Particle dynamics close to jamming

Claus Heussinger

Institute for theor. Physics, University of Göttingen Max-Planck Institute for Dynamics and Selforganization, Göttingen

Acknowledgements

J.-L. Barrat: Univ Grenoble

B. Andreotti: ESPCI Paris

J. Plagge: Uni Göttingen

E. Noether (Funding)

Jamming

- Transition between fluid and solid phase
- "blocked" state, "fragile"
- Yield-stress fluid

Soft, amorphous materials

Foam: shaving foam

Suspension: paint

Granulate: sand, flour

Emulsion: mayonnaise

Variety of material properties

- Densly packed assembly of "particles"
 - Soft or hard
 - Dissipative mechanisms: hydrodynamics, friction, etc
- Diverse mechanical properties
- Different scientific communities: fundamental and applied science

Close packing

Random Close Packing

 $\phi > \phi_{RCP}$: (Motion) only possible if particles deform

 $\phi < \phi_{RCP}$: Motion possible, but:

"lack of space"

At around RCP

- Response to deformation "non-affine"
- Elastic moduli: $G/B \rightarrow 0$ at ϕ_c
- Where does this come from ? contact network

At jamming contact network is "isostatic"

"Just enough inter-particle contacts"

 $z < z_{iso}$ floppy modes – zero energy modes

 $z > z_{iso}$ elastic solid

 $z = z_{iso}$ minimally rigid, isostatic

Maxwell counting: $z_{iso} = 2c/p = 2d$

Contacts

$$z-z_{iso}\sim (\phi-\phi_J)^{1/2}$$

Intensive Variable
$$\overline{z} = \frac{1}{N} \sum_{i} z_{i}$$

$$N \Delta \overline{z}^{2} \sim (\phi - \phi_{J})^{-0.7}$$

O'Hern et al. PRE 68 (2003), CH, P. Chaudhuri, JL Barrat, Soft Matter (2010)

Vibrational density of states

- Many low frequency vibrations
- Frequency cut-off: $\omega_c \sim z z_{iso}$

 What is important: distance to isostatic state

$$Z-Z_{iso}$$

rather than

$$\phi - \phi_c$$

Research Questions

What happens in fluid state ??

Driving amplitude (T=0)

Particle volume fraction

Driving mechanisms: rattling, shear, air flow, ... Dissipative mechanisms: friction, viscous, ...

Anything universal? Role of particle contacts?

Two driving mechanisms

Steady shear flow:

How and why does the viscosity diverge?

Rattling:

Glassy vs Jamming dynamics "Melt a glass by freezing"

Shear flow $\phi < \phi_c$

Divergence of viscosity at ϕ_c

Role of contacts?

- Shear flow of near-isostatic contact network
- Breaking/rewiring of contacts z

Connection to rheology of particle-based system?

Experiments: granular suspension

C. Bonnoit et al. J Rheol. (2010), Boyer et al PRL (2011)

Viscous dissipation in small gaps

• Dissipation volume $V_0 \sim hd^2$

$$h \sim (\phi - \phi_c)$$

• Local strainrate $3 \cdot - 4 \cdot 1$

$$\dot{y}_0 = \Delta v/h$$

Dissipated energy

$$\eta_0 \dot{y}_0^2 V_0$$

• Viscosity $\eta \sim \eta_0 h^{-1}$

Experiments: -2 ... -3

Simulated system

- 2d
- Two particle types
 - diameter a, 1.4a
- Lee-Edwards bc
- Control parameters
 - Particle volume fraction ϕ
 - Strainrate \hat{y}
- Observables
 - Shear stress σ
 - Particle trajectories

Dissipative MD Simulations

Repulsive contact interactions

$$E = k (r - r_c)^2 \qquad r \le r_c$$

Dissipation

$$F_{diss} = -\zeta(v - v_{flow})$$

$$v_{flow}(x,y) = \hat{e}_x y \dot{y}$$

Inertial forces: mass m

No friction, temperature, no "hydrodynamics"

Newtonian - shear thickening - shear thinning

Newtonian regime

viscosity $\eta = \sigma / \dot{y}$

Particle dynamics

- In Newtonian regime: trajectories strainrate independent
- Identical trajectories from quasistatic simulations (energy minimization, $\dot{\gamma} \rightarrow 0$)
- Newtonian = Quasistatic

Role of dissipative coefficient ζ

 In Newtonian regime: trajectories independent of dissipative coefficient ζ

$$F_{diss} = -\zeta(v - v_{flow})$$

One and the same QS limit

Modified dissipation law

$$\vec{F}^{\text{visc}}(\vec{v}_i) = -\zeta \delta \vec{v} \left| \delta \vec{v} \right|^{\alpha - 1}$$

Modified Newtonian" regime

$$\sigma = \hat{\eta} \dot{\gamma}^{\alpha}$$

In "Newtonian" regime: trajectories independent of exponent α

Andreotti, Barrat, CH arXiv (2011)

Contacts z

- In "Newtonian" regime: contacts z not well defined
- Identical trajectories (and therefore viscosities) with widely varying contact numbers
- No predictive power

$$\delta \phi = 0.003$$

$$\delta \phi = 0.023$$

Velocity fluctuations $\delta v \sim (\phi_c - \phi)^{-1.1}$

- Fragile: small cause ... large effect

 $(\phi_{c}=0.843)$

Lubrication

Dissipation volume

$$V_0 \sim hd^2$$

Local strainrate

$$\dot{y}_0 = \Delta v/h$$

• Dissipated energy

$$oldsymbol{\eta}_0 \dot{oldsymbol{\dot{\gamma}}}_0^2 V_0$$

Viscosity

$$\eta \sim \eta_0 h^{-1} \qquad h \sim (\phi - \phi_c)$$
$$\eta \sim \eta_0 \delta \phi^{-(2x+1)}$$

Conclusions: Shear

- Particle trajectories approach unique quasistatic limit in Newtonian flow regime
- Connectivity z is NOT unique in this regime
 - → Isostatic point not relevant for flow properties
- Rather: "lack of space" leads to singular velocity fluctuations
- Additional contribution to divergence of viscosity

$$\phi - \phi_{RCP}$$

Rattling

"melt a glass by freezing" ??

Motivation

- Dynamics on small lengthscales
- Close to jamming: superdiffusion
- Role of friction: exploration of subcage structure ??

Lechenault EPL (2008), Soft Matter (2010)

Simulated system

- 2d
- Polydisperse:
 - diameter [a,1.4a]
 - mass [m,1.4^3m]
- Walls on all four sides
- Friction: $F_t \leq \mu F_n$
 - Frictional bottom plate
 - Interparticle friction: tangential forces

Driving

Bottom plate stationary
Periodic forcing of particles $F = A \sin(\omega t)$

Snapshots after $t_k = k \cdot 2\pi / \omega$ Vary the amplitude A

Particle dynamics: msq-disp

No interparticle friction

$$\phi = 0.835$$

Particle dynamics: msq-disp

No interparticle friction

 $\phi = 0.835$

- Short times: activity decreases with driving
- Long times: diffusion constant nonmonotonic
- Intermediate times: superdiffusion

Anomalous diffusion

- Superdiffusion t < 1000 cycles
- Diffusivity maximum: $A_c = 1.1$

 $A=A_c$

Trajectories

Role of friction: bottom plate

Driving force

$$F_{drive} \sim A$$

vs. friction

$$F_{friction} \leq \mu m_i g$$

– Mobility threshold:

$$A_i > \mu m_i g$$

- At A_c: heavy particles immobilized
 - pushed around by light particles
 - Matrix of heavy particles evolves slowly
 - Memory effect, which leads to superdiffusion

Conclusion Experiment – Simulation

- Superdiffusion
 - at phic

- Superdiffusion
 - Range of phi; no strong variation

Role of friction: helps fixating displacement steps

- Levy flight
- Spatial but no temporal correlations
- "hard-spheres"

- Exponential tails
- Spatio-temporal correlations
- Particles are much softer!