

Universität Konstanz

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Zukunftskolleg free • creative • connecting

Transport Processes in Melts under External Fields

On the Yielding of Colloidal (and Other) Glass Formers

Thomas Voigtmann

Institute of Materials Physics in Space, German Aerospace Center, Cologne & Zukunftskolleg, Universität Konstanz, Germany

J. A. Krumhansl Symposium, Bangalore, February 2012

- Ch. Harrer, S. Papenkort, A. Bhattacharjee
- A. Meyer (DLR), J. Horbach (Düsseldorf)
- M. Fuchs (Konstanz), J. Brader (Fribourg), M. E. Cates (Edinburgh)
- S. Egelhaaf (D'dorf), M. Ballauff, M. Siebenbürger (HZ Berlin)

► Dynamical Yield Stress

► Startup: Creep and Micro-Rheology

► Residual Stresses

◆ □ → つ ○ 3 / 29

Introduction

▲ **□** ▶ かぐ 4 / 29

Rheology of Dense Fluids

- \bullet external flow rate $\dot{\gamma} \sim v/h~[1/{\rm s}]$
- ${\color{black}\bullet}$ large structural relaxation time $\tau \; [s]$
- \Rightarrow large effect when $\dot{\gamma} au \gg 1$
 - ullet (glassy) kinetic arrest: $au
 ightarrow \infty$

• apply perturbation (shear $\dot{\gamma}$) \Rightarrow measure response (stress σ)

 $\mathcal{F} \left[\ \dot{\gamma} \
ight] = \ \sigma$ constitutive equation

- ${\mathcal F}$ is a *model* of the material
- linear response, steady state: Newtonian liquid $\sigma = \dot{\gamma} imes \eta$

Visco-Elasticity: Maxwell's Model

- Newtonian fluid: $\eta = \text{const.} \Rightarrow \sigma \propto \dot{\gamma}$
- lacksim Hookian elastic solid: $\sigma \propto \gamma$
- dense fluids: ??
- Maxwell: combine $\sigma \sim \gamma$ and $\sigma \sim \dot{\gamma}$

$$\dot{\gamma} = \dot{\sigma}/G_{\infty} + \sigma/\eta$$

deformation (constant rate) $\gamma = \dot{\gamma} t$

- "spring-and-dashpot" model: Hookian spring constant G_∞
- differential equation solved by

$$\sigma(t) = \int_{-\infty}^{t} \dot{\gamma}(t') G_{\infty} e^{-(t-t')/\tau} dt' \qquad \eta$$

 $= G_{\infty} \tau$

4 日 りので 6 / 29

Visco-Elasticity: Maxwell's Model

- Newtonian fluid: $\eta = \text{const.} \Rightarrow \sigma \propto \dot{\gamma}$
- Hookian elastic solid: $\sigma \propto \gamma$
- dense fluids: ??
- Maxwell: combine $\sigma \sim \gamma$ and $\sigma \sim \dot{\gamma}$

$$\dot{\gamma} = \dot{\sigma}/G_{\infty} + \sigma/\eta$$

deformation (constant rate) $\gamma = \dot{\gamma} t$

- "spring-and-dashpot" model: Hookian spring constant G_∞
- Maxwell's constitutive equation

Nonlinear Rheology: Shear Thinning

apply (steady) shear \Rightarrow dramatic decrease in apparent viscosity

[Fuchs and Ballauff, J Chem Phys (2005)]

non-linear response

- ${\scriptstyle \bullet}$ linear response: $\eta \sim {\rm const.}$
- $\eta \to \infty :$ glass

$\bullet~\eta\sim 1/\dot{\gamma}$

- applications: painting, coating, lubrication, ...
- "universal": metallic melts, geophysics, soft matter, ...

apply (steady) shear \Rightarrow dramatic decrease in apparent viscosity

- non-linear response
 - ${\scriptstyle \bullet}$ linear response: $\eta \sim {\rm const.}$
 - $\eta \to \infty$: glass

 $\bullet~\eta\sim 1/\dot{\gamma}$

- applications: painting, coating, lubrication, ...
- "universal": metallic melts, geophysics, soft matter, ...

・ つ へ 7 / 29

Nonlinear Rheology: Shear Thinning

apply (steady) shear \Rightarrow dramatic decrease in apparent viscosity

- non-linear response
 - ${\scriptstyle \bullet}$ linear response: $\eta \sim {\rm const.}$
 - $\eta \to \infty$: glass

 $\bullet~\eta\sim 1/\dot{\gamma}$

- applications: painting, coating, lubrication, ...
- "universal": metallic melts, geophysics, soft matter, ... (?!?)

・ つで 7 / 29

Rheo-Mode-Coupling Theory, Schematically

nonlinear schematic model – strain history $\gamma_{tt'} = \int_{t'}^t \dot{\gamma}(\tau) d\tau$

$$\begin{split} \sigma(t) &\sim \int_{-\infty}^{t} dt' \dot{\gamma}(t') G(t,t',[\dot{\gamma}]) \overset{\text{MCT}}{\approx} \int_{-\infty}^{t} dt' v_{\sigma} \dot{\gamma}(t') \phi^{2}(t,t',[\gamma]) \\ &\underset{\text{output}}{\overset{\text{output}}{\rightarrow}} \partial_{t} \phi(t,t') + \phi(t,t') + \int_{t'}^{t} m(t,t'',t') \partial_{t''} \phi(t'',t') dt' = 0 \\ & m(t,t'',t') = h[\gamma_{tt'}] h[\gamma_{tt''}] \left(v_{1} \phi(t,t'') + v_{2} \phi(t,t'')^{2} \right) \end{split}$$

[Fuchs/Cates, PRL (2002); Brader et *al.*, PRL (2007); PRL (2008)] [Brader, ThV, Fuchs, Larson, Cates, PNAS (2009)]

8/29

Dynamical Yield Stress

・ つへ 9 / 29

Dynamical Yield Stress

• $\sigma(\dot{\gamma} \to 0) = \sigma_y > 0$ in the (idealized) glass: dynamic yield stress • $\dot{\gamma} \to 0$ is singular; $\sigma = \dot{\gamma} \int_{-\infty}^{t} G(t - t', \dot{\gamma}) dt'$

> ・ つで 10 / 29

A Nonlinear Maxwell Model

 \bullet shear accelerates dynamics: relaxation time $\sim 1/\dot{\gamma}$

$$\tau^{-1} \mapsto \tau^{-1} + \dot{\gamma}$$

nonlinear Maxwell model

$$G_{\infty}\dot{\gamma} = \dot{\sigma} + \sigma/\tau + \sigma\dot{\gamma}/\gamma_c$$

(plus a high-shear Newtonian viscosity...)

$$\sigma = G_{\infty}\tau_{0}\dot{\gamma} + G_{\infty}\tau\frac{\dot{\gamma}}{1 + \dot{\gamma}\tau/\gamma_{c}}$$

 \Rightarrow as $\tau \rightarrow \infty$: critical dynamical yield stress

$$\sigma_y = G_\infty \gamma_c > 0$$

[Fuchs/Cates, Faraday Discuss. (2003)] [ThV, EPJE (2011)]

▲ □ ▶ かで 11/29

Flow Curves

- scenarios for dynamical yielding: colloidal vs. granular
- remember: different protocols, k_BT finite vs. zero

Flow Curves: Scaling Proposal

[Guan/Chen/Egami, PRL (2010)]

- (granular) point J as a critical point
- \bullet scaling: suggests $\sigma(T \to T_c) \sim \dot{\gamma}^x \Rightarrow$ hence: $\sigma_y^c = 0$

▲ □ ▶ つ ○ 13 / 29

Flow Curves: Finite Yield Stress

• fits using schematic model of mode-coupling theory (MCT) • prediction $\sigma_u^c = O(0.1 k_B T/R^3)$ – apparent power laws

▲ □ ▶ つ ○ 14 / 29

Different Scenarios for Flow Curves

• "discontinuous" vs. "continuous" yield-stress scenario

- different yielding mechanisms: local cages vs. avalanches
- energy densities k_BT/R^3 vs. overlap energies

Different Scenarios for Flow Curves

- "discontinuous" vs. "continuous" yield-stress scenario
- different yielding mechanisms: local cages vs. avalanches
- energy densities k_BT/R^3 vs. overlap energies

Different Scenarios for Flow Curves

• "discontinuous" vs. "continuous" yield-stress scenario

- different yielding mechanisms: local cages vs. avalanches
- energy densities k_BT/R^3 vs. overlap energies

Jamming Diagram

iso-viscosity lines in the (T,σ) and $(1/\varrho,\sigma)$ plane:

(white: "jammed")

4 日 > つで 16 / 29

Startup: Creep and Micro-Rheology

◆ □ → つ ○ 17 / 29 Creep

18/29

Creep Continued

- creep laws (hard matter):
 - ${\scriptstyle \bullet}$ logarithmic, $\dot{\gamma}(t)t\sim$ const.
 - ${\scriptstyle \bullet}$ Andrade, $\dot{\gamma}(t) \sim t^{-\alpha}$, $\alpha \approx 2/3$
 - ${\scriptstyle \bullet}$ secondary, $\dot{\gamma}(t)\sim {\rm const.}$
- ${\scriptstyle \bullet}$ "viscosity thinning", $\dot{\gamma}(t) \sim t^{1+x}$
 - related to stress overshoot?
 - aging-time dependent!

19/29

Static Yielding: A Force Threshold

- steady external shear \Rightarrow glass molten (always)
- steady external force \Rightarrow yielding transition σ_c
- microscopic analog?
 - yielding of individual "cages" by local external force
- ⇒ microrheology

Local Melting of the Glass

- $F^{\text{ex}} < F_c^{\text{ex}}$: localized probe
- ${\ensuremath{\bullet}}$ distorted probe probability density $\phi^s(\vec{r},t\rightarrow\infty)$

• $F_c^{\text{ex}} > F_c^{\text{ex}}$: delocalized probe • $F_c^{\text{ex}} \gg k_B T/\sigma$: cages, not thermal forces

Microscopic Yielding

[Gnann, Gazuz, Puertas, Fuchs, ThV, Soft Matter (2011)]

- depinning signature at F ≈ F_c: measures typical cage strength
- fits: schematic model (MCT)
 - \bullet modes $\parallel ec{F}^{ ext{ex}}$, $\perp ec{F}^{ ext{ex}}$
 - high-force plateau: fluctuations ⊥ force
 - strong influence of hydrodynamic interactions
- MCT power laws \sim $\langle v \rangle_{\infty} \sim (F F_c)^{1/a 1}$
 - **6 6**

▲ □ ▶ り ○ 22 / 29

Microscopic Yielding

[Gnann, Gazuz, Puertas, Fuchs, ThV, Soft Matter (2011)]

- depinning signature at F ≈ F_c: measures typical cage strength
- fits: schematic model (MCT)
 - ${\scriptstyle \bullet} \mbox{ modes} \parallel \vec{F}^{\rm ex}$, $\perp \vec{F}^{\rm ex}$
 - high-force plateau: fluctuations ⊥ force
 - strong influence of hydrodynamic interactions
- MCT power laws \sim $\langle v \rangle_{\infty} \sim (F F_c)^{1/a 1}$
 - **6 6**

Residual Stresses

4 日 > つで 23 / 29 common Ansatz: nonlinear Boltzmann superposition principle

$$\sigma(t) = \int_{-\infty}^{t} \gamma_{tt'} \,\psi(t - t', \gamma_{tt'}) \,dt' \qquad (\mathsf{BKZ})$$

- ⇒ prediction: single-step-strain response contains it all ⇒ $\sigma(\infty) = 0$ whenever $\sum_i \gamma_i = 0$ in *n*-step-strain
 - test: double step strain
 - note: MCT does not reduce to BKZ form
 - \Rightarrow prediction of residual stresses

Stress Recovery After Reversing Strain

• glass: finite $\sigma(\infty)$ even for reversed strain

 \bullet recovered stress: <100% due to memory effects

Double Step Strain: Protocol Dependence

- protocol dependence: sudden "affine" deformation vs. strain-rate-ramp
- response: "echo" vs. "wipe-out"

Residual Stresses: Switching off Steady Shear

strong shear "forgotten" quicker

Residual Stresses: Switching off Steady Shear

• glass can sustain finite residual stress $\sigma(\infty)$ – transition • strong shear "forgotten" quicker

[Siebenbürger/Ballauff, ThV, SFB-TR6 A6/A7 collab. (unpublished results)]

▲ □ ▶ か ○ 27 / 29

Summary

- dynamical yield stress σ_y
 - ullet goes to zero continuously as liquid is approached? \Rightarrow "granular case"
 - goes to constant? \Rightarrow "Maxwell case" ($G_{\infty} \neq 0$ in liquid)
- creep
 - analogy colloidal systems metallic systems
 - "failure time" overshoot in startup flow
- residual stresses
 - signature of energy dissipation due to relaxation processes
 - not obtained in standard BKZ-type constitutive equations

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

