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The block analysis (coarse-graining)

technique
e Simple to use.

e Ordinary NVT MD or MC suffices.

* Get phase boundaries i.e. coexistence
densities, compressibilities of coexistent
phases.

* Also get surface tensions, Binder cumulants,
scaling functions, scaling fields and scaling
exponents.

» Can be generalized to obtain elastic constants
etc. (generalized susceptibilities).
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The Ising model and lattice gas

The energy of the Ising model is defined to be:

H==2, J;8.5,:8=*I

ij) Y

For each pair, if
J, 0 the interaction is called ferromagnetic
J,; <0 the interaction is called antiferromagnetic

J; =0 the spins are noninteracting

A ferromagnetic interaction tends to align spins, and an antiferromagnetic
tends to anti align them.



Ising “lattice” gas
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Block analysis for the Ising model
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Constant magnetization = NVT
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Fig. 2. Typical configurations of twodimensional blocks for Lz £,
| s2=0, in the cases where the block is a subsystem of a large
system (a) or where it is an isolated {inite system with periodic (b)
or free (¢) boundary conditions. Shaded areas indicate domains of
J negative magnetization, white areas have positive magnetization

K. Binder, Z. Phys. B 43, 119 (1981)



Block analysis for the Ising model
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Block analysis for the Ising model

T'<T .

| c P(s)=L 122k, Ty )~ V2
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But this works only for T << T_

In general P(0) is underestimated
P(0) ~ exp(—L?) instead of ~ exp(—L4~1)




Block analysis for the Ising model

Near the critical point: Finite size scaling !! B
P, (s)=L"PP(asL”,E/L) y=—
A~ v
P,(s)=L"PP(z,z')
Use (1) normalization (2) scaling relations (3) FSS
of the Binder cumulant to finally get ..

Fl{_z! E":I _ E":,Al 7 =¥ {E’E[J [ — 4 % z ‘i[z z'Pr _A,a}!:l
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+exp[ A2 7~z + 4,1T, (40)




Block analysis for the Ising model

e oy

(3T (ET -
A =l; - (ﬁ ) . A, =M(EPra.
=V \E 3 V

Also one can get the surface tension by taking
the limit, lim P(z, 2’)

z—()

P(0,z)= 21 exp[—A4(2') 9], 2/ =0,

;ijzj:;ﬂd[ﬁl”m-"'{f‘}d] WL~ Ld_l



From a single simulation you get:

(1) coexistence densities (magnetizations).

(2) Magnetic susceptibilities from constant M
simulationsath =01

(3) ratio of critical amplitudes (universal values).
(4) surface tensions.



Block analysis for lig-gas transitions
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Block analysis for lig-gas transitions

L
xr' _ (N)L— (N} x§ = 1/pkaT
XT (M)~

12 |
b (1 _ ﬁ) xr + XL+ O(L72).

Constant volume !!

I b _ -
i) =xr + X3 L + O(L™?)

Constant pressure

Roman, White and Velasco Europhys. Lett. 42, 371, (1998)



Block analysis for lig-gas transitions

Rovere, Heerman, Binder, Europhys. Lett. 6, 585 (1988)
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Fig. 1. — Plot of (L/S]x';']' vs. L/S at a packing fraction = 0.5. Dashed line: CEMC data from

a system of N = 256 hard disks (7.8 x 10° MCS). Dotted line: GCEMC data from a system of
(N) = 256 hard disks (7.8 x 10° MCS). The thin lines correspond to the results of the fit to (4) and
(3), respectively (see text).

Fig. 2. — Inverse isothermal compressibility of a hard-disk fluid. Triangles: extrapolated results from
a CEMC simulation; N = 256, MCS = 7.8 x 10°. Circles: extrapolated results from GCEMC data;
(N) = 256, MCS = 7.8 x 10°. The lines correspond to the results obtained from the compressibility
factor of Henderson (eq. (5)) with @ = 0.128, b= 0.043 (solid line) and a = 0.125, b = 0 (dotted line).
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Figure 1. Phase diagram including paramagpetic Figure 2. Nommalized bleck density distributions
fluid (pF), ferromagnetic Auid (FF), paramagnetic gas Fr(T". p*/p") for g° = 045 and My = 4 (L =
(pc:), ferromagnetic liquid (FL), ferromagnetic hexagonal [/ 5* 142/ M) connecting lines are guides to the eye.
solid (FH), and ferromagnetic square solid (FS) phases.

Special points are the tricritical point (TCP) and two

triple points (TP, TP2). Curves: MF/DFT predictions.

(Full curve: first-order tramsitions; broken cuorve:

second-order transitions; dotted lines: triple lines),

Circles and triangles (Fs coexistence densites); block-

analysis PIMC data. Squares (FH coexistence densities):

local structure anajysis PIMC data,



CC
CC THE BLOCK ANALYSIS
CC
DO 311=1,10
NB= 5+ (I-1)
DL = 1.0/DFLOAT(NB)
DO 32J=1,NB
DO 33K = 1,NB
PKNT = 0
DO 34 L=1,N
XT = X(L) + 0.5
YT=Y(L)+05
IF(XT.LT.J*DL.AND.XT.GE.(J-1)*DL)THEN
IF(YT.LT.K*DL.AND.YT.GE.(K-1)*DL)THEN
PKNT = PKNT + 1
ENDIF
ENDIF
34 CONTINUE
BINDEN = PKNT+1

IF(BINDEN.GT.MAXBND)BINDEN=MAXBND
IF(BINSPN.GT.MAXBNS)BINSPN=MAXBNS

HISDN(I,BINDEN) = HISDN(I,BINDEN) + 1
33 CONTINUE

32 CONTINUE
31 CONTINUE
RETURN
END



Block analysis for solids

Solids are very incompressible
Number fluctuations are (almost) nonexistent

Block densities suffer from discretization and/or
commensurablility-incommensurability effects

Lig-solid density difference is small + it is first
order

No critical scaling properties can be used.
Block analysis for lig-solid boundary = bad idea



Some examples of gas/liquid/solid
phase coexistence
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Phase diagram of a model anticlustering binary mixture in two dimensions:
A semi-grand-canonical Monte Carlo study

5. Sengupta,” D. Marx." P. Nielaba, and K. Binder
Imstatut fur Phypnk Johannes Guirnberg ['noversial Moz, KoMa 351, D-55089 Mainz, Germany
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Down Spin(S, = -1) Up Spin(S;= +1)
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* The angle 0 is always measured from
the up spin to the downspin
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r;| 18 the inferparticle separation

is the spin of the " particle

is the angle between i and /" particle

The pair potential was calculated using a minimum image convention with a spherical cut-off at

’:.'Eu' = 2'552 and Eru.r = u{J {rru.r ]’

potential.

r. =2""g? is the position of the minima of the L-J pair



Block analysis (coarse — graining)
for solids

* Fluctuations of block strains

* No external stress both NVT and NPT will do
« Can be applied to experiments

* “Model independent” (almost)

« Can be used to get non-local elasticity etc.



= #—p| ° Thechains are fnrmed with alternate
A Au <111> and <110> planes
* The bottom end of the chains are just
the mirror image of the top end
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Nonlocal elastic compliance for soft solids: Theory, simulations, and experiments

K. Franrrahe, P Keim, . Maret, and P. Niclaba
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The monlocal elasie response [unction is cruceal for undersianding many properties of woll solids. This may
be abtained by measunng stran-strain aglooorrelation funclons. We use compaler sumulations as well as video
macriscopy datz of superparamagnenc colloids o oblan thess correlations for two-dimensional mangular
solds. Elasiee canstants and elastc cormelalson lenglhs are extracted by analyang the comelalion funchions. We
show that Lo explain our obhservalrons desplacement Moctuations m a sofl solud pesd o comlan affine (strain) as
well as nonaffine companenls.

DO R0 PhysRevE. TH.O2Z6]1 0 PACS number(s): 62.20.0—, 05.10.La, 82.70.0d






Local elastic (or affine) excitations of the 2d solid

e, =0du,/ dx+duy,/dy (volume),
ey=du,/dx—duy/ dy (deviatoric),
e3=(du,/ dy+du,/ dx)/2 (shear).

+ local rotations O = aux/ay-@ug/@x



Coarse graining

N.PT. ensemble M. C. simulations of a 2d triangular “harmonic net”.

coarse grain over an “interaction volume”

affine transformation: .

() -~ ro® = (1 + &M (R, - Ry) 2 g

M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998)

X = 2maN 2i=1,2 {rm' = o' = 2j=1,2 (0ij+E&ij) [Rm'-Ro']l}>

* One needs to minimize the “error” X with respect to choices of the local strain
tensor €.

e The residual value of X measures “non-affineness” of the transtormation.



Strain-strain correlation functions

i) highly anisotropic
i) strongly coupled

ili) sinqular at k=0
iv) limit k—0 gives
elastic constants




—N=3120] “N=31201
soN = 4736 o N=4736
+~N = 5822 . N =582

« N=3120
o N =4736
.+ N =5822

® All elastic constants recovered from
K—0 limits.
® for kK # O deformations, the solid is

20-25 times softer for volume
fluctuations.




R

non—affine transformations

coarse-graining leads to non-affineness.

Total, Ap/p = e; = ei* + e (i.e. V-u + non-affine "defects”)
such that: <e,”> = O (total defects = 0)

and <eP(r)e(r')> = 0. (affine and non-affine parts are
uncorrelated)

Then any <eP(0)e;’(r)> ~exp(-r/A) -A, which satisfies the constraints,
explains the results. A~ 5 lattice spacings



b) 0 []3 ' | ' | ' | ' |

i ]:_:]
G1 =2
OE1 =3

1=20

002 -

g Ly

e

001 'ﬁ;?q .

e e
A -
Eame '8

e 0 |
. .D. .Duuamm,.
07 07 06 03
L/L




1 (3 a3

calculated from f 100 /Ba*| 50 /Ba*| 200 /Ba’

from fluctuations
of h 08.9 /Ba*|49.4 /Ba*|196.7 /Ba’

-

from G(k = 0) 06.8 /fBa® |48.6 /Ba®|190.8 /Ba’

~r

from fits of G(k # 0) -149.1 /Ba®|195.7 /Ba’




Thanks for everything !!
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