Amorphous-to-amorphous transition in compressed particle rafts
(work in progress)

Atul Varshney*, Anit Sane, P. Aswathi, Shankar Ghosh* and SB
Tata Institute of Fundamental Research, Mumbai, India

Outline

Soft matter (at) interfaces: examples

Sticking, Unsticking, Instabilities at interfaces,

New tools

Peeling of a colloidal film

Particle rafts ( magic-sand films)

JAKS, Feb 7, 2012



Driven Dynamics of Detachment : Desorption to Delamination
(Paint Peeling in Mumbai-Monsoon)

A. Varshney, P. Sharma, A. Sane, S. Ghosh*, and S. B. , Phys. Reuv. Lett., 105, 154301 (2010)

Inspired by Kaushik Bhattacharya and G. Ananthkrishna
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Atomic and molecular scale Geological- Lithosphere
e.g., gas desorption from metals movement, plate tectonics



Alm (S to:

Find a minimal system which captures the essential
complexity of the various detachment processes seen
in Nature.

Describe it by a few system parameters.
Control Stress (o)
Alter rigidity (&) and Adhesion strength (f))

Observe events of failure over the entire length scale

(S)-

Get a model system




Electric field induced delamination (peeling) of particulate films:
Individual vs. Collective Dynamics
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Two types of particles: silica and polystyrene
Variable silica fraction ®s:0to 1
Variation of dynamics from

Individual to Collective

Origin of Stress in the system
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Creating percolating networks of silica particles

Volume fraction of silica particles

N

Low G High G

Tuning inter-particle interactions between spheres
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Observable parameters

Length scale () over which the system fails
External stress at failure

Thin Film

G(Energy/Volume)

fp(Energy/Area)

ﬁ mn Substrate

For a very rigid substrate, G-springs
compete with fp- springs :

If £, is large, & is small
s =F(G.fp) gqis large ¢ is large



Area delaminated- E field curves
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Stress values

for which
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Stress values for Qg
which 1 % of the film
gets delaminated

Individual-to-collective dynamics crossover & rigidity percolation ?



Particle Raft : A short introduction

Hydrophobic non-Brownian particles densely sprinkled on water
Gravity-driven dimples provide long-range attraction

Short range attraction or repulsion due to capillary interactions
Stable self-contained films, stable upon removal of stress
Buckles under compression, i.e, supports anisotropic stress
Unbuckles under expansion, ironing out wrinkles

This forms a solid, i.e., has Rigidity

Measure Elastic Moduli, both
longitudinal and shear, under uniaxial

g<——compression or expansion

: In a Langmuir Trough

Video Microscopy to look for
structural changes



Europhysics Letters

Elasticity of an interfacial particle raft

D. Vellal, P. Aussillous2 and L. Mahadevan1 ()

1 Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA
02138, USA

2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge, CB3 OWA, UK

Abstract. We study the collective behaviour of a close packed monolayer of non-Brownian
particles at a fluid-liquid interface. Such a particle raft forms a two-dimensional elastic solid

and can support anisotropic stresses and strains, e.g. it buckles in uniaxial compression and

cracks in tension. We characterise this solid in terms of a Young s modulus and Poisson ratio
derived from simple theoretical considerations and show the validity of these estimates by using an
experimental buckling assay to deduce the Young s modulus.
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Cicuta and Vella : Particle rafts are granular media
Phys. Rev. Lett. 102, 138302 (2009)




EXPERIMENTAL
SET-UP

Compression
by Barriers

;\Qisure Sensor

/ Shear : oL cos (wt)

To Lock-in
Amplifier



Formation of compressed and relaxed states
starting from particulate clusters of 1mm particles




Compacition, Buckling/ Creasing-decreasing,
Cracking under expansion
300 um silica particles
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Radial Distribution Function €
For compressed and expanded states 1-
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Things one can see about the system

SEM scan of a particle Rectangular grid below imaged from top

polydispersity

. , , 0.50 0.75 1.00 125 150
Capillary bridges across particles d (mm)



Things one can feel about the system

Preparation-Protocol and Creation of the Reference State:
First-time Special
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Hard, Compressed State

Soft, Relaxed state
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Strain Field

Particle-lImage Velocimetry (PIV)



Quantities Determined:

From rheology:

Longitudinal and Shear Stress Zxx, 2xy

Infer the differential moduli :

K =
G =

0x/0¢
0X/0vL

From Video Microscopy :

Coordination number Z at the first peak of

g(r)

Floppy modes from “ Pebble Algorithm” (?)

(Thorpe et al.)
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Quantities Determined:

From rheology:

Longitudinal and Shear Stress Zxx, ny

Infer the differential moduli :

0x/0¢g
0X/dvL

K
G

From Video Microscopy :

Coordination number Z at the first peak of
g(r)

Floppy modes from “ Pebble Algorithm” (?)
(Thorpe et al.)

3.55 = (0Z/6D)=1.6
ny 3-50 =
J (0Z/6D)=4.3
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Reproducibility and Variability
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Variation of
Moduli
across
“transition”
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Young’s Modulus from Vella et al

Shear moduli at soft and hard states
from Varshney et al
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100 um Particles

I1-A Curve Like Langmuir films

Willhelmy Plate Response
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Summary Scenario

Two “metastable” amorphous phases
Tentatively : An amorphous-to-amorphous transition

Different dependence on radius
Tentatively: Different mechanisms
“Capillary-Bridged Solid” and “Lubricated-Contact solid”

Crossover involves softening of shear — e.g., soft mode in structural
transitions in crystals (shear is dispersive,...finite-frequency effect)
Tentatively: Depinning of contact lines - system specific?

Looking ahead:

Buckling, creasing , wrinkling, cracking : very rich but complex
Phenomenology would help: Pippard-Ehrenfest type signatures?
So would more incisive probes and protocols

Relation to granular-to-elastic medium? Jamming,...?






Sticking dynamics of a tethered colloidal particle:

A minimally glassy problem

— Optical

Salt

solution '1 ‘
& Polymer
‘

particle

P. Sharma, Shankar.Ghosh and SB
Nature Physics,4, 960 (2008) Gl
T G|assplate—>’

J. Chemical Physics 133, 144909 (2010)
Ap p I‘ Phy S. Lettl 97 ’ 1 041 01 (201 0) Triple-axis piezoelectric scanner )—

The process of sticking is always abrupt
For stuck, non-stuck and aging

From a few degrees of freedom

Effectively a few-body problem one gets hopping down a few basins of attraction

h>0 0-10min 10-20min 20-30min

Liquid Like

(c)
£y g . O

Energy

Solid Like

| ® -
Configurtion (<1/freq) 00 05 10 15 20 25
G'(Pa)

A few effective degrees of freedom are enough to show aging & glassiness
Madhav Mani, Arvind Gopinath and L Mahadevan, Preprint (2012)




