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•  Materials:  Ternary copper oxides, generally doped 

       Examples: La2-xSrxCuO4  ;  YBa2Cu3O6+x     

                           (LSCO)              (YBCO) 

   Discovered, starting 1986, to be superconducting  at 
unprecedentedly high temperatures ( Tc (max) ~ 160 K ) 

                About thirty chemically different families 

   Electronic properties determined by electrons in the unfilled 
d shell of the Cu atom 

 The thing consists of distorted corner sharing octahedra  with 
Cu/RE ions at the centre and the O ions at the corners. It is 
most simply and ( correctly) regarded as weakly coupled 
square lattice Cu-O planes, for electronic purposes 



                 LSCO  YBCO 



   

Idealized, 
universal, ‘phase’ 
diagram of hole 
doped cuprates 
in the hole 
doping (x) and 
temperature (T) 
plane 



 Background  :  The low energy degrees of freedom relevant for 
superconductivity in a continuum  model are described by a complex 
field ψ(r)  

      ( Ginzburg and Landau, 1950; identified by Gor’kov  in 1956-7 as 

                                          ψ(r) = <a+
↑( r) a+

↓( r)> )                                      

         <ψ>≠ 0 below Tc  and = 0 above Tc in a uniform superconductor 

      The free energy is F = ∫ dr {aІψ(r)І2 + b Іψ(r)І4 + c І∂ψ(r)І2} 

                where a, b and c are inspired by experiment. 

       ( After BCS in 1956, Gor’kov identified them with  microscopic      
parameters of the metal) 

    Mean field theory: a(T) changes sign at Tc ( locates Tc) 

( Very successful not only for ‘conventional’ superconductors, but also 
for all continuous phase transitions with an identified order 
parameter)   

                Our approach is similar in spirit and superficially           

                           similar in the form of the functional 
 

 

 



Lattice version .  The basic degree 
of freedom is  
       ψij = Δ ij exp(iφ ij )  (ij = m) 
( Electrons at i and at j form a spin 
singlet Cooper pair) 
The free energy  is written as a 
sum of two terms;  
  a Δm

2  + b Δm
4  

depends only on  the magnitude,  
   c Δm Δn  cos (φm - φn) 
also depends on the phase. 
superconductivity  ( macroscopic 
phase coherence )  means the 
system is stiff with respect to 
fluctuations of the phase at two 
points very far apart 
In mean field theory ( eg ignore 
the c term, because the bare 
coherence length ξo   is large and 
c~ ξo 

-2),  a(x,T)=0 is where 
superconductivity  begins 
 
 



 In the cuprates, ξo   is small ( ~ 15-20 A rather than 10,000 A)  
                                 c term is not negligible  
Nonzero superfluid (phase) stiffness is due to it; the magnitude term cannot lead to 

superfluidity 
If c term is positive, one has d-wave symmetry phase stiffness below a transition 

temperature Tc   
Superconductivity is not due to pair formation, but due to interaction between pairs. 
( Spin analogy: Spin formation and long range spin order; 2d-XY spin)  
Origins: 
      i) Nearest neighbour pairing: For spin (1/2) systems, the nearest neighbour AF 

superexchange interaction ( known to be large in cuprates, ~ 1500K) is identical 
with nn singlet pairing attraction 

      ii) In a strong coupling picture, the c term can arise to linear order in hole density 
from the hopping of a hole to the diagonally opposite side ( t’). Indeed, Pavarini, 
Dasgupta, Dasgupta and Andersen observed a correlation between  t’  and Tc  (for 
optimum hole density) 

 Our picture is that there are nearest neighbour Cooper pairs with nonzero thermal 
probability at all temperatures, but the probability distribution changes character 
at a=0 ( local Cooper formation temperature, pseudogap temperature 

  d-wave symmetry Cooper pairing emerges as a result of short range interactions 
 The two temperature scales are quite distinct for low doping, but indistinguishably 

merge beyond optimum doping ( eg the BCS limit) 
Unlike looking for a glue or pairing interaction which produces d-wave 

superconductivity   
  
 
  
 
 
  



•  Input :                                 
 a = {T – To(1 – x/0.3)} exp(T/To) 

      b =  To/8    and  
 c = xTo /3 
 
 
( energy units To ~ T*  (x=0)) 
 
 
Output : 
 √<∆m

2>  
Onset of nonzero phase stiffness ( ‘Neel’ long range order) or Tc 
     ρs  

       Cv 

     Vortex structure and energetics 
   Electron Green’s function using  < ψm

* ψn > 
    coupled to electrons ( especially useful for large │m-n │) 

 



Local gap as a 
function of 
temperature for 
different doping 
values; the full and 
dotted curves are for 
slightly different 
values of To . From  a 
maximum slope 
criterion, can infer T*.  



Tc(x) curve        

Same, on including 
quantum phase 
fluctuations 



Specific heat in a magnetic field ( measured in units of flux quantum 
per unit cell) for two dopings x=0.11 and x=0.16, at differetnt values of 
the magnetic field 



  Electron moving in a medium of  
                bond pairs     
 
  ‘AF’ or d wave short range order  ( T >Tc ) 
   Long range order and  residual thermal or quantum 

fluctuations ( T < Tc ) 
     
   Electron (self energy) Σ in this medium : 
           Σ ~ P D G 

 

P : form factor (reduces to {cos(kxa) - cos(ky a)} for long range  
superconductivity; Gor’kov propagators with 

     Δk  = (Δ/2 ) (cos(kxa) - cos(ky a)) ie d-wave ) 
D : pair-pair correlation function ( for small momentum 

transfer q with respect to the ‘AF’ ordering wavevector) 
G : Electron propagator 
 



• An electron ‘becomes’ an electron pair and a hole  

    and then recombines to become an electron 

• Simplest vertex correction vanishes above Tc because the 
anomalous propagator vanishes 

• Below Tc , this correction is of relative order  

    (Tc /εF ) << 1 . This is the Migdal like theorem here 

•  Boson ( Cooper pair fluctuation) propagator fully 
renormalized  

• Use bare intermediate state electron propagator (closed 
form expressions possible with the dressed propagator ) 

• Lot of unbiased numerical evidence that there is a low 
energy quasiparticle part to the electron propagator; the 
residue z can be absorbed in the definition of the 
unobserved bare gap) 









• Ignores: 

 Other interactions (even within the phenomenological scheme) eg  ψm
* ψm

,  where m 
and m’ are both ‘x’ or ‘y’ bonds 

 Other ‘bosonic’ fields eg spins Si (and of course its interaction with ψm ) 

  Time dependence of ψm 

  Existence and relevance of other low energy degrees of freedom,eg lattice vibrations 
( bosonic) and unpaired fermions( except in the part on ARPES) …….. 

• Cannot address: (in its present form)  
       competition (changing dramatically with x) between superconductivity and 

antiferromagnetism, stripes, 4X4 superstructure, liquid crystalline correlations, 
isotope effects ……  

•  Expect to do: (incomplete wish list) 
    Calculate ξ(x,T) in the phenomenological theory 

    Nernst effect in the (x,T) plane, esp. for x<xopt(Subroto Mukerjee, IISc) 

    Effect of coupling to neutrons, photons(Raman), more carefully the coupling to 
electrons  ( for STM, STS) 

   Quantum oscillations 

 

 



•  What about a real, microscopic theory? 
•  A  phenomenological, Ginzburg Landau like, lattice theory for  high Tc  

superconductivity in the cuprates, with nearest neighbour Cooper 
pairs as the basic low energy degrees of freedom has been proposed 
and its consequences have been compared with experiment. 

•  For nearest neighbour antiferromagnetic interactions, d-wave 
symmetry superconductivity ( ‘Neel’ long range order) emerges. 

•  For electrons moving on the same square lattice in which the nearest 
neighbour electrons constitute Cooper pairs, their inevitable coupling 
with the latter leads to low excitation energy (near Fermi energy) 

     spectral function features that have been widely seen in high 
resolution ARPES experiments. 

• The approach is also likely to be useful for phenomena connected 
with the coupling of Cooper pairs with electrons, photons, neutrons 
etc.( eg quantum oscillations, STS, Raman spectra, ‘41 meV’ peak) in 
cuprates.    


