- echanical properties of filamentous biopolymers rks of filamentous biopolymers have unusual elastic properties: elastic modulus at very low volume fraction (<0.1%) at (very low) increasing strain
- fects of substrate mechanics on cell function.
- pe specific
- o cells measure stiffness?
- n and time scales?
- vs non-linear elastic substrate

Qi Wen, Fitzroy Byfield, Ilya Levental, Shang Tee

Fred MacKintosh, Kees Storm, Tom Lubensky

QuickTime and a decompressor are needed to see this picture.

Cells can measure stiffness, because they are always pullin

L = 10 to 100,000 Pa) compared to plastic or glass (L>GPa)

Red cells and **platelets** in blood clot. John Weisel- Penn

an rheology (stiffness) direct cell function and differentiation? That magnitude of stiffness do cells probe (what s hard or soft)

neurofilament network

Cortical actin gel JH Hartwig

filaments are all approximately semiflexible polymers

- Filament contour is slightly curved:
- countour length > but not >> end-to end listance, or distance between crosslinks

Thermal motions are sufficient to bend the lament at least a little.

Uniquely extended conformation of biopolymers determi their rheologic proper

Wen et al, Curr. Opin. Coll. 2

in filaments in a fibroblast

Intermediate filaments in an astro

Storm et Nat. 2009 Gardel e Sci 2005

Why are networks of biopolymers strain-stiffening?

 Intrinsic non-linear force-extension relation of thermally fluctuating semi-flexible polymer entropic, affine

 Orientition of stiff fibers in network under shear shift from bending to stretching enthalpic, non-affine, fiber need not have non-linear elasticity

ners predicts increasing sumess with increasing su

odel needs as input: mesh size, bending stiffness sumes that network is isotropic and the persistence leng

ent alignment, sometning contractile cells do very w

P. R. Onck, et al. PRL 95, 178102 (2005).

QuickTime and a BMP decompressor are needed to see this picture.

hree-Dimensional Cross-Linked F-Actin Networks: Relation between Network Architectu and Mechanical Behavior

E. M. Huisman, T. van Dillen, P. R. Onck, and E. Van der Giessen

characterized by an elastic modulus"

ological evidence of fibrosis occurs *after* liver stiffenir

inologically still substrates

et al, Physiol.

12 kPa

hat determines tissue stiffness?

- ktracellular matrix /toskeleton
- assive viscoelasticity or poroelasticity
- ctive (motor driven) tension and non-thermal motions
- tracellular and intra-tissue pressures / water flow

els and pillar arrays

_

10kPa

20um ; green = GFP-actin

kPa

Glass ~ GPa

Pelham and Wang PNAS 1

Fibroblasts stiffen and increase adherent area on stiff subtrates

Colon et al Dianhua 1 2007

Bipnasic change in hiviSC stimess

α -actinin **F-actin** 300 Pa 10kPa 00 Pa 5kPa 30kPa Glass Anant Chopra,

w do cells sense or respond to stiffness?

- t is the range of stiffness that can be probed? - 100,000 Pa
- much do they strain their substrate?
- v large an area do they probe?
- v long do they integrate signal?

Iarge a contact area is needed for mechanosensing

DMS posts of identical composition (>100 kPa) and diameter .8µm), but different length.

μm PDMS posts (>100 kPa) of different length spaced 6 μm apa ig posts look soft, short posts look stiff

n bone marrow stem cells (hMSC) constrained on square shapes on PMDS microposts.

What is the time needed for mechanosensing?

Experimentally what is measured is a cell's response, w is an upper limit

e adhesion ligand density but different stiffness

Two minutes is enough to

t tissues have well-defined and controlled elastic moduli

Is in vitro do not: their stiffness depends on environmen

e strain-stiffening properties of biopolymer gels contribute issue stiffness and provides effective means to reversibly en a cell or tissue.

ostrate stiffness affects each cell type differently, and nipulating matrix stiffness can influence cell fate.

fness sensing appears to operate on a length scale >1 and a time >1 s.