Flowing granular materials.

V. Kumaran
Department of Chemical Engineering
Indian Institute of Science
Bangalore 560 012

Industrial applications — fluidised beds.

Industrial applications — Rotating drum mixer:

Silo collapse:

* www.civil.usyd.edu.au

Granular materials

Solid-like

Granular materials

Creation of interfaces between solid-like & fluid-like

Particles in a gas:

Colloidal $d < 1\mu$ m:

Aerosol 1μ m $< d < 10\mu$ m:

Suspension $10\mu \text{m} < d < 100\mu \text{ m}$:

Granular material $d > 100 \mu$ m:

Gas-particle suspensions:

Parameters:

- Terminal velocity $U_t = (mg/3\pi\mu d) \sim d^2$.
- Brownian diffusivity $D_B = (k_B T/3\pi\mu d) \sim d^{-1}$.
- Peclet number (convection/Brownian diffusion) $Pe = (U_t d/D_B) \sim d^{-4}.$
- Reynolds number (fluid inertia/fluid viscosity) $Re = (\rho_q U_t d/\mu) \sim d^3.$
- Stokes number (particle inertia/fluid viscosity) St = $(\rho_p U_t d/\mu) \sim d^3$.

$$\rho_g = 1kg/m^3$$
, $\rho_p = 10^3 kg/m^3$, $\mu = 1.8 \times 10^{-5} kg/m/s$, $T = 300K$.

Granular materials:

$$1.5 \times 10^{-3} < U_t < 1.5 \times 10^{-1}$$

$$1.2 \times 10^{-12} < D_B < 1.2 \times 10^{-13}$$
.

$$1.3 \times 10^8 < (U_t d/D_B) < 1.3 \times 10^{12}$$
.

 $8.5 \times 10^{-1} < \text{Re} < 8.5 \times 10^{2}$.

 $8.5 \times 10^2 < \text{St} < 8.5 \times 10^5$.

Fluid viscosity negligible.

Dominated by particle inertia & contact dissipation.

Granular material $d > 100 \mu$ m:

Granular materials:

- Thermal velocity $(3k_BT/m)^{1/2} \sim 7.5 \times 10^{-12}m/s$
- Electrostatic, colloidal, disperson forces negligible.
- Fluid forces negligible.
- Energy dissipation due to particle interactions.
- Steady flow requires energy input to 'fluidise' the particles.
- Energy input from boundaries or through distributed forcing (mean shear).

Flow down inclined plane:

$$\sigma_{ij} = \sigma_{ij}^{(y)} + \sigma_{ij}^{(k)}??$$

Flow down inclined plane:

$$\sigma_{ij} = \sigma_{ij}^{(k)}!!$$

Flowing granular materials:

- Yield condition: Flow only when ratio or stresses exceeds critical value.
- Fluid constitutive relations cannot predict yield condition.
- Solid constitutive relations cannot predict flow.
- Fluidisation of particles facilitates flow.
- No thermal energy fluidisation requires forcing either at boundaries or within flow.

Macroscopic behaviour from microscopic model:

Outline:

- Microscopic models.
- Flow regimes.
- Conservation equations.
- Rate of deformation tensor.
- Constitutive relations.
- From constitutive relations to flow dynamics.

Interaction between particles:

- Forces only on contact.
- Force due to resistance to particle deformation.
- Forces repulsive (no attractive ^U part).
- Forces dissipative.
- Well represented by hardparticles in some limits.

Contact laws:

- Normal contact force expressed in terms of 'overlap' δ .
- Tangential contact force in terms of tangential displacement vector \mathbf{u}_t .
- Tangential displacement vector initialised to zero at contact.

 u_t

Contact laws:

- Tangential contact slipping . and sticking.
- Sticking motion of particles around fixed contact point.
- Sliding contact point moves.

Microscopic contact models: Linear spring-dashpot:

$$F_n = -k_n \delta - m_{\text{eff}} \gamma_n v_n$$

- Spring constant k_n .
- Damping constant γ_n .
- Effective mass $m_{\text{eff}} = (m_i m_j / (m_i + m_j))$

Microscopic contact models: Linear spring-dashpot:

Two-body interaction:

$$m\frac{d^2\delta}{dt^2} = -k_n\delta - m_{\text{eff}}\gamma_n \frac{d\delta}{dt}$$

Initial conditions

$$\delta = 0$$
, $(d\delta/dt) = -v_0$ at $t = 0$.

Solution:

$$\delta = \frac{v_0 e^{(-\gamma_n t/2)} \sin(t\sqrt{2k_n/m} - \gamma_n^2/4)}{\sqrt{(2k_n/m) - (\gamma_n^2/4)}}$$

$$t_{col} = (\pi/\sqrt{2k_n/m - \gamma_n^2/4})$$

$$(-v_f/v_0) = \exp(-\gamma_n t_{col}/2) = e$$

Microscopic contact models: Linear spring-dashpot:

Tangential motion:

Tangential displacement \mathbf{u}_t .

Tangential relative velocity $\mathbf{v}_t = \mathbf{v} - \mathbf{v}_n$

Sticking contacts ($|\mathbf{F}_t| < \mu |\mathbf{F}|_n$:

$$\mathbf{F}_t = -k_n \mathbf{u}_t - \gamma_n m_{eff} \mathbf{v}_t$$

Sticking contacts ($|\mathbf{F}_t| > \mu |\mathbf{F}|_n$:

$$|\mathbf{F}_t| = \mu |\mathbf{F}_n|$$

Microscopic contact models: Hertzian spring-dashpot:

Microscopic interaction between smooth surfaces:

- Area of interaction increases as overlap increases.
- Stiffness should increase as overlap increases.

Hertz contact law:

$$F_n = \sqrt{(\delta/d)}(-k_n\delta - \gamma_n m_{eff}v_n)$$

Sphertical particles exact result:

$$k_n = \frac{Ed^{1/2}}{3(1-\nu^2)}$$

(Mindlin & Deresiewicz 1953).

Young's modulus E, Poisson ratio ν .

Microscopic contact models: Hertzian spring-dashpot:

Hertz contact law: Normal:

$$F_n = \sqrt{(\delta/d)}(-k_n\delta - \gamma_n m_{eff}v_n)$$

Tangential sticking: For $|\mathbf{F}_t| < \mu |\mathbf{F}_n|$

$$\mathbf{F}_t = \sqrt{(\delta/d)}(-k_t \mathbf{u}_t - \gamma_t m_{eff} \mathbf{v}_t)$$

Tangential sliding: For $|\mathbf{F}_t| > \mu |\mathbf{F}_n|$

$$|\mathbf{F}_t = \mu |\mathbf{F}_n|$$

Smooth inelastic particles.

Relative velocity $\mathbf{w} = \mathbf{u} - \mathbf{u}^*$

$$w_k' = -e_n w_k = -(1 - \varepsilon_n^2) w_k$$

$$w_t' = w_t$$

Energy conserved for $\varepsilon_n = 0$.

Rough inelastic particles:

$$\mathbf{g} = \mathbf{v} - \mathbf{v}^* - \mathbf{k} \times (\omega + \omega^*)$$
$$\mathbf{g}'.\mathbf{k} = -e_n \mathbf{g}.\mathbf{k}$$
$$\mathbf{k} \times .\mathbf{g}' = -e_t \mathbf{k} \times .\mathbf{g}$$

Energy conserved for $e_n = 1$ and $e_t = \pm 1$.

Smooth inelastic particles:

$$e_t = -1; (1 - e_n^2) = \varepsilon_n^2 \ll 1$$

Rough inelastic particles:

$$e_t = 1;$$

$$(1 - e_n^2) = \varepsilon_n^2 \ll 1$$

Rough inelastic particles:

$$\mathbf{g} = \mathbf{v} - \mathbf{v}^* - \mathbf{k} \times (\omega + \omega^*)$$
$$\mathbf{g}'.\mathbf{k} = -e_n \mathbf{g}.\mathbf{k}$$
$$\mathbf{k} \times .\mathbf{g}' = -e_t \mathbf{k} \times .\mathbf{g}$$

Tangential impulse $\mathbf{I}_t = m_{eff}(\mathbf{g}_t' - \mathbf{g}_t)$

If $|\mathbf{I}_t| > \mu |\mathbf{I}_n|$, then $|\mathbf{I}_t| = \mu |\mathbf{I}_n|$.

Microscopic model based on hard visco-elastic particles (Ramirez et al PRE 60, 4465, 1999).

$$e = 1 - C_1 A \frac{\rho}{m_{eff}} |\mathbf{g}.\mathbf{k}|^{1/5} - C_2 \left(\frac{A\rho}{m_{eff}}\right)^2 |\mathbf{g}.\mathbf{k}|^{2/5} + \dots$$

$$A = \frac{1}{2} \frac{(3\eta_b - \eta)^2}{(3\eta_b + 2\eta)} \frac{(1 - \nu^2)(1 - 2\nu)}{\nu^2}$$

Microscopic laws: Experiments:

Forster et al, Phys Fluids 6, 1108, 1994:

Microscopic laws: Experiments: Forster et al, Phys Fluids **6**, 1108, 1994:

TABLE I. Sphere properties.

Material		Soda lime glass	Cellulose acetate
Finish		polished, grade "200"	ashed
Diameter (mm)		3.18 ± 0.03	5.99 ± 0.03
Density (g/cm ³)		2.5	1.319
Poisson's ratio		0.22	0.28ª
Young's modulus (N/m2)		7.1 10 ^{to}	3.2×10^{9} a
	e	0.97±0.01	0.87±0.02
Binary collisions	μ	0.092 ± 0.006	0.25 ± 0.02
	β_0	0.44 ± 0.07	0.43 ± 0.06
Relative contact velocities		$0.64 < g \cdot n < 1.2 \text{ m/s}$	0.29 < g·n < 1.2 m/s
		0.06< g·t <0.41 m/s	0.14< g·t <0.86 m/s
	e	0.831 ± 0.009	0.891 ± 0.003
Wall collisions	μ	0.125 ± 0.007	0.208 ± 0.007
	β_0	0.31 ± 0.06	0.39 ± 0.07
Relative contact velocities	10.00	$1.0 < g \cdot n < 1.7 \text{ m/s}$	$0.67 < \mathbf{g} \cdot \mathbf{n} < 1.7 \text{ m/s}$
		0.24< g·t < 0.81 m/s	0.06< g·t <1.2 m/s
Manufacturer	1-1-1-1	Winsted Precision Ball Co.	Engineering Laboratories
Aluminum plate		Density=2.7 g/cm ³	
100		Young's modulus = $6.9 \times 10^{10} \text{ N/m}^2$	
		Poisson's ratio=0.33	
		Machine finish	

^{*}Estimates, see Drake.6

Contacts between real particles: Experiments.

Cole & Peters (Gran. Matt. 10, 171, 2008; 9, 309, 2007).

- Particles mounted on pins.
- Pins pressed against each other.
- Measure force and displacement.

Contacts between real particles: Experiments.

- Force-displacement curves.
- Back out spring constant.

Rough sand particles linear contact law due to asperities, $d = 0.2 - 2mm \ k_n = 10^6 N/m$.

Smooth particles — Hertzian contact law,

 $k_n \approx 0.8$ times Mindlin-Deresiewicz prediction, $k_n \sim Ed^{1/2}$.

Flowing hard particles:Realistic?

Inclined plane flow (Silbert et al

- Collisions instantaneous.
- Av. co-ordination number $Z \ll 1$.

2001)

Flow starts at $\theta = 21^{\circ}$, Stable flow till $\theta = 25^{\circ}$. Flowing hard particles: Realistic?

Average co-

Flowing hard particles: Contact model. Rough particles:

- Linear contact law $F = k_n \delta$ due to compression of asperities.
- $k_n = 10^6 N/m$ for particles in 0.2-2mm size.
- Scaled spring constant $k_n/(mg/d^{3/2}) \sim 7.6 \times 10^7 7.6 \times 10^9$. for d = 1 - 0.1mm.

Flowing hard particles: Contact model.
Smooth particles:

- Hertzian contact law $F = k_n \delta^{3/2}$
- Value of k_n from dimensional analysis. $k_n \sim Ed^{1/2}$.
- Sand, glass, $E \sim 10^{11} N/m^2$.
- Hertzian spring constant $k_n = 10^7 10^8 N/m^{3/2}$.
- Scaled spring constant $k_n/(mg/d^{1/2}) \sim 7.6 \times 10^9 \frac{\kappa_n/(mg/d^{1/2})}{7.6 \times 10^{10}} \sim 7.6 \times 10^{10}$ $\sim -\gamma_n = 375, 12000.$ $\sim -\gamma_n = 55, 1850.$

Contact models summary:

- Linear contact model constant coefficient of restitution.
- Hertzian contact model accounts for variation in area of contact, coefficient of restitution depends on velocity.
- Hard particles instanteneous collisions.
- Calculation of particle impacts show that coefficient of restitution is 1 for low relative velocities, decreases as velocity increases.
- Experiments on instanteneous collisions described by normal and tangential restitution, and friction.
- Experiments on spring stiffness between particles linear for small deformations due to asperities, Hertzian for larger deformations with spring constant close to Mindlin-Deresiewicz value.

Conservation equations: Energy conserving:

Slow variables:

- Mass, momentum, energy conserved in individual particle interactions.
- Net addition increases value of slow variable.
- Perturbation of wavelength $\lambda = (2\pi/k)$ long compared to microscopic scale decays diffusively.

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

$$c = c_0 \exp\left(-Dk^2t\right)$$

Conservation equations: Energy conserving:

Fast variables:

- Angular momentum, all higher velocity moments.
- Net addition decreases to steady-state value.
- Perturbation of wavelength $\lambda = (2\pi/k)$ long compared to microscopic scale decays reactively.

$$\frac{\partial c}{\partial t} = -Kc + D\nabla^2 c$$

$$c = c_0 \exp\left(-(K + Dk^2)t\right)$$

Conservation equations: Granular matter:

Slow and fast variables:

- Mass and momentum conserved in particle interactions.
- Energy dissipated in particle interactions.

$$\Rightarrow \frac{dE}{dt} = -\alpha(1 - e^2)E + D_E \nabla^2 E$$

Conservation equations: Granular matter:

Slow and fast variables:

$$\frac{dE}{dt} = -\alpha(1 - e^2)E + D_E \nabla^2 E$$
$$E = E_0 \exp(-\alpha(1 - e^2) - D_E k^2)t$$

- Energy slow variable for $\alpha(1-e^2) < (D_E/L^2);$
- Fast variable for $\alpha(1 e^2) > (D_E/L^2)$.
- Conduction & dissipation comparable for $L = (D_E/\alpha(1 e^2))^{1/2}.$

Conservation equations: Suspensions:

Slow and fast variables:

- Particle drag transfers momentum to fluid.
- Momentum not conserved due to fluid drag.
- Momentum fast variable.
- Only slow variable is mass.

$$\frac{d\mathbf{p}}{dt} = -\mu\mathbf{p} - \eta\nabla^2\mathbf{p}$$

Length scale $L = (\eta/\mu)$.

Conservation equations: Mass:

Mass conservation:

$$= \begin{pmatrix} \text{Rate of} \\ \text{mass IN} \end{pmatrix} - \begin{pmatrix} \text{Rate of} \\ \text{mass OUT} \end{pmatrix}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Conservation equations: Momentum:

$$\left(\begin{array}{c}
\text{Rate of momentum} \\
\text{accumulation}
\end{array}\right) = \left(\begin{array}{c}
\text{Rate of} \\
\text{momentum IN}
\end{array}\right)$$

$$-\left(\begin{array}{c} \text{Rate of} \\ \text{momentum OUT} \end{array}\right) + \left(\begin{array}{c} \text{Sum of} \\ \text{forces} \end{array}\right)$$

Rate of deformation:

$$\nabla \mathbf{v} = (\mathbf{I}/3)(\nabla \cdot \mathbf{v}) + \mathbf{S} + \mathbf{A}$$

Constitutive relation:

• Newtonian fluids: Linear stress-strain rate relationship.

$$\sigma = 2\mu \mathbf{S} + \mu_b \mathbf{I}(\nabla \cdot \mathbf{u})$$

• Non-Newtonian fluids: Invariants of the rate of deformation tensor.

$$I_1 = \operatorname{Trace}(\nabla \mathbf{v}) = \nabla \cdot \mathbf{v}$$

$$I_2 = \mathbf{S} : \mathbf{S}$$

$$I_3 = \operatorname{Det}(\mathbf{S})$$

$$\sigma = 2\mu(I_1, I_2, I_3)\mathbf{S} + \mu_b(I_1, I_2, I_3)\mathbf{I}(\nabla \cdot \mathbf{u})$$

Non-Newtonian fluids:

Simple shear:

$$\mu = \mu(\dot{\gamma})$$

Newtonian (A), shear thinning (B), shear thickening (C) and yield stress (D) fluids.

- Displacement field **u** displacement of material points from steady state positions.
- Strain measure:
- Initial reference X.
- Strained position $\mathbf{x}(t)$.
- Displacement $\mathbf{u} = \mathbf{x} \mathbf{X}$.
- Deformation tensor

$$\mathbf{f} = \frac{\partial \mathbf{X}}{\partial \mathbf{x}} = \mathbf{I} - \nabla \mathbf{u}$$

Strain measure:

- Deformation tensor $\mathbf{f} = \mathbf{I} \nabla \mathbf{u}$.
- Incompressible $Det(\mathbf{f}) = 0$.
- Eulerian velocity

$$\mathbf{v} = \left(\frac{\partial \mathbf{x}}{\partial t}\right)_{\mathbf{X}}$$

$$= \frac{\partial \mathbf{u}(\mathbf{x}(\mathbf{X}, t), t)}{\partial t}$$

$$= \left(\frac{\partial \mathbf{u}}{\partial t}\right)_{\mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \cdot \left(\frac{\partial \mathbf{x}}{\partial t}\right)_{\mathbf{X}}$$

$$= \partial_t \mathbf{u} + \mathbf{v} \cdot \nabla \mathbf{u}$$

• Incompressible $\nabla \cdot \mathbf{v} = 0$.

• Symmetric strain measure **e**.

$$\mathbf{e} = \frac{1}{2}(\mathbf{I} - \mathbf{f}^T \mathbf{f})$$

 $\mathbf{f} = \mathbf{I} - \nabla \mathbf{u}.$

- Hookean strain: $\mathbf{e} = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^T (\nabla \mathbf{u}) \cdot (\nabla \mathbf{u})^T)$
- Linearisation approximation: $\mathbf{e} = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$
- Linear strain is not rotational frame invariant

Linear & Hookean strain:

- Sheared state with strain **u**.
- Symmetric strain measure **e**.

$$\mathbf{e} = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^T - (\nabla \mathbf{u}).(\nabla \mathbf{u})^T)$$

• Normal stress differences.

Linear stress-strain relation:

$$\sigma = -p\mathbf{I} + 2G\mathbf{e} + 2\eta\dot{\mathbf{e}}$$

• Neo-Hookean:

$$\mathbf{e} = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T - (\nabla \mathbf{u}) \cdot (\nabla \mathbf{u})^T)$$
$$\dot{\mathbf{e}} = \frac{1}{2} (\nabla \mathbf{v} + (\nabla \mathbf{v})^T) - (\mathbf{e} \cdot (\nabla \mathbf{v})^T + (\nabla \mathbf{v}) \cdot \mathbf{e})$$

• Non-linear???

- Elasticity relations applicable for small deformations.
- For large deformations, microstructure changes, and elasticity equations cannot be used.
- Modifications: Yield stress: $\sigma = \sigma_y p\mathbf{I} + 2G\mathbf{e} + 2\eta_g\dot{\mathbf{e}}$

Granular rheology: Mohr-Coulomb analysis.

Symmetric Stress tensor:

$$\sigma = \left(egin{array}{cccc} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{array}
ight)$$

$$\sigma = \mathbf{E} \mathbf{\Gamma} \mathbf{E}^{-1}$$

Principal stress:

$$\Gamma = \left(egin{array}{ccc} \Gamma_{xx} & 0 & 0 \ 0 & \Gamma_{yy} & 0 \ 0 & 0 & \Gamma_{zz} \end{array}
ight)$$

Principal directions rows of **E**.

Granular rheology: Mohr-Coulomb analysis.

- Normal stress shear stress axis.
- Circle through $(\sigma_{yy}, \sigma_{xy})$, $(\sigma_{xx}, -\sigma_{xy})$.
- Points on circle stresses in rotated reference frame.
- Highest ratio of (normal/shear) stress at tangent from origin.

Granular Rheology: Mohr-Coulomb analysis.

- Yield surface. If stress is on this surface, material flows.
- Inside yield surface material jammed.
- Points outside yield surface not accessible, because material flows.
- Ratio of (shear/normal) stress on yield surface tangent from origin to yield surface.

Granular Rheology: Critical state theory.

- Critical state uniform flowing state for fixed σ_{yy} , σ_{xy} and volume fraction ϕ .
- $\bullet \ \sigma_{xy} = M\sigma_{yy}$
- $\phi = A + B \log (\sigma_{yy}/p_0)$
- Strain rate undefined!

- Dilute granular flows.
- Flow is due to 'fluidisation' of particles due to boundary energy input or internal energy production.
- Define 'granular temperature' $T=1/2m\langle v^2\rangle$ to quantify forcing.

- Homogeneous cooling state.
- System initiated at uniform temperature, inelastic particles.
- Evolution of temperature with time.

- Homogeneous sheared state.
- Production of energy due to mean shear, dissipation due to inelastic collisions.

Conservation equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla \cdot \sigma$$

$$\rho C_v \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = -\nabla \cdot \mathbf{q} + \sigma : (\nabla \mathbf{u}) - \mathbf{D}$$

$$\sigma = -p_{\phi}T\mathbf{I} + \mu_{\phi}T^{1/2}\mathbf{S} + B_1\mathbf{S}.\mathbf{S} + B_2(\mathbf{S}.\mathbf{A} - \mathbf{A}.\mathbf{S}) + B_3\mathbf{A}.\mathbf{A}$$

Energy non-conserved.

Constitutive relations: Stress:

$$\sigma = -pT\mathbf{I} + \mu\mathbf{S} + B_1\mathbf{S}.\mathbf{S} + B_2(\mathbf{S}.\mathbf{A} - \mathbf{A}.\mathbf{S}) + B_3\mathbf{A}.\mathbf{A}$$

$$\mathbf{q} = -K\nabla T$$

$$D = D_{\phi} \rho^2 d^2 T^{3/2}$$

Kinetic theory for hard particles:

$$p = p_{\phi}(\phi)T$$

$$\mu = \mu_{\phi}(T^{1/2}/d^2)$$

$$B_i = (B_{i\phi}/d)$$

$$K = K_{\phi}(T^{1/2}/d^2)$$

Granular rheology: Frictional-kinetic models:

$$\sigma = \sigma_k + \sigma_f$$

- σ_k is given by kinetic theory.
- Temperature determined from energy balance equation.
- σ_f frictional part.
- Frictional stress components assumed to be on Mohr's circle.

Granular rheology: Inertia parameter model:

$$\sigma_{xy} = \mu(I)p$$

$$I = \dot{\gamma}d/\sqrt{p/\rho}$$

$$\mu(I) = \mu_s + (\mu_2 - \mu_s)/(I_0/I + 1)$$

Granular rheology: Micropolar models:

- Difference between local material rotation and particle spin.
- Angular momentum:

$$I\frac{D\omega}{Dt} = \epsilon : \sigma - \nabla . \mathbf{M}$$

 \bullet Couple stress M.

lacktriangle

$$\sigma^{a} = 2\beta \left(\frac{1}{2} (\nabla \mathbf{v} - (\nabla \mathbf{v})^{T}) \right) - \epsilon : \omega)$$

 $\mathbf{M} = \alpha \mathbf{I} \nabla \cdot \omega + 2\gamma \nabla \omega + 2\kappa (\nabla \omega)^T$