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Outline
• Statistical Mechanics I: Entropy, Boltzmann weight, partition 

function, canonical ensemble [Frenkel Lecture 1, Das Lecture 1]

• Statistical Mechanics II: Different ensembles, Dynamics [Frenkel 
Lecture 2, Sastry Tutorial Lecture 1] 

• Molecular dynamics simulations - basic principles, boundary 
conditions, neighbor lists, truncation and tail corrections [Frenkel 
Lecture 3]

• This Tutorial Lecture: 

 Review basics of molecular dynamics

 Molecular dynamics in different ensembles

 Event driven MD

 Molecular systems 

 Long range interactions



Molecular Dynamics – Basic conceptsMolecular Dynamics – Basic concepts

• Integrate the equations of motion to generate a trajectory.
• Average over the trajectory is the average that we seek for
properties of the system.
• Statistical mechanics provides formulation to extract useful 

quantities.

• Both equilibrium thermodynamic and dynamical quantities 

are obtained. 
• Structure of MD simulations: Initialization, force calculation, 

integration of equations of motion, sampling to calculate 

desired averages.    









Equations of MotionEquations of Motion

Discretize equations of motion in order to integrate.
Desired properties: Preserve symmetries of the original 
equations (time reversal..), conservation of energy, permit 
large time steps of integration…

Verlet Algorithm: Sum Taylor series for positive and negative time 
Steps:  

Update with positions at two times. No velocity. Good accuracy.



But can define velocity in terms of adjacent time positions: 

Verlet algorithm equivalent to Leap-Frog and Velocity Verlet:

Leap Frog Velocity Verlet

 How do we compare different integrators? 
 Long time accuracy is not a possible criterion. Lyapunov instability.

Symmetries, preservation of phase space volume, conservation of 
energy… efficient sampling of correct phase space. 





Lyapunov Instability: Exponential divergence of nearby
trajectories. True for typical many body systems.  



Time Reversible Algorithms: Liouville FormulationTime Reversible Algorithms: Liouville Formulation

Time evolution of functions of coordinates and momenta:

Liouville Operator -

Formal solution:

How to develop useful integration schemes?
Consider position and momentum parts of L separately:

Operation by iLr leads 
to shift of coordinates:
Similarly iLp leads to 
shift in momenta. 



But since operators don’t commute, we cannot write 

Instead, the Trotter identity is used to write approximate 
expressions that are time reversible:  

One step of integration, with p = 2, then corresponds to: 



Applying step by step:

Writing the next change in positions and momenta: 

This is the Velocity Verlet 
update!

Verlet algorithm is the first 
member of integrators that
Can be developed from this 
procedure.



Periodic Boundary ConditionsPeriodic Boundary Conditions

Number of particles in simulations 100 – 106 but need to 

simulate properties of bulk systems.

Avoid free boundaries, by using periodic boundary conditions.

Calculate interactions with periodic images of particles as well.



Truncation of the potentialTruncation of the potential

Use of periodic boundary conditions not efficient if interactions
with all image particles have to be calculated.
But for short ranged potentials such as the LJ potential, one 
truncates the potential beyond a cutoff rc.
Thus, we use 

But long range correction needs to be calculated, or potential
redefined. If we assume density of neighbors to be constant 
beyond cutoff: 

For the Lennard-Jones potential



Neighbor listsNeighbor lists

The calculation of the energy scales as N2

But for short range interactions, finite number of neighbors 
for each particle, so O(N) computation should be possible.

This can be done if we know the neighbors of each particle
but this keeps changing.

Solution: Calculate neighbors for radius rv > rc

Monitor how far particles move. 

When maximum displacement exceed (rv - rc)/2, update 

neighbor list.

Efficient scheme – Verlet Neighbor Lists.    





Molecular Dynamics simulations in different Molecular Dynamics simulations in different 
ensemblesensembles

So far: molecular dynamics in the microcanonical ensemble 
(constant N, V, E) have been discussed. 

Why do we need to consider other ensembles?

To do single phase simulations in the presence of a first order 
transition –  e. g., liquid - gas phase transition --  (N, P, T) ensemble 
preferable to (N, V, T) 

To simulate efficiently in conditions close to experiment –  e. g.,  
gas adsorption in porous adsorbent – (µ, V, T) preferable to (N, V, T)
 
Determination of fluctuations – e. g. isothermal compressibilit from 
volume fluctuations -- (N, P, T) ensemble preferable to (N, V, T).

“Unphysical ensembles” for special purposes – e. g., phase 
equilibria.     



Molecular dynamics in the canonical (N, V, T) ensembleMolecular dynamics in the canonical (N, V, T) ensemble

In the canonical ensemble, the system is characterized 
by a fixed temperature, which is usually measured in 
MD simulations by the average kinetic energy. 

One possible way of then achieving constant 
temperature is to constrain the kinetic energy by 
modifying the equations of motion: 
 

The constraint parameter ξ is chosen such that: 

This “friction” is calculated at each
integration time step. 

Such modified dynamics does not generate the true 
canonical ensemble. 



Another possible simple thermostat is the “Andersen 
thermostat” wherein the coupling with the heat bath is 
represented by stochastic forces that act on randomly 
selected particles, such that the particle acquires a new 
velocity drawn from the Maxwell distribution.

One must specify a “collision frequency” that determines 
how often such a velocity change is made. 

A simple method which generates the canonical ensemble, 
with static properties that do not depend on collision 
frequency. 

However, not so good for dynamics, which depend on the 
arbitrary collision frequency that is specified.      

Andersen thermostatAndersen thermostat







Static properties

Dynamic 
Properties



Extended Lagrangian MethodsExtended Lagrangian Methods

The general idea (we will also discuss this for the constant 
pressure MD) is to treat an “extended” system, which 
includes additional degrees of freedom. 

In the case that one imposes a constant pressure in this 
way, one may visualize the additional degree of freedom 
as the position of the “piston” in the set up we considered
Earlier. 

An extended Lagrangian is written for
the full system. 

Lagrangian dynamics:



The Nose-Hoover thermostatThe Nose-Hoover thermostat

The extended Lagrangian, including an additional degree of 
freedom s used to obtain the canonical ensemble is:

The conjugate momenta are

And the Hamiltonian is 



We write the (“microcanonical”) partition function for this system as

Using scaled variables

And defining

And using

For a function h(s) with a root at s0



With the choice: 

With

The equations of motion for the primed (real) variables are:



These equations conserve the Hamiltonian

From the relation between the scaled and unscaled variables 
it is apparent that the variable s scales the time (in a time 
dependent way). 

               is like the friction term in the constraint method, that 
plays the same role



The Nose-Hoover thermostat generate dynamics that do not 
critically depend on the thermostat parameter Q. 
   
 

In special cases, the Nose-Hoover thermostat fails to generate the 
canonical distribution, which arises from the conservation of another 
quantity in addition to HNose (we assumed in deriving the canonical 
distribution that it was the only conserved quantity). This can be taken care 
by introducing a series of thermostat variables that are coupled to each 
other (Nose-Hoover chains).  



Constant pressure molecular dynamicsConstant pressure molecular dynamics

Along the same lines as constant pressure MD, in this case
we write an extended Lagrangian, with two additional variables 
Instead of one.The equation of motion is given by:  

The variable that determines volume change is
And the corresponding equations of motion are 

Pint and Pext are the internal pressure (from virial) and the applied pressure



Some Special Cases and TechniquesSome Special Cases and Techniques

There are special cases where specific methods that are 
distinct from those discussed above are used. Some of 
these are: 

1.Discontinuous potentials (hard spheres etc): Event 
driven molecular dynamics

2.Systems with long range interactions: Ewald Sum

3.Molecular systems: SHAKE   



Event Driven Molecular DynamicsEvent Driven Molecular Dynamics

In systems interacting with hard core, or step potentials, the 
momentum change is discontinuous upon contact, and 
therefore the fixed time step integration methods are not 
useful. 

Instead, the system is propagated from one collision event 
(hard sphere case) to the next, and the momentum change 
implemented at the collision, with the following steps: 

σ



1. Locate next collision. For a pair I,j, the condition for collision
time is

2. Cases:

i.If bij > 0, particles are moving away.

ii.Root of equation are complex if

iii.Else smaller of the roots is the collision time:
 



3. Find smallest collision time among all pairs.

4. Propagate all particles up to the collision time.

5. For colliding particles, invert velocities in the direction of 
Collision:

6. Repeat. Keep track of time elapsed.

Since the dynamics is updated according to the collision
events, this method is termed event driven molecular 
dynamics. 



Molecular SystemsMolecular Systems

For molecular systems, we have both intermolecular and intra-
molecular distances and forces to contend with.

Intramolecular vibrations are much faster than intermolecular 
motion, and often not of interest. 

Hence, use rigid molecular models. Eg, SPC/E model of water:  

OH distances and HOH angle do not change during simulation.



How to handle such fixed distances and angles? 

1.Work with centre of mass + rotational degrees of freedom.
Too complicated. 

2. Add constraint forces to keep shape of molecule fixed. 

Define constraint parameter

The force, including constraints is



Implementing all the constraints

The Verlet update will be

where primed coordinates are updates without constraint.



The constraints, written as 

yield quadratic equations for the parameters λ. But 
instead, we linearize and iteratively solve the equation to 
covergence.   



Long Range Interactions: Ewald SumLong Range Interactions: Ewald Sum

Normally, we trunctate the potential so that we need to consider 
only the minimum image. 

This method will not work for long range interactions (Coulomb 
interactions)

In the Ewald sum method, the potential due to other charges, 
and all their periodic images, is carried out efficiently.

This is done by introducing a “screening” charge distribution 
around each point charge, and adding a second compensating 
charge distribution. The Coulomb interactions with screened 
charges are now short ranged, and can be treated as such. 

The potential due to the compensating charges (and all its 
images) is efficiently calculated in Fourier space, IF we include 
also the charge distributions in the primary simulation cell. 

This introduces a “self” interaction term, that needs to be 
compensated.      



Consider point charges qi.Their total interaction is written as

Where

Exclusion of Indicated by the prime ‘ 

Add and subtract charge distributions for each point charge: 



Schematic:



First we calculate he potential at ri due to periodic array of 
compensating charges

The Fourier transform of the charge distribution is:

We obtain the electrostatic potential by solving the Poisson
 equation in Fourier space

Interaction with compensating charges



The potential from the compensating charges then is:

In real space



The potential for all the charges is

with



Correction for self interaction

The previous summation includes also the compensating 
charge distribution at the location of the charge. To subtract it, 
we calculate the potential due to a gaussian charge distribution 
at a distance r: 

The self interaction therefore is



Interaction with screened charges

The potential due to screened charges is

The energy



The Ewald sum energy

Combining all these terms
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