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4’ 33"

4’ 33” is a ... composition by American experimental composer John
Cage (1912 - 92).

It was composed in 1952 for any instrument (or combination of
instruments).

The score instructs the performer not to play the instrument during the
entire duration of the piece.
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Source: Wikipedia



Monochrome Art

Yves Klein: IKB 79
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Source: Tate Online
www.tate.org.uk



Monochrome Art

Yves Klein: IKB 81
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Source: Yves Klein Archives
www.yveskleinarchives.org/



Art with "microstructure"

Hans Hofmann
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Source: Photos of Abstract Art
www.photosofabstractart.com/



Microstructural "art"

Xi-Ya Fang, Monash University

Abinandanan (Materials Engg, IISc) Phase Field Models J.A. Krumhansl School 6 / 43

Source: Monash Universityt
mcem.monash.edu.au/assets/images/gallery/7001f3-09.jpg



Art with "microstructure"

bterrycompton on Flickr
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farm8.staticflickr.com/7023/6708508023_913b35b086.jpg



Microstructural "art"

Vikram Jayaram et al, IISc
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materials.iisc.ernet.in/ qjayaram/Mechanicalproperties.htm



Microstructures are everywhere

Optical microscopy: 1 - 100 µm.

Electron microscopy: Down to 10 nm.

Mesoscale: Large compared to atomic sizes and small compared to
what our eyes can see.

Computational modeling has contributed much to our understanding of
how they form and evolve.
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Types of models

1 Continuum theories: emphasis on analytical solutions
2 Computational models

Atomistic models: Molecular dynamics, Monte Carlo
Continuum models: Phase field models
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Early continuum models

Emphasis on

Analytical solutions.
Isolated features. Specifically, their shape, or the dominant
length scale.

Spherical, ellipsoidal, plate-like or rod-like particles
Dendrites:
Alternating lamellae: lamellar spacing
Spinodal: Maximally growing composition fluctuation.

Studies of evolution of multiple features were restricted to simple
shapes
e.g. Lifshitz-Slyozov-Wagner theory of coarsening of spherical
particles.
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Spinodal microstructures

A. Chiasera et al (SPIE Newsroom, 2011)

Abinandanan (Materials Engg, IISc) Phase Field Models J.A. Krumhansl School 12 / 43



Au-Ag de-alloying

Erlebacher et al (2001)
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Porous Glass

M. Suzuki et al, J. Phys. Conf. Ser. (2009)
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Miscibility Gap

Phase diagram of 2,6-lutidine-water system
E.Herzig, University of Edinburgh
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PhD Thesis (2008), Nature Materials (2007)



Ising model: Monte Carlo simulations
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Magnet: Salvatore Torquato, Phys. Bio. (2011) - Magnet
Alloy: Iyad Obeid (obeidlab.blogspot.com)



Miscibility Gap

Nearest neighbour bonds
eAA, eBB and eAB

Miscibiligy gap when
eAB > (eAA + eBB)/2
High Temperature:
homogeneous alloys
Low temperature:
Co-existence of A-rich and
B-rich phases
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Ising model: Monte Carlo simulations

Dave Johnson
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Web applet in HTML 5 (dtjohnson.net/projects/ising)



Coarse graining

Abinandanan (Materials Engg, IISc) Phase Field Models J.A. Krumhansl School 19 / 43



Compositionally diffuse Interface
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Free energy of non-uniform system

Cahn-Hilliard Model

F = Nv

∫
V

[
fo(c) + κ |∇c|2

]
dV

F = The total free energy of the system
fo[c(x)] = Free energy density at location x

(depends on the local composition)
κ = Gradient energy coefficient

... Let’s look at the details.
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Free energy functional

Start with:

F = Nv

∫
V

f (r)dV

Free energy per molecule, f (r), must depend not only on the local
composition, but also on composition derivatives.

f (r) = f (c,pi ,qij ...)

pi = ∂c/∂xi
qij = ∂2c/∂xi∂xj
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Taylor series expansion of f (c,pi ,qij)

f (c,pi ,qij) = fo(c) + Li pi + κ
(1)
ij qij +

1
2

κ
(2)
ij pi pj + ...

fo(c) = f (c = c,pi = 0,qij = 0, ...)

Li =

[
∂f
∂pi

]
(c,0,0)

κ
(1)
ij =

[
∂f

∂qij

]
(c,0,0)

κ
(2)
ij =

[
∂2f

∂pi∂pj

]
(c,0,0)
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Symmetry arguments

Centre of symmetry: energy due to pi and − pi must be the same.

Li = 0;

Cubic symmetry (or, isotropy):

κ
(1)
ij = κ1δij

κ
(2)
ij = κ2δij

f (c,pi ,qij) = fo(c) + κ1qii +
1
2

κ2 pi pi

or,

f (c,pi ,qij) = fo(c) + κ1∇
2c +

1
2

κ2|∇c|2
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Divergence theorem

∫
V

(
k1∇

2c
)

dV =−
∫

V

[
∂k1

∂c

]
[∇c]2 +

∫
S

[(κ1∇c) ·n]dS

We now have the final form for the total free energy, F , for a system
with a non-uniform composition field c(r):

Cahn-Hilliard Model: Energy

F = Nv

∫
V

[
fo(c) + κ|∇c|2

]
dV

with
κ =− ∂κ1

∂c
+

κ2

2
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Equilibrium interface width

Cahn-Hilliard Model: Energy

F = Nv

∫
V

[
fo(c) + κ|∇c|2

]
dV

Too sharp

κ|∇c|2 is too high

Just right

Minimizes F

Too wide

fo(c) is too high
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Interfacial energy and width

σ = Nv

∫
∞

−∞

[
∆fo + κ|∇c|2

]
dx

where

∆fo = fo(c)− (1−c) µA −c µB

Cann and Hilliard show that:

σ ∝ [κ∆fo]1/2

w ∝

[
κ

∆fo

]1/2
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Diffusion

Diffusive flux, J:

J = −M ∇µ

Diffusion potential, µ = ( µB−µA ):

µ =
δF
δc

Atomic mobility, M

Continuity equation:

∂c
∂t

=−∇ · J = ∇ · [M ∇ µ]
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Cahn-Hilliard equation

For constant mobility, M:

Cahn-Hilliard Model: Kinetics
∂c
∂t

= M ∇
2 µ

where:
µ =

δF
δc

=
∂fc
∂c
−2κ∇

2c

With composition, c, scaled so that cα = 0 and cβ = 1, the simplest
approximation for fo(c) (double well potential) is:

fo(c) = A c2 (1 − c)2
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Spinodal decomposition: Microstructural evolution
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Simulation procedure

Discretize space using a regular lattice (grid). and start with an initial
composition field c(r, t = 0). Typically, a uniform composition (say,
c = 0.5) with a small random fluctuation added to it.

1 Solve a discretized version of the Cahn-Hilliard equation
numerically to go from c(r, t) to c(r, t + ∆t).
Any suitable numerical procedure will do. We use a Fourier
transform technique.

2 Go back to Step 1!

Store the composition field every once in a while for post-simulation
data analysis and visualization.
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A quick recap

Focus on the interfaces.
Contrast with: analytical theories which focus on isolated features
in simple geometries; e.g., growth of spherical particles, lamellar
growth, onset of dendrite formation, etc.
Phase field models, at their simplest, are models for the energy
and dynamics of interfaces.
Figure out what the interfaces do, where they go, without any
explicit tracking of interfaces.
Contrast with: sharp interface models which tie themselves into
numerical knots.
Topological events – coalescence or splitting of microstructural
features – are handled gracefully.
Follow a transformation from the beginning to the very late stages.
Contrast with: analytical theories that examine one (small,
amenable) part of a phenomenon. e.g. Nucleation, growth or
coarsening.
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Simulations: A framework

1 Define a configuration
2 Define an energy for the configuration
3 Kinetics: Define a rule (an elementary step) that takes the

system from one configuration to the next.
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Simulation framework

Classical molecular dynamics:

1 Configuration: Position and velocity of each atom
2 Energy: Sum of potential and kinetic energies of all the atoms
3 Kinetics: Solve Newton’s laws of motion for each particle to go to

the next step.

Monte Carlo simulation of Ising alloys:

1 Configuration: Identity of the atom at each site i
2 Energy: Ising Hamiltonian. Typically, sum of all the (nearest

neighbour) bonds
3 Kinetics: a randomly chosen atoms exchanges its position with a

randomly chosen neighbour (Atom exchange mechanism).
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Simulation framework: Phase field model

1 Configuration: Composition field, c(r, t), defined at every grid
point

2 Energy: F =
∫ [

fo(c) + κ|∇c|2
]
dV

3 Kinetics: The Cahn Hilliard equation (essentially, a modified
diffusion equation)
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A short break

Questions?
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A second canonical model

A model for a non-conserved order parameter.

Atomic order:

Ferromagnetic domains in an Ising magnet
Alloy analogue: Ordered domains
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Non-conserved order parameter field η(r, t)

Define a long range order parameter η that takes a value of 1 in the
first variant and -1 in the second variant.

Interfaces (which, in this case, are called antiphase boundaries) are
where η exhibits gradients.
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Cahn-Allen Model

1 Configuration: η(r, t)
2 Energy: Similar to the Cahn-Hilliard model, define the total free

energy as a functional of η(r, t):

F =
∫

V

[
fη(η) + κη |∇η|2

]
dV

3 Kinetics: Increment the order parameter if such an increment
decreases the system free energy:

∂η

∂t
=− L

δF
δη
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Simulations of the Cahn-Allen model
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A quick recap

In the physics literature, the Cahn-Allen equation is also called the
time-dependent Ginsburg-Landau – TDGL – equation.
Another name: Model A, in the classification by Halperin and
Hohenberg (Cahn-Hilliard model is classified as Model B).
The two canonical models have been combined in numerous
creative ways to adapt them to study of a wide variety of
phenomena.
It is easy to study effects due to elastic stresses, an electric field,
etc. using these models (and others derived from them).
Typically, the additional effects are incorporated adding one or
more energy terms into the equation for the free energy functional.
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Where do we go from here?

1 Algorithm for solving Cahn-Hilliard and Cahn-Allen equations
numerically.

2 Elastic stress effects: Precipitate shape changes, alignment, thin
film instability

3 Grain boundary effects on spinodal decomposition
4 Grain boundary grooving and grain vertex pitting
5 With an emphasis on model development that takes into account

specific details. e.g., enhanced atomic mobility at grain
boundaries.
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And before we end ...

Some of Yves Klein’s "monochromes" have some (micro)structure.

As for John Cage, his 4’ 33" still had some (micro)structure to it: it was
divided into three movements, lasting 30", 2’ 23" and 1’ 40".
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