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Jamming

● Transition between fluid and solid phase

● “blocked” state, “fragile”

● Yield-stress fluid



  

Soft, amorphous materials

Foam: shaving foam

Suspension: paint

Granulate: sand, flour

Emulsion: mayonnaise

UMIST



  

Variety of material properties
● Densly packed assembly of “particles”

– Soft or hard

– Dissipative mechanisms: hydrodynamics, 
friction, etc

● Diverse mechanical properties

● Different scientific communities: fundamental and 
applied science

Cox, Birmingham Weeks, Emory



  

Close packing

FCC 
74%

Random Close Packing 
64%

φ > φRCP: (Motion) only possible if 

particles deform

φ < φRCP: Motion possible, but: 

                           “lack of space”



  

At around RCP

● Response to deformation “non-affine”

● Elastic moduli: G/B → 0 at φ
c

● Where does this come from ? – contact network

Ellenbroek et al. PRL (2006), O'Hern et al. PRE 68 (2003)



  

At jamming contact network is 
“isostatic”

“Just enough inter-particle contacts”

z < z
iso

 floppy modes – zero energy modes

z > z
iso

 elastic solid

z = z
iso

 minimally rigid, isostatic 

Maxwell counting: z
iso

 = 2c/p = 2d



  

Contacts

Nz
2~−J 

−0.7

z

O'Hern et al. PRE 68 (2003), CH, P. Chaudhuri, JL Barrat, Soft Matter (2010)

z− ziso~−J 
1 /2

z=
1
N ∑i

zi
Intensive 
Variable

Average z Pdf(z)



  

Vibrational density of states

● Many low frequency vibrations
● Frequency cut-off:

G /K~ p1 /2

c~z−ziso

Wyart PRE 72 (2005)

● What is important: 
distance to isostatic 
state

rather than

z− ziso

−c



  

Research Questions
What happens in fluid state ??

Driving 
amplitude

yield-threshold

SOLID

FLUID

Particle volume fraction

Driving mechanisms: rattling, shear, air flow, ...

Dissipative mechanisms: friction, viscous, ...

Anything universal ? Role of particle contacts ? 

(T=0)



  

Two driving mechanisms
Steady shear flow:

How and why does the viscosity diverge ? 

 jam

viscosity yield 
stress

Rattling:

Glassy vs Jamming dynamics

“Melt a glass by freezing”



  

Shear flow φ<φ
c

Divergence of viscosity at φ
c



  

Role of contacts ?

● Shear flow of near-isostatic contact network
● Breaking/rewiring of contacts z

Connection to rheology of particle-based system ?

M. Wyart arXiv (2011)

Density of states Contacts vs. pressure



  

Experiments: granular suspension

C. Bonnoit et al. J Rheol. (2010), Boyer et al PRL (2011)



  

Viscous dissipation in small gaps      

 v~̇dh

̇0= v / h

● Dissipation volume

● Local strainrate

● Dissipated energy

● Viscosity

V 0~hd 2

0 ̇0
2 V 0

d

~0 h−1

h~−c 

e.g. Mills/Snabre EPJE (2009)

Experiments: -2 ... -3



  

Simulated system
● 2d

● Two particle types

– diameter a, 1.4a
● Lee-Edwards bc

● Control parameters

– Particle volume fraction

– Strainrate 
● Observables

– Shear stress 

– Particle trajectories


̇





  

Dissipative MD Simulations

● Repulsive contact interactions

● Dissipation

● Inertial forces: mass m

● No friction, temperature, no “hydrodynamics”

E=k r−r c
2 r≤r c

Fdiss=−v−v flow

v flow x , y = ex y ̇



  

Flow curve

̇ ̇

S
he

ar
 s

tr
es

s 
σ/

ζ

Newtonian – shear thickening – shear thinning

c=0.843



  

Newtonian regime
viscosity =/ ̇

~c−
−2.1

c−

Also see P. Olsson and S. Teitel PRL (2007), PRE (2011)



  

Particle dynamics

● In Newtonian regime: trajectories strainrate 
independent

● Identical trajectories from quasistatic simulations 
(energy minimization,            )

● Newtonian  = Quasistatic

Msq displacement

strain

̇ 0

Van Hove

displacement



  

Role of dissipative coefficient ζ

● In Newtonian regime: 
trajectories independent of 
dissipative coefficient ζ

● One and the same QS limit

Fdiss=−v−v flow



  

Modified dissipation law

In “Newtonian” regime: trajectories independent of exponent α

Modified Newtonian” regime

Andreotti, Barrat, CH arXiv (2011)



  

Contacts z

● In “Newtonian” regime: contacts z not well defined

● Identical trajectories (and therefore viscosities) with 
widely varying contact numbers

● No predictive power

=0.825



  

““Lack of space”Lack of space”

(φ(φ
cc
=0.843)=0.843)

Velocity fluctuations  v~c−−1.1

CH, Berthier, Barrat EPL (2010)

δφ = 0.023δφ = 0.023     δφ = 0.003δφ = 0.003

– Fragile: small cause ... large effect



  

Lubrication

 v~̇d
ḣ0= v / h

● Dissipation volume

● Local strainrate

● Dissipated energy

● Viscosity

V 0~hd 2

0 ̇0
2 V 0

d

~0 h−1 h~−c 

 v~
−x
̇d

~0
−2x1



  

Conclusions: Shear

● Particle trajectories approach unique 
quasistatic limit in Newtonian flow regime

● Connectivity z is NOT unique in this regime

→ Isostatic point not relevant for flow properties
● Rather: “lack of space” leads to singular 

velocity fluctuations
● Additional contribution to divergence of 

viscosity

−RCP z−ziso



  

Rattling

“melt a glass by freezing” ??



  

Motivation

● Dynamics on small lengthscales

● Close to jamming: superdiffusion

● Role of friction: exploration of sub-
cage structure ??

Lechenault EPL (2008), Soft Matter (2010)



  

Simulated system
● 2d

● Polydisperse: 

– diameter [a,1.4a]

– mass [m,1.4^3m] 
● Walls on all four sides

● Friction:

– Frictional bottom plate

– Interparticle friction: tangential forces

F tFn



  

Driving

F=A sin  t 

Snapshots after

Vary the amplitude A

Bottom plate stationary

Periodic forcing of particles

t k=k⋅2/



  

Particle dynamics: msq-disp

=0.835

No interparticle 
friction



  

Particle dynamics: msq-disp

● Short times: activity decreases with driving

● Long times: diffusion constant nonmonotonic

● Intermediate times: superdiffusion

No interparticle 
friction

=0.835



  

Anomalous diffusion

● Superdiffusion t < 1000 cycles

● Diffusivity maximum: A
c
=1.1



  

Trajectories

A>A
c

A=A
c



  

Role of friction: bottom plate

● Driving force 

vs. friction

– Mobility threshold: 

● At A
c
: heavy particles immobilized

– pushed around by light particles

– Matrix of heavy particles evolves slowly

– Memory effect, which leads to superdiffusion

● At A>A
c
: glassy phase, vibrations erase memory  

Fdrive~A

F frictionm i g

Aim i g



  

● Always hammer at the same place

● Make sure the hole is still there



  

Conclusion
Experiment   –   Simulation

● Superdiffusion 

– at phic

● Levy flight

● Spatial but no temporal 
correlations 

● “hard-spheres”

● Superdiffusion

– Range of phi; no 
strong variation

● Exponential tails

● Spatio-temporal 
correlations

● Particles are much softer !

Role of friction: helps fixating displacement steps

Lechenault EPL (2008), Soft Matter (2010)
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