Magnetostructural-transition related multifunctionality in martensitic Heuslers

M. Acet

Experimentalphysik, Universität Duisburg-Essen

Outline

Elemental properties of Fe and Mn Martensitic transformations and Heuslers Magnetic interactions in martensitic Heuslers

Structure of the transition elements and elements with wrong crystal structures

					complex	c cubic	bcc	hcp	
	Number of s + d electrons								
Period ↓	3	4	5	6	7	8	9	10	11
3d, 4s	Sc	Ti	v	Cr AF	[Mn] ¹⁾ AF	[Fe] ²⁾ FM	[Co] ³⁾ FM	Ni FM	Cu
4d, 5s	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag
5d, 6s	(La)	Hf	Та	W	Re	Os	Ir	Pt	Au
Structure	hcp	hcp	bcc	bcc	hcp	hcp	fcc	fcc	fcc

The elements shown in brackets have the "wrong" crystal structure in the ground state.

¹⁾ complex cubic (A12); ²⁾ bcc; ³⁾ hcp

AF: antiferromagnetic; FM: ferromagnetic

Allotropy in the 3d elements

Period ↓	3	4	5	6	7	8	9	10	11
3d, 4s	Sc	Ti	v	Cr AF	[Mn] ¹⁾ AF	[Fe] ²⁾ FM	[Co] ³⁾ FM	Ni FM	Cu
4d, 5s	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag
5d, 6s	(La)	Hf	Ta	w	Re	Os	Ir	Pt	Au
Structure	hcp	hcp	bcc	bcc	hcp	hcp	fcc	fcc	fcc

Rigid band model and the Slater-Pauling curve: Valence electron concentration dependence of the magnetic moment

Structure and phase diagrams of Ni-Mn-Z (Z: Ga, In, Sn, Sb)

Some features of Heusler alloys

The magnetization of Ni-Mn-Z (Z: Ga, In, Sn, Sb)

Exchange bias behavior in Ni–Mn–Sb Heusler alloys

Mahmud Khan,^{a)} Igor Dubenko, Shane Stadler, and Naushad Ali Department of Physics, Southern Illinois University, Carbondale, Illinois 62901

Extended Slater-Pauling curve

Mn-Mn separation and the martensitic transformation in Heuslers

Martensitic transformation takes place for $d_{Mn-Mn} \sim 3$ Å: Is there any relationship between the martensitic transformation and the onset of AF-exchange? Complementary

Neutron polarization analysis Ferromagnetic resonance

XYZ polarization analysis and neutron depolarization (D7/ILL)

Neutron depolarization and the flipping ratio (R_f)

$$R_f = \frac{1 + n_{\uparrow}}{1 + n_{\downarrow}}$$

Magnetization and flipping ratio Ni-Mn-Sn and Ni-Mn-Sb

Ni-Mn-Sn: polarization analysis

Neutron depolarization

Ni-Mn-Sb: polarization analysis

Polarized neutron scattering study of the kagome antiferromagnet $SrCr_8Ga_4O_{19}$

C. Mondelli^{a,*}, K. Andersen^a, H. Mutka^a, C. Payen^b, B. Frick^a

^aInstitut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9, France ^bInstitut des Matériaux de Nantes, BP 32229, 44322 Nantes Cedex 3, France

Moment configurations in austenite and martensitie

Summary

Mn and antiferromagnetism and Ms

Ferromagnetic resonance (FMR)

ω: instrument microwave frequencyγ: gyromagnetic ratio

$$\mu_{0}H_{res} = \omega/\gamma \rightarrow PM$$

$$\mu_{0}H_{res} < \omega/\gamma \rightarrow FM \qquad \mu_{0}H_{res} = \frac{\omega}{\gamma} - \mu_{0}H_{A}$$

$$\mu_{0}H_{res} \rightarrow AF \qquad \mu_{0}H_{res} = \frac{\omega}{\gamma} \pm \sqrt{\mu_{0}H_{A}(2H_{E} + H_{A})}$$

Ferromagnetic resonance

The magnetization of Ni-Mn-Z (Z: Ga, In, Sn, Sb)

M(*T*) in 5 mT

M(*T*) in 5 T

Conclusions

FM and AF correlations coexist at $T > M_s$ and beyond T_c^A

FM correlations disappear below *M*_s but *AF* short-range correlations persist down to lowest temperatures

O. Posth, M. Gruner, P. Entel Universität Duisburg-Essen

T. Krenke ThyssenKrupp Electrical Steel

S. Aksoy Istanbul Technical University

X. Moya University of Cambridge

L. Mañosa, A. Planes Universitat de Barcelona

P. P. Deen

Institut Laue-Langevin

A. Senyshyn, S. Ener, J. Neuhaus, W. Petry TU-München & FRM II

MAGNETIC SHAPE MEMORY A DFG PRIORITY PROGRAMME

SPP 1239

Magnetic exchange constants in Ni-Mn-Sb

Ni-Mn-Sn and Ni-Mn-Sb (magnetic scattering)

Ni-Mn-Sn (coherent scattering)

D2B λ = 1.594 Å

M_s and T_c as a function of valence electron concentration

Austenitic state lattice constant at room temperature in Ni-Mn-Z

Coexisting FM and AF correlations in Fe-Ni-Mn

Magnetization of Ni-Mn based Heuslers

A. Planes et al. J. Phys.: Condens. Matter 21, 233201 (2009)

