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Coworkers

• On-going work with:

A. Ikeda (Montpellier)
P. Sollich (London)

• Some previous work with:

P. Chaudhuri (Dusseldorf),
H. Jacquin (Paris),
S. Sastry (Bangalore),
T. Witten (Chicago),
F. Zamponi (Paris).
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Disordered solid states

• Atomic glasses (window glasses, plastics) are solid materials frozen in
an amorphous (non-crystalline, metastable) structure.

• Dense granular materials are disordered solids.

• Same/similar/(un-)related transitions? Similar properties in the ‘fluid’?
Similar mechanical response of the solid?
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A geometric problem... really?

• Athermal packing of soft repulsive spheres, e.g. V (r < σ) = ǫ(1− r/σ)2.

cϕ ϕ
Low ϕ: no overlap, fluid Large ϕ: overlaps, solid

• Useful for non-Brownian suspensions (below), grains (at), foams and
emulsions (above). Many (oral) claims for glass-formers.

• Aim: equilibrium statistical mechanics approach to jamming. See if and
how jamming emerges in the T → 0 limit of the (T, ϕ, σ) phase diagram.
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Numerical observations

• J-point from packing properties of soft
repulsive particles at T = 0.
[O’Hern et al. PRL ’02]

• Scaling laws and structure of pack-
ings near jamming [vanHecke JPCM’10]

Energy: E = 0 for ϕ < ϕJ ; E ∼ (ϕ−ϕJ)
α

for ϕ > ϕJ .

Contact number: z = 0 → z = zc+a(ϕ−

ϕJ)
1/2 with zc = 2d (isostaticity).

• A major numerical and experimental
effort over the last decade. A new
nonequilibrium phase transition.
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Structure of soft colloids

• Numerous experiments performed on soft colloidal particles (microgels,
emulsions) to probe the jamming transition.

[Zhang et al., Nature 2009]

• Anomalous behavior of pair correlation function g(r) under compression.

• Interpreted as a structural signature of the jamming transition. “Our results
conclusively demonstrate that length scales associated with the T = 0 jamming transition
persist in thermal systems, not only in simulations but also in laboratory experiments.
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Rheology of soft particles

• Steady state rheology near jamming in overdamped (athermal)
numerical simulations of harmonic spheres. Diverging viscosity,
emergence of yield stress.
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[Olson, Teitel, PRL 07] [Norstrom et al., PRL 2010]

• “Similar” behaviour (and scaling laws) observed experimentally.
“These results support the conclusion that jamming is similar to a critical phase transition.”
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Equilibrium fluid

• Consider the fluid, V (r) = (1− r)2, at equilibrium at (T > 0, ϕ, σ = 0).

• Liquid state theory: solve structure, g(r), thus thermodynamics using
integral equations. We can use, e.g., HNC: g(r) = e−βV (r)+g(r)−1−c(r).
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• No glass or jamming transi-
tion is found.

• Anomalous structural evo-
lution at all T ! The system
first ‘orders’, then ‘disorders’.

• F = E − TS: Avoid overlap (reduce energy) at low ϕ. Difficult
(entropically disfavoured) at larger ϕ. Solution: increase overlap to gain
entropy.

• Softness matters (not jamming). [Jacquin & Berthier, Soft Matter ’10]
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Why liquid state theory fails

• Equilibrium phase diagram of soft harmonic spheres.
[Berthier & Witten, PRE ’09]
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• The equilibrium fluid does not jam, but the glass structure does.

• One cannot understand the jamming transition without dealing first with
the glass phase.
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Metastable states & jamming

• Glasses depend on cooling history.

• Similarly, compressed fluids of hard
spheres reach different glassy states.
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• Jamming transition oc-
curs along a range of den-
sities [Chaudhuri et al., PRL’10]

• Theory must handle
multiplicity of metastable
states.
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Statistical mechanics of glasses

• Assume exponential number of metastable states exists:

f(T ) = −
T

V
log

∫

df ′ exp

[

−
Nf ′

T
+Nsconf(f

′, T )

]

.

• In practice, take m replica(s) and minimize the replicated free energy
[Monasson, PRL ’95, Mézard-Parisi PRL ’99]

f(m,T ) = −
T

V
log

∫

df ′ exp

[

−
Nf ′m

T
+Nsconf(f

′, T )

]

.

• New effective potential valid for both hard spheres (T → 0 small ϕ) and
soft glasses (T → 0 large ϕ), to treat analytically the glass & jamming
transitions of harmonic spheres.

f(m,A,ϕ, T ) =

fharm(m,A) + fliquid(ϕ, T/m)−
ρ

2

∫

drg(r)[e−β(Veff (r)−mV (r)) − 1]

[Jacquin, Berthier & Zamponi PRL ’11]
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The ‘ideal’ glass transition

• High T fluid: m = 1, sconf(T ) > 0 and simple liquid theory is enough.

• sconf(T ) vanishes at TK(ϕ) > 0 for ϕ > ϕK ≡ hard sphere glass transition.

small cage
new approximation

TK ∼ (ϕ − ϕK)2

ϕK ≈ 0.577

ϕ

T
K

0.750.70.650.60.55
10−8

10−6

10−4

10−2

FLUID

GLASS

Super-Arrhenius
Scaling

VFT
MCT

ϕ

T

0.950.90.850.80.750.70.650.60.55

10−2

10−4

10−6

• Low-T scaling: TK ∼ (ϕ− ϕK)2 (robust scaling) with ϕK ≈ 0.577 (value
depends on specific approx).
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The ‘ideal’ jamming transition

• Glass thermodynamics: energy, pressure, specific heat, fragility...

• Jamming at T = 0 ⇔ Change in ground state glass properties.

• ϕGCP = 0.633353... such that:
EGS = 0 below,
EGS ≃ a(ϕ− ϕGCP )

2 above.

• Glass Close Packing: densest
T = 0 glass with no overlap.
[Zamponi & Parisi, RMP ’10]

• PGS ∼ (ϕ− ϕGCP ). JAMMEDUNJAMMED
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• Existence, location(s), and scaling laws of jamming from ‘first principles’.
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Structure of jammed states

• New predictions for g(r) near contact at all (T, ϕ). Isostaticity is derived.
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[Berthier, Jacquin, Zamponi, PRE ’11]

• Clear emergence of jamming singularity from finite temperatures
properties of glass phase–only if particles are not too soft, T/ǫ ≪ 10−6.

• Still unconvinced G and J are different things? Rheology will do it.
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Rheology at finite temperatures

• Aim: Study the harmonic sphere rheology at finite temperatures, then
approach T → 0.

• ‘SLLOD’: Newton eqs. + shear + thermostat (‘SLLOD’).
Problem: one cannot shear faster than thermal fluctuations, Pe = γ̇τD < 1.
Here τD ∼ a/

√

kBT/m → ∞, cannot go athermal.

• We use Langevin dynamics with shear and thermostat in d = 3:

ξ(
dri
dt

− γ̇yiex) = −
∑

j

dV (|ri − rj |)

dri
+ ηi,

with 〈ηi(t)ηj(t
′)〉 = 2kBTξ1δ(t− t′).

• Two important microscopic timescales:
(i) dissipation: τ0 = ξa2/ǫ = 1, our time unit.
(ii) thermal time: τD = ξa2/(kBT ) → ∞ when T → 0.

• We study both finite and zero temperatures, both thermal (Pe < 1) and
athermal (Pe > 1) rheologies at once. [Ikeda, Berthier, Sollich, in preparation]
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Soft glassy rheology

• Steady state rheology at T = 10−4 and increasing ϕ. Diverging viscosity,
emerging yield stress. Here τ−1

D ∼ 10−4.
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• This is a glass transition as seen in colloidal particles, star polymers,
microgels, but also glassy liquids.

• Theories of driven glasses capture competition between slow glassy
dynamics and shear flow.
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From glass to jamming rheology

• Same at T = 10−6, here τ−1
D ∼ 10−6. Glass physics shifts to lower shear

rates: Pe < 1 → γ̇ < 10−6.
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• The athermal jamming physics emerges when τ−1
D ≪ γ̇ ≪ τ−1

0 .

• Two Newtonian regimes, two distinct viscosities, emergence of yield
stress (when γ̇ → 0), with funny density dependence. A real mess!
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Pure jamming rheology

• Rheology at T = 0. Here τ−1
D = 0, i.e. Pe = ∞.
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• Glass rheology has gone, T = 0 jamming transition remains: diverging
viscosity, emergence of yield stress.

• No microscopic theory. Driven dynamics at T = 0 is difficult to attack
from first principles (driven glass theories fail badly).
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Rheology: summary
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• We observed two types of Newtonian regimes, depending on the Peclet
number and particle softness.

• Clearly, η(T > 0) does not converge to η(T = 0) when T → 0. These are
distinct divergences at distinct densities with distinct physics.

• Solidity emerges at the glass transition at any T > 0, and “transition to
jammed solid” only exists at T = 0. cf. “Melting by freezing”.

• To see jamming: Pe ≫ 1 (kinetics) and kBT/a
3 ≪ ǫ/a2 (hardness).

title – p.19



Microscopic dynamics

• Widely different mean-squared displacements.

t2

t

2t

• T = 10−4: Glass physics because particles explore their ‘cage’ due to
thermal fluctuations.

• T = 10−6: crossover towards athermal dynamics when thermal
fluctuations do not allow sufficient exploration of the cage.

• At T = 0, ballistic (non-affine) short-time dynamics due to shear flow,
then diffusive behaviour.
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Experiments?

• Micron-sized microemulsions seem ideal to observe the
athermal/thermal crossover.

[Mason, Bibette, Weiz, 1996]

• Star polymers are too soft, grains are too large. What about microgel
’pnipam’ particles? Both small (100 nm) and large (1 micron) colloids
available, but quite they are also quite soft...
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How confusing!
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How confusing!
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Confusion?

• Rheology of soft microgels of about 1 micron [Nordstrom et al., PRL 2010]

• Scaling analysis: τ/τ0 ∼ 107 − 1011, σY /ǫ ∼ 10−6 − 10−4.

• Thermal units: γ̇ = 1s−1 → Pe ≈ 5. → τ/τD ∼ 1− 104.

• Rheological “transition” occurs at Pe < 1, jamming rheology outside the
shear rate window, diverging viscosity and emergence of yield stress not
controlled by T = 0 physics.
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Summary

• Why not use thermal fluctuations and statistical mechanics approaches
that we know to describe the emergence of interesting physics at T = 0?

• Useful to understand relationship with glass transition, glass theories
provide first principles approaches and new predictions for structural
quantities and correlation functions.

• Also seems promising to understand steady state rheology.

• Need some theory for to study better athermal rheology, where glass
theories fail.
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Even more confusing
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