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Precision ΛCDM 
cosmology: inflation, 
detailed study of CMB, 
hierarchical galaxy 
formation
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Census of NSs, tie to γ bursts

Discover/study (SM)BH binaries

Detailed test of strong-field GR

Search for GW pulsars

Find a GW stochastic background

Measure cosmic distances, H0, w

Watch SMBH growth at high z

Illuminate stellar evolution

Find cosmic strings, exotica

Deep view of SNe Type II 

Type II supernovae: 
gravitational collapse

4

1960 2010

Monday 2 January 12



B F Schutz
Albert Einstein Institute

Gravitational Waves: Astronomy for the 21st Century

2015+: 10-22 with 2-5 IFOs

5

Monday 2 January 12



B F Schutz
Albert Einstein Institute

Gravitational Waves: Astronomy for the 21st Century

2015+: 10-22 with 2-5 IFOs
In the period 2015-2016 we expect that LIGO-H, LIGO-L, and VIRGO will 
come online and reach their design sensitivity. 

5

Monday 2 January 12



B F Schutz
Albert Einstein Institute

Gravitational Waves: Astronomy for the 21st Century

2015+: 10-22 with 2-5 IFOs
In the period 2015-2016 we expect that LIGO-H, LIGO-L, and VIRGO will 
come online and reach their design sensitivity. 

LIGO-India (if approved), or LIGO-H2, will follow hopefully 2016 or 
2017.

5

Monday 2 January 12



B F Schutz
Albert Einstein Institute

Gravitational Waves: Astronomy for the 21st Century

2015+: 10-22 with 2-5 IFOs
In the period 2015-2016 we expect that LIGO-H, LIGO-L, and VIRGO will 
come online and reach their design sensitivity. 

LIGO-India (if approved), or LIGO-H2, will follow hopefully 2016 or 
2017.

LCGT in Japan is already funded and could operate at an initial 
sensitivity (~10-21) by 2015-16, going to 10-22 when cryogenics are 
installed over another couple of years. 

5

Monday 2 January 12



B F Schutz
Albert Einstein Institute

Gravitational Waves: Astronomy for the 21st Century

2015+: 10-22 with 2-5 IFOs
In the period 2015-2016 we expect that LIGO-H, LIGO-L, and VIRGO will 
come online and reach their design sensitivity. 

LIGO-India (if approved), or LIGO-H2, will follow hopefully 2016 or 
2017.

LCGT in Japan is already funded and could operate at an initial 
sensitivity (~10-21) by 2015-16, going to 10-22 when cryogenics are 
installed over another couple of years. 

By 2020 we may hope for five full-sensitivity detectors operating as a 
network. Further regular upgrades likely.

5

Monday 2 January 12



B F Schutz
Albert Einstein Institute

Gravitational Waves: Astronomy for the 21st Century

2015+: 10-22 with 2-5 IFOs
In the period 2015-2016 we expect that LIGO-H, LIGO-L, and VIRGO will 
come online and reach their design sensitivity. 

LIGO-India (if approved), or LIGO-H2, will follow hopefully 2016 or 
2017.

LCGT in Japan is already funded and could operate at an initial 
sensitivity (~10-21) by 2015-16, going to 10-22 when cryogenics are 
installed over another couple of years. 

By 2020 we may hope for five full-sensitivity detectors operating as a 
network. Further regular upgrades likely.

GEO-HF will supplement at f > 800 Hz.

5

Monday 2 January 12



B F Schutz
Albert Einstein Institute

Gravitational Waves: Astronomy for the 21st Century

2015+: 10-22 with 2-5 IFOs
In the period 2015-2016 we expect that LIGO-H, LIGO-L, and VIRGO will 
come online and reach their design sensitivity. 

LIGO-India (if approved), or LIGO-H2, will follow hopefully 2016 or 
2017.

LCGT in Japan is already funded and could operate at an initial 
sensitivity (~10-21) by 2015-16, going to 10-22 when cryogenics are 
installed over another couple of years. 

By 2020 we may hope for five full-sensitivity detectors operating as a 
network. Further regular upgrades likely.

GEO-HF will supplement at f > 800 Hz.

Coincident GW-EM observing is important: multimessenger astronomy. 
LV currently working with many projects, exchanging triggers.
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Science with 1st IFO Net (2)
NS-NS merger waveforms tell us about hot NS EOS (talk by Shibata), mass 
distribution of NS’s in binaries. BH-BH mergers test strong-field GR, reveal 
distribution of BHs in space and in mass.  

Some reason for believing that NS-NS merger leads to a short hard γ-ray 
burst.

Beaming fraction ~1%.

First network may therefore see ≾ 1 association with GRB per year. 

With 3 IFOs, every NS-NS trigger will lead to an EM search of sky error box.

Nearest event will have SNR ~ 8 × 401/3 = 27

Best error box size (2πf D × SNR)-1 ~ 0.5º 

Identifications will lead to understanding of off-beam “afterglow” , and this 
will allow transient EM monitors to find more.
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Binary mergers are standard sirens: can infer the distance (Schutz ’86).

                      τc =f(df/dt)−1          DL ~ c/(f2τch) 
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Effectively, the chirp time τc gives absolute luminosity, h gives 
apparent luminosity. Distance DL is given directly by local 
measurables: no calibration, no distance ladder. Accuracy δDL/DL ~ 1/
SNR, typically 10%.
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apparent luminosity. Distance DL is given directly by local 
measurables: no calibration, no distance ladder. Accuracy δDL/DL ~ 1/
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Compare with astronomers’ distance ladder: need to localize events to galaxies or 
clusters containing EM standard candles. Each event only ~10% accurate.
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Science with 1st IFO Net (3)

Binary mergers are standard sirens: can infer the distance (Schutz ’86).

                      τc =f(df/dt)−1          DL ~ c/(f2τch) 

Effectively, the chirp time τc gives absolute luminosity, h gives 
apparent luminosity. Distance DL is given directly by local 
measurables: no calibration, no distance ladder. Accuracy δDL/DL ~ 1/
SNR, typically 10%.

Spatial information useful in many ways, for example

Compare with astronomers’ distance ladder: need to localize events to galaxies or 
clusters containing EM standard candles. Each event only ~10% accurate.

Measure H0 on distances up to 1 Gpc. See poster by del Pozzo. Do not need a-priori 
identifications of galaxies. Expect accuracy of a few percent after ~50 events, similar 
to current accuracy. 
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Search for GW pulsars (asymmetric NSs). Ultimately could find relative asymmetries 
as low as 10-9. Very difficult signal processing. (Talks by B. Allen and M.-A. Papa.)
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Not just binaries!

Search for GW pulsars (asymmetric NSs). Ultimately could find relative asymmetries 
as low as 10-9. Very difficult signal processing. (Talks by B. Allen and M.-A. Papa.)

Search for a GW stochastic background down to Ωgw ~ 10-9. This is well above 
predictions of slow-roll inflation but can be produced by more fine-tuned models. 
Do targeted stochastic searches.
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Science with 1st IFO Net (4)
Not just binaries!

Search for GW pulsars (asymmetric NSs). Ultimately could find relative asymmetries 
as low as 10-9. Very difficult signal processing. (Talks by B. Allen and M.-A. Papa.)
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Do targeted stochastic searches.

Monitor for a Type II supernova explosion: neutrino detectors like Super 
Kamiokande should show coincidences.

Exotica like cosmic strings may turn up, although sensitivity may not be good 
enough to find something we don’t have a filtering template for.

The data analysis is itself an interesting science and can be applied in 
other fields. Einstein@Home is being used now to find radio pulsars 
in radio data and gamma-ray pulsars in gamma data. (Talk by B. 
Allen.)
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Coherent data analysis probably twice as effective 
as current threshold-based analysis. 
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Repeated observations of mergers may reveal interior structure, effect 
of superfluidity/superconductivity, effect of buried magnetic field, …

Many coincidences with gamma-ray bursts, if that is the right model. 
Because γ-beaming is along strongest direction of GW radiation, about 3 
times more coincidences than if random. 

Also, a γ-burst allows GW detection threshold to be lowered, raising the 
number of GW detections. Perhaps 50% of total detections will have γ-
burst (Piran & Schutz, in preparation).

Hundreds of non-coincident events: details of EM afterglow.
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give competitive accuracy.

Long time-baselines improve sensitivity to both GW pulsars 
and the stochastic background energy density as T1/2.

Improved isotropy of antenna pattern reduces chances of 
“missing” a Type II supernova event triggered by neutrinos.

Suppression of “glitch” background will make searches for 
unexpected exotic signals much deeper.
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Third Generation Science
Amount of science depends on how many detectors we 
have. Important to have at least one in Europe and one 
in N America. 

Advanced detectors not necessarily obsolete: mixed networks 
need to be studied.

With tens of thousands of NS-NS mergers per year, 
there will be studies of NS population evolution, highly 
accurate measurements of H0 over distances z ~ 2. 
Likely also measurements of w, dw/dt. 

BH-BH, BH-NS population studies. BH-BH to z ~ 15! 
Intermediate-mass BH mergers to z ~ 5.

Fundamental studies: tests of GR, EOS of NSs, deep 
search for stochastic background.

Discovery potential: ultra-high sensitivity, perfect for 
serendipity.
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The very low frequency nHz band can be explored by 
correlating arrival-time residuals of very stable millisecond 
radio pulsars. 

Currently 3 collaborations: PPTA (Australia), NANOgrav (USA), EPTA (Europe).

Band likely dominated by stochastic foreground from SMBH 
binaries. Observations now underway may reach this sensitivity 
in the period 2015-2020.

Not unlikely that nearest SMBH binaries in the band can be 
picked out from the background. 

With periods of years, observations will only ever register a few 
cycles, so information content will be limited.
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Going into Space

Astronomy has made huge advances using space-based 
instrumentation. 

Motivation: get away from Earth-based obscuration

In GWs, the Earth also provides an obscuring foreground at 
f < 1 Hz, due to fluctuations in Newtonian gravity.

Observations in the mHz region must be done in space.

Since 1995, ESA has been developing LISA. NASA joined in 
1998 but withdrew this year.
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re-use LISA Pathfinder hardware; launch to drift-away orbits 
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Two active arms, not three; smaller arms (1Gm, not 5Gm); 
re-use LISA Pathfinder hardware; launch to drift-away orbits 
saves fuel, shortens maximum mission lifetime to ~ 5 yr.
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BH Science with SNR = 103

 Masses to ±0.1%. 

 Spin vectors  to ±3-5%. 

Alignment: wet or dry merger.

 Distance to ±4% for z~1. 

 Much work now on counterpart identification: what is the 
signature of a galaxy containing a merger?

What happens at the edge of a black hole?

Test no-hair theorem.

Look for violations of cosmic censorship.
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merger of massive black holes it detects. SNR up to 104 at z = 1.

Mergers are relatively short-lived events; with just 2 arms it is hard to 
reconstruct polarization, direction. Needs more study!

Expect out to z = 3 a handful of mergers each year. 

If counterpart can be identified so redshift can be measured, then H0 can be 
measured very accurately and even w to ±2-4% over 3 years with 3 arms. 

With ~20 events, wa becomes measurable to ±25% accuracy. 

Dark-energy missions like EUCLID, W-FIRST can get comparable 
accuracies. 

GW measurements complementary: has very different systematics.
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Hierarchical MBH formation

In Λ-CDM, structures form 
hierarchically. Proto-galactic 
fragments at some mass scale 
must contain BHs. These merge 
when their fragments merge, 
producing detectable GW signals. 

Simulations (eg Volonteri) 
produce a variety of merger 
populations, depending on (a) 
assumed seeds and (b) gas 
accretion efficiency. 
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 When will GW astronomy start discovering the unexpected ?

Advanced LIGO-VIRGO will have a one-year maximum expected SNR ~ 60 for NS-NS 
events, a bit smaller for BH-BH events. And this requires filtering for known waveforms.

ELISA can reach SNR ~ 100 even for BH-BH events at z = 10, and its maximum 1-year 
SNR will be ~ 1000. No filter needed!

ET will have many events with SNR > 1000.

 Every newly opened astronomical window has found unexpected results, 
but not always with the first instruments.
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talk about neutrinos
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