Materials for Eco-friendly Refrigeration

Lluís Mañosa. Departament ECM. Facultat de Física. Universitat de Barcelona. <u>lluis@ecm.ub.es</u>

Modern society relies on the possibility of cooling below ambient

How to cool?

How to cool?

Rudolf Emmanuel Clausius (1822-1888)

Henri Poincaré (1854-1912)

The simplest cycle: The Carnot Cycle

Need: Materials with large changes in entropy and temperature

Undergraduate Thermodynamics

$$dS = \frac{C}{T}dT + \sum_{i=1}^{n} \left(\frac{\partial x_i}{\partial T}\right)_{Y_j = 1....n} \frac{dY_i}{\int Generalized field}$$

Caloric effects

$$\Delta S(0 \to Y_i) = \int_0^{Y_i} \left(\frac{\partial x_i}{\partial T}\right)_{Y_j=1...,n} dY_i$$

$$\Delta T(0 \to Y_i) = -\int_0^{Y_i} \frac{T}{C} \left(\frac{\partial x_i}{\partial T}\right)_{Y_j=1...,n} dY_i$$

Large caloric effects when

$$\left(\frac{\partial x_i}{\partial T}\right)_{Y_j=1....n}$$
 is large

Isothermal entropy change

$$\Delta S_{iso} = S_f - S_i < 0$$
$$T_f = T_i$$

Adiabatic temperature change

$$\Delta T_{adi} = T_f - T_i < 0$$
$$S_f = S_i$$

Caloric effect

Conventional caloric effect

• In general
$$\left(\frac{\partial \mathbf{x}}{\partial T}\right)_{H} < 0 \implies \Delta S_{iso} < 0$$
 when $\Delta Y > 0$

$$\downarrow \downarrow$$

Sample heats up when applying field adiabatically

But.....

$$\left(\frac{\partial x}{\partial T}\right)_{H} > 0 \quad \Rightarrow \quad \Delta S_{iso} > 0 \text{ when } \Delta Y > 0$$

$$\downarrow \downarrow$$

Sample cools down when applying field adiabatically

Inverse caloric effect

Computation of caloric effects

$$dS = \frac{C}{T}dT + \sum_{i=1}^{n} \left(\frac{\partial x_i}{\partial T}\right)_{Y_j = 1....n} dY_i$$

Calorimetric (adiabatic, relaxational, ac,..) measurement of *C* under field

$$S(T,Y) = \int_{T_i}^T \frac{C}{T} dT$$

From Maxwell relation: Isothermal measurements *x* vs *Y*

$$\Delta S(0 \to Y_i) = \int_0^{Y_i} \left(\frac{\partial x_i}{\partial T}\right)_{Y_j=1...,n} dY_i$$

Direct methods: adiabatic measurement of temperature

Other methods: pulsed fields, Clausius-Clapeyron, etc...

Undergraduate Thermodynamics

Measurements of entropy changes at a first order phase transition:

DSC Calorimetry under constant temperature (7): sweeping field (Y)

Calorimeters under magnetic field.

Calorimeter under hydrostatic pressure.

Calorimeters under electric field.

A FEW EXPERIMENTAL RESULTS

Magneto caloric effect: Ni-Mn-Sn; Ni-Mn-In T. Krenke et al. Nature Mater. 4 (2005) 450

Barocaloric effect: Ni-Mn-In, La-Fe-Co-Si L. Mañosa et al. Nature Mater. 9 (2010) 478.

L. Mañosa et al. Nature Comm. 2(2011) 595.

Elastocaloric effect: Cu-Zn-Al

E. Bonnot et al. Phys. Rev. Lett. 100 (2008) 125901.

Electrocaloric effect: BaTiO₃

Magnetic shape memory alloys

Change in symmetry + Change in magnetization + Change in volume + Change in strain

Magnetocaloric effect Ni-Mn-X (X=Sn,In,Sb,Ga)

Ni-Mn-Sn

T. Krenke et al. Nature Mater. 4 (2005) 450

Magnetocaloric effect is inverse: entropy increases on applying field

Magnetocaloric effect Ni-Mn-X (X=Sn,In,Sb,Ga)

c) a) 190-196 60 188 S(T,H) (J/kg K) 20 86 $M \left({\rm A} \ {
m m}^2 / {
m kg}
ight)$ $\mu_{\sigma}H$ *dQ/dT* (J/kg K) 0 00 00 184 182 }160-180 0 T 0.5 T 1 T 3 T 40 $T(\mathbf{K})$ 10 20 Ni₅₀Mn₃₅Sn₁₅ 0 190 200 T (K) 180 210 Ni₅₀Mn₃₅Sn₁₅ 0 190 200 210 0 1 2 3 5 180 4 $\mu_{\rm o} H\,({\rm T})$ $T(\mathbf{K})$ 16 b) 16 $\Delta S(T,H)$ (J/kg K) \oplus $\mu_{o}H$ $\mu_0 H$ $\Delta S(T,H)$ (J/kg K) 12 0.5 T 12 0.5 T $\mathrm{Ni}_{50}\mathrm{Mn}_{35}\mathrm{Sn}_{15}$ Ni50Mn35Sn15 -1 T - 3 T1 T 3 T 8 8 4 0 0 180 190 200 190 200 210 170 180 $T(\mathbf{K})$ $T(\mathbf{K})$ T. Krenke et al. Nature Mater. 4 (2005) 450 L. Mañosa et al., Adv. Mater. 21 (2009) 3725.

Magnetocaloric effect

Ni-Mn-X (X=Sn,In,Sb,Ga)

X. Moya et al. Phys. Rev. B 75 (2007) 184412

Barocaloric effect

Ni-Mn-In

L. Mañosa et al Nature Mater. 9 (2010) 478

Barocaloric effect

Ni-Mn-In

L. Mañosa et al Nature Mater. 9 (2010) 478

La-Fe-Si

 $NaZn_{13}$ structure

(Fm-3c)

No change in symmetry + Change in magnetization + Change in volume

Magnetocaloric effect

L. Mañosa et al Nature Commun. 2 (2011) 595

Magnetocaloric effect

L. Mañosa et al Nature Commun. 2 (2011) 595

Inverse caloric effect Sample warms up on releasing pressure.

Conventional caloric effect Sample cools down on removing field.

L. Mañosa et al Nature Commun. 2 (2011) 595

Shape memory alloys (the classic ones)

Change in symmetry + NO Change in volume + Change in strain

Elastocaloric effect

Elastocaloric effect

Elastocaloric effect

Adiabatic temperature change

E. Vives et al. Appl. Phys. Lett. 98 (2011) 011902

BaTiO₃

Change in symmetry + Change in volume + Change in polarization

Sweeping temperature

Sweeping electric field

Field-induced transition

Indirect method: P(T,E)

High entropy phase

Materials with structural transitions + LARGE changes in extensive properties (Cross-response to external stimuli)

GIANT caloric effects

Eco-friendly refrigeration

Energy Harvesting

