a ferroelastic/martensitic system

Ferroelastic "water-gelletin system"!

 $\begin{array}{ll} \text{martensitic transformation } (x < x_c) \text{ and strain glass transition } (x > x_c) \text{ in } \\ \text{Ti}_{50 \text{-}x} \text{Ni}_{50 \text{+}x} \text{ system.} \\ \end{array} \\ \begin{array}{ll} \text{S. Sarkar et al, PRL 2005} \end{array}$

Similarity of Strain Glass Phase Diagram: Crossover from M to STG

Generality of strain glass -- Strain glass is everywhere!

Y.M. Zhou et al., Acta Mater., 2010

A generic temperature vs. defect-concentration phase diagram for a defectcontaining ferroelastic system. X. Ren, et al, MRS Bulletin, 2009

Z. Zhang, PRB 2010

Transition behavior of $Ti_{50-x}Ni_{50+x}$ as a function of point-defect concentration x

How to prove a strain glass?

Frequency dispersion of anomalies in dynamic properties (elastic modulus, internal friction)
 ZFC/FC experiment (non-ergodicity)
 No change in average structure

Frozen nanodomains

Cluster spin glass, Relaxor ferroelectrics

Strain glass transition is characterized by a frequency-dependent dip/peak in the AC elastic modulus/loss vs. temperature curve

ZFC/FC curves of $Ti_{48.5}Ni_{51.5}$ strain glass show a large deviation below T_q (168K).

Y. Wang, PRB 2007

Average structure remains invariant during a strain glass transition,

HREM observation of local strain/shuffle order in strain glass

Ti-40Pd-10Cr Strain glass

Spontaneous strain-glass to martensite (R) transition in a $Ti_{50}Ni_{44.5}Fe_{5.5}$ strain glass

Zhang J and Ren, X et. al PRB 214201, 20

*Strange" properties of strain glass
Shape memory and superelasticity of nonmartensite
Invar effect (a Nobel-prize discovery but a century-old puzzle)
Anisotropic Invar effect in Gum metal

Shape memory and superelasticity of strain glass Ti-51.5Ni

Microscopic mechanism of the shape memory and superelasticity in strain glass

Tension at T<<Tg and then heating to T>Tg

Tension at T>Tg

Tg=160K

Origin of Strain Glass and Modeling

(more details → Turab Lookman talk

Microscopic origin of strain glass

Random point defects destroy long-range strain ordering and form a locally ordered state.

Analogy: domino strain glass (A Cartoon)

Microscopic picture of the crossover

Z. Zhang, PRB 2010

Phenomenological theory of strain glass and computer simulations

Basic idea: Point defects/ dopants cause random local stresses and breaks local symmetry

MODE D. Wang et al, PRL 2010

$$f_{ch}(\eta_1,\eta_2) = \frac{1}{2}A_1(\eta(r)_1^2 + \eta(r)_2^2) - \frac{1}{4}A_2(\eta(r)_1^4 + \eta(r)_2^4) + \frac{1}{4}A_3(\eta(r)_1^2 + \eta(r)_2^2)^2 + \frac{1}{6}A_4(\eta(r)_1^2 + \eta(r)_2^2)^3$$

$$A_1 = A_1^0 \cdot (T - T^0(c))$$

$$T^0(c) = T^{00} + b \cdot c$$

$$f_{L}(r) = \sum_{i,j=1,2;m=1,3,5} \eta_{i}^{local}(r) \cdot (\eta(r)_{j})^{m}$$

$$F = \int d^{2}r \left[\frac{1}{2}\beta(\nabla\eta_{1})^{2} + \frac{1}{2}\beta(\nabla\eta_{2})^{2} + f_{ch}(\eta_{1},\eta_{2}) + f_{L}(r)\right] + E_{el}$$

$$E_{el} = \frac{1}{2} c_{ijkl} \sum_{p=1}^{2} \sum_{q=1}^{2} \varepsilon_{ij}^{00}(p) \varepsilon_{ij}^{00}(q) \int \eta_{p}^{2}(r) \eta_{q}^{2}(r) d^{3}r - \frac{1}{2} \sum_{p=1}^{2} \sum_{q=1}^{2} \int \frac{d^{2}k}{(2\pi)^{2}} B_{pq}(\frac{\vec{k}}{k}) \{\eta_{p}^{2}(r)\}_{k} \{\eta_{q}^{2}(r)\}_{k}^{*}$$

Calculated results and comparison with experiment D. Wang et al, PRL 2010,

Comparison between calculated phase diagram and experimental phase diagram

D. Wang et al, PRL 2010

An emerging new field: strain glass

