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Statistical Mechanics |: Entropy, Boltzmann weight, partition
function, canonical ensemble [Frenkel Lecture 1, Das Lecture 1]

Statistical Mechanics Il;: Different ensembles, Dynamics [Frenkel
Lecture 2, Sastry Tutorial Lecture 1]

Molecular dynamics simulations - basic principles, boundary
conditions, neighbor lists, truncation and tail corrections [Frenkel
Lecture 3]

This Tutorial Lecture:

Review basics of molecular dynamics
Molecular dynamics in different ensembles
Event driven MD

Molecular systems

Long range interactions
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Molecular Dynamics — Basic concepts

* Integrate the equations of motion to generate a trajectory.

* Average over the trajectory is the average that we seek for
properties of the system.

* Statistical mechanics provides formulation to extract useful
guantities.

* Both equilibrium thermodynamic and dynamical quantities
are obtained.

 Structure of MD simulations: Initialization, force calculation,
Integration of equations of motion, sampling to calculate
desired averages.




Algorithm 3 (A Simple Molecular Dynamics Program)

program md

call init

t=0

do while (t.lt.tmax)
call force(f,en)
call integrate (f,en)
t=t+delt
call sample

enddo

stop

end

simple MD program
initialization

MD loop
determine the forces
integrate equations of motion

sample averages

Comment to this algorithm:

1. Subroutines init, force, integrate, and sample will be described in
Algorithms 4, 5, and 6, respectively. Subroutine sample is used to calculate
averages like pressure or temperature.



Algorithm 4 (Initialization of a Molecular Dynamics Program)

subroutine init initialization of MD program

sumv=0

sumvZ2=0

do i=1, npart
x (i)=lattice_pos (i) place the particles on a lattice
v(i)=(ranf()-0.5) give random velocities
sumv=sumv+v (i) velocity center of mass
sumv2=sumv2+v (i) **2 Kinetic energy

enddo

sumv=sumv/npart velocity center of mass

sumv2=sumv2/npart mean-squared velocity

fs=sqrt (3*temp/sumv?) scale factor of the velocities

do i=1,npart set desired kinetic energy and set
v(i)=(v(i)—-sumv) *fs velocity center of mass to zero
xm(i)=x(i)-v (i) *dt position previous time step

enddo

return

end




Algorithm 5 (Calculation of the Forces)

subroutine force(f, en)
en=0
do i=1,npart
f(i)=0
enddo
do i=1,npart-1
do j=i+1l,npart
xr=x(1i)-x(Jj)
xr=xr-box*nint (xr/box)
r2=xr**2
if (rZ2.lt.rc2) then
r2i=1/r2
rei=r2i**3
ff=48*r2i*r6i* (r6i-0.5)
f(i)y=f(i)+ff*xr
£(3)=£(])-ff*xr
en=en+4*roi* (roi-1)-ecut
endif
enddo
enddo
return
end

determine the force
and energy

set forces to zero

loop over all pairs

periodic boundary conditions
test cutoff

Lennard-Jones potential
update force

update energy




Equations of Maotion

Discretize equations of motion in order to integrate.
Desired properties: Preserve symmetries of the original
equations (time reversal..), conservation of energy, permit
large time steps of integration...

Verlet Algorithm: Sum Taylor series for positive and negative time
. A 13
SIPS. (4 4 Af) — r(t) + o)At + LD Ar2 4 é—fr + O(At)

2m
r(t — At) = r(t) — v(t)At + %ﬁtﬂ — Ag—far + O(At)
r(t+ At) +r(t — At) = 2r(t) + %i&tg + O(Ath)
r(t + At) = 2r(t) — r(t — At) + %ﬂ.tﬂ

Update with positions at two times. No velocity. Good accuracy.



But can define velocity in terms of adjacent time positions:

r(t + At) — r(t — At)
2At

v(t) = + O(AH)

Verlet algorithm equivalent to Leap-Frog and Velocity Verlet:

Leap Frog Velocity Verlet
r(t + At) =r(t) + At v(t + At/2) r(t+ At) = r(t) + At v(t) + At J;En)

ot + At/2) = oft — At/2) + At L o(t + At) = v(t) + Ag LT FIEFAD

M 2m

How do we compare different integrators?
Long time accuracy is not a possible criterion. Lyapunov instability.

Symmetries, preservation of phase space volume, conservation of
energy... efficient sampling of correct phase space.



Algorithm 6 (Integrating the Equations of Motion)

subroutine integrate (f,en)

sumv=0

sumv2=0

do i=1l,npart
xXx=2*x (1) —xm (1) tdelt**2*f (1)
vi=(xx-xm(i))/(2*delt)
sumv=sumv+vi
sumvZ2=sumv2+vi**2
xm{i)=x (1)
X (1)=xx

enddo

temp=sumv2/ (3*npart)

etot=(en+0.5*sumv2) /npart

return

end

integrate equations of motion

MD loop

Verlet algorithm (4.2.3)
velocity (4.2.4)

velocity center of mass

total kinetic energy

update positions previous time
update positions current time

instantaneous temperature
total energy per particle




Lyapunov Instability: Exponential divergence of nearby
trajectories. True for typical many body systems.
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Time Reversible Algorithms: Liouville Formulation

Time evolution of functions of coordinates and momenta:

0 7,
f(r,p) = Pa—f + pg‘]f =:iLf Liouville Operator -:L = rd— +1:.E
Formal solution: f(x(t), p(t)) = exp(iLt) f(r,p)

How to develop useful integration schemes?
Consider position and momentum parts of L separately:

. . d s,
1L, = rg, iL,p— oo
(LL 02

f(t) = f(0)+L.tf(0) +
n (-}’-'1
drn )

= f(lz-[ﬂ).( (0) +1(0)t).

Operation by iL, leads F0)+

to shift of coordinates: _ Z(f |
Similarly iL, leads to "

shift iIn momenta.




But since operators don’t commute, we cannot write
exp(iLt) = exp(iL,t) x exp(iL,t)

Instead, the Trotter identity is used to write approximate
expressions that are time reversible:

A B A"
exp(A+ B) = limp_. [exp(%) EKP(E) EI{]}(%}]

exp(A+ B) = {exp%) (D) exp(%}} " exp(O(1/p2)

We consider the case A/p =iL,t/p and B/p = iL,t/p and At =t/p.

One step of integration, with p = 2, then corresponds to:

exp(iL,At/2) exp(iL, At) exp(iL,At/2)



Applying step by step:

At

exp(iL,At/2)f(p,r) = f(p + P, r)

. At , At .
exp(tL,.At) f(p + - P r) = f(p+ - P, 1+ Atr(At/2))

At . At. At .
exp(eL,At/2) f(p + - P.rt Atr(At/2)) = f(p+ b+ ?p{ﬂ\t], r + Atr(At/2))

Writing the next change in positions and momenta:

p(0) — p+£;F(ﬂ)-|-EF-[$t] This is the Velocity Verlet
Y 2 update!

r(0) — r—l—ﬁtf{?}

At2 Verlet algorithm is the first
o F(0). member of integrators that
Can be developed from this
procedure.

= 1+ Atr(0) +




Periodic Boundary Conditions

Number of particles in simulations 100 — 10°® but need to
simulate properties of bulk systems.

Avoid free boundaries, by using periodic boundary conditions.
Calculate interactions with periodic images of particles as well.




Truncation of the potential

Use of periodic boundary conditions not efficient if interactions
with all image particles have to be calculated.

But for short ranged potentials such as the LJ potential, one
truncates the potential beyond a cutoff r_.

Th
|s, We Use Ulr)= 4e [(5)12 N (%)E} if r<re

But long range correction needs to be calculated, or potential
redefined. If we assume density of neighbors to be constant

beyond cutoff:

_, N oo NE8r 3 ? ’
D—f_n:,rrr _ E[ {f?‘{.!r(?‘]ilﬂi”zdf‘ {_Jrf-"arrr _ V& ped [% (E) - (E) ]

3 e e

For the Lennard-Jones potential



Neighbor lists

The calculation of the energy scales as N?

But for short range interactions, finite number of neighbors
for each particle, so O(N) computation should be possible.

This can be done if we know the neighbors of each particle
but this keeps changing.

Solution: Calculate neighbors for radius r,>r,

Monitor how far particles move.
When maximum displacement exceed (r, - r.)/2, update
neighbor list.

Efficient scheme — Verlet Neighbor Lists.




Algorithm 34 (Making a Verlet List)

SUBROUTIHNE newwvlist
do i=1,npart
nlistii) =0
v ilil=x(1)
enddo
do i=1,npart-1
do j=i+1.npart
xr=x(i)-x(])
if (xr.gt.hbox) then
Xr=Xr-hox

elge if (xr.lt. -hbox) then

¥r=xr +bhox
endi f
if (abs(xr).lt.rv) then
nlist(i)=nlist(i)+1
nlist (9i=nlisti{j)+1
list (i, nlist (i) =9
list(j,nlistij))=1
erndi f
enddo
enddo
return
end

makes a new Verlet list
initialize list

store posiion of particles |

nearest image

addto the lists




Molecular Dynamics simulations in different

ensembles

So far: molecular dynamics in the microcanonical ensemble
(constant N, V, E) have been discussed.

Why do we need to consider other ensembles?

»To do single phase simulations in the presence of a first order
transition — e. g., liquid - gas phase transition -- (N, P, T) ensemble
preferable to (N, V, T)

»To simulate efficiently in conditions close to experiment — e. g.,
gas adsorption in porous adsorbent — (u, V, T) preferable to (N, V, T)

» Determination of fluctuations — e. g. isothermal compressibilit from
volume fluctuations -- (N, P, T) ensemble preferable to (N, V, T).

»“Unphysical ensembles” for special purposes — e. g., phase
equilibria.



Molecular dynamics in the canonical (N, V, T) ensemble

In the canonical ensemble, the system is characterized
by a fixed temperature, which is usually measured in
MD simulations by the average kinetic energy.

One possible way of then achieving constant
temperature is to constrain the kinetic energy by
modifying the equations of motion:

r=—; p=J)—E&pp
rr

The constraint parameter & is chosen such that:
Z P = con stant > Z:“h,fr 2
21 ?

{ = o
This “friction” is calculated at each Zﬂ?
Integration time step. *‘

Such modified dynamics does not generate the true
canonical ensemble.




Andersen thermostat

Another possible simple thermostat is the “Andersen
thermostat” wherein the coupling with the heat bath is
represented by stochastic forces that act on randomly
selected particles, such that the particle acquires a new
velocity drawn from the Maxwell distribution.

One must specify a “collision frequency” that determines
how often such a velocity change is made.

A simple method which generates the canonical ensemble,
with static properties that do not depend on collision
frequency.

However, not so good for dynamics, which depend on the
arbitrary collision frequency that is specified.



Algorithm 14 (Molecular Dynamics: Andersen Thermostat)

program md_Andersen MD at constant temperature
call init (temp) initialization
call force(f,en) determine the forces
t=0
| do while (t.lt.tmax) MD loop |
’L call integrate(l,f,en, temp) first part of the egs. of motion
| call force(f,en) determine the forces
call integrate(2,f,en, temp) second part of eqgs. of motion |
t=t+dt
call sample sample averages
enddo
: stop
end




Algorithm 15 (Equations of Motion: Andersen Thermostat)

subroutine integrate(switch, f
,en, temp)
if (switch.eg.l) then
do i=1,npart
¥(i)=x(i)+de*v(i)+
de*de*£(1) /2
vii)=v(i)+de*f (i) /2
enddo
elge if (switch.eqg.2) then
tempa=_0
do i=1,npart
vii)=wv(i)+db*£(i)/2
tempa=tempa+v (1) **2
enddo
tempa=tempa/ (s*npart)
sigma=sqgrt (temp)
do i=1,npart
if (ranf().lt.nu*dt) then
v(i)=gauss (sigma)
endif
enddo
endif
return
end

integrate equations of motion:
with Andersen thermostat
first step velocity Verlet
update positions current time

first update velocity

second step velocity Verlet

second update velocity

instantaneous temperature
Andersen heat bath

test for collision with bath
give particle Gaussian velocity
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Extended Lagrangian Methods

The general idea (we will also discuss this for the constant
pressure MD) Is to treat an “extended” system, which
Includes additional degrees of freedom.

In the case that one imposes a constant pressure in this
way, one may visualize the additional degree of freedom

as the position of the “piston” in the set up we considered
Earlier.

VoV . .
An extended Lagrangian is written for .
the full system. ' E :

Lagrangian dynamics:

o N _df- df}u, Hqu,-




The Nose-Hoover thermostat

The extended Lagrangian, including an additional degree of
freedom s used to obtain the canonical ensemble is:

Loose = Z:; %521’*3 UxV) + %sﬁ' _ %m s
The conjugate momenta are
pi = % = mys°T Pe = % = Qs
N 3
And the Hamiltonian is Hyose = ) | b: S+ U@EY) + Py + pins

2Q) s

21 8
i=1 t



We write the (“microcanonical”) partition function for this system as

1

QNL‘JSE — ,\I |

/dpq ds dp” dr"5(E — Hyose)

¥

Using scaled variables p" =p/s

N :

And defining Z a (xN

2m;

And using  §(h(s)) = d(s — s0)/h' (s0)

For a function h(s) with a root at s,



w3V H(p',v)+2 — E
QNGEE — :-:.-' fdps ds d]j N drf"‘-‘ 'j SL 5 {5 ~ exp [_.ﬁ (] )L 20

|

With the choice: L=3N+1

C AT T F
QNGSE - N1 / d]j N d]_"ﬂl exp |:—,|'3H(p ,r)}
With ' =r,p =p/s,s =s,p. =ps/s,and t =t/s

The equations of motion for the primed (real) variables are:
dr

di_r — pz;"l‘mi

dp;, _ oU ., ,

dtr — 8]‘_"; [SPS;/Q]]]E
1ds

._;Gf'f! — Sps;"l(Q
d(s'p , 3N +1
{ EEIKQ) = (Zfﬂf/ma - .'i: ) /Q




These equations conserve the Hamiltonian

£ r £
2 2p2 Ins

N
B P, Ny, S P
Hose = Z—; o T U™y + 20 +L—-

From the relation between the scaled and unscaled variables
It Is apparent that the variable s scales the time (in a time
dependent way).

£=35/s IS like the friction term in the constraint method, that
piays e same role



The Nose-Hoover thermostat generate dynamics that do not
critically depend on the thermostat parameter Q.

0»08 f T ! [ ¥ I 0 4
— Q=100 2. = I 7
- !_——-—0= 1 (l
0.06 | ———9=2 N
I\ 1 &
15 ik ,
£ 004 1 F
<]
1.0 -
0.02 | . —-- Q=10
— Q=10
000 bt 1 o L 0.5 : :
000 010 020 0.30 10000 20000
t time step

In special cases, the Nose-Hoover thermostat fails to generate the
canonical distribution, which arises from the conservation of another
quantity in addition to H,.. (we assumed in deriving the canonical

distribution that it was the only conserved quantity). This can be taken care
by introducing a series of thermostat variables that are coupled to each
other (Nose-Hoover chains).



Constant pressure molecular dynamics

Along the same lines as constant pressure MD, in this case
we write an extended Lagrangian, with two additional variables
Instead of one.The equation of motion is given by:

P P
h m; T W

. 1 Pe Pe
=F,—(1+ %]H Pi — AP

The variable that determines volume change is e = In(V/V})
And the corresponding equations of motion are

- dVp.
V=
N 2
| 3 1 :
= d V(P = Pot) + 5 f—l - %pf.

and P__ are the mternal pressure (from V|r|al) and the applied pressure

|nt ext



Some Special Cases and Techniques

There are special cases where specific methods that are
distinct from those discussed above are used. Some of
these are:

1.Discontinuous potentials (hard spheres etc): Event
driven molecular dynamics

2.Systems with long range interactions: Ewald Sum

3.Molecular systems: SHAKE



Event Driven Molecular Dynamics

In systems interacting with hard core, or step potentials, the
momentum change is discontinuous upon contact, and
therefore the fixed time step integration methods are not
useful.

Instead, the system is propagated from one collision event
(hard sphere case) to the next, and the momentum change
Implemented at the collision, with the following steps:

Q\/7
@/\A

<>
0)



1. Locate next collision. For a pair 1,J, the condition for collision
time is
Ty + Vit = 0

2 42 2 2 e — ¥ .. RT .

2. Cases:

.If b; > 0, particles are moving away.
N . . 202 2 |
ii.Root of equation are complex if b?j — t’ij(rij o°) < 0
l.Else smaller of the roots is the collision time:

— (6 — W0

1]
tii =
J .UE_

]

_ UE)JUE




3. Find smallest collision time among all pairs.
4. Propagate all particles up to the collision time.

5. For colliding particles, invert velocities in the direction of
Collision:

b .
[y , . N r iy Z

6. Repeat. Keep track of time elapsed.

Since the dynamics is updated according to the collision
events, this method is termed event driven molecular
dynamics.



Molecular Systems

For molecular systems, we have both intermolecular and intra-
molecular distances and forces to contend with.

Intramolecular vibrations are much faster than intermolecular
motion, and often not of interest.

Hence, use rigid molecular models. Eg, SPC/E model of water:

OH distance : 1 A
HOH angle : 109.47°

g = 0.4238 e
go = —2qu

95.84
0-O interaction via LJ O -

o =3.166A € = 0.6502%% H@H

OH distances and HOH angle do not change during simulation.



How to handle such fixed distances and angles?

1.Work with centre of mass + rotational degrees of freedom.
Too complicated.

2. Add constraint forces to keep shape of molecule fixed.
_F%& — Féi:ﬂﬂﬂ + FE';‘RS?I‘QE-H!;

Define constraint parameter Xiz2 = rig — dig =0

The force, including constraints is

TmeEe 1
Fi = Fif T g}klz Vi X12



Implementing all the constraints

{' — —
Fl = A2T12 — Az1731
[ile —_k —
Fg = f}'LEE'.T'EB — }'1123‘“12

F5 = Az1Ta1 — Agalas
The Verlet update will be
9
a1 Fj

Mg

ralt +0t) =rl (t 4+ 0t) +

rio(t + 0t) = vy, (t + 0t) + 6t2(m7t 4+ myHAaria(t) — 6t2m3 Aas (t) — 0t2mT* Agyray (1)

where primed coordinates are updates without constraint.



The constraints, written as
ria(t 4+ 0t) 2 = |ri2(t)|* = di,

yield quadratic equations for the parameters A. But
Instead, we linearize and iteratively solve the equation to
covergence.

(

bz | =

r2 (t + 6t) — d?
ria(t + 0t) = rio(t + 0t) + ms rﬁﬁ{ + 0t) aﬁ]

Mg + Mg rqa(t + 0t)

1
riglt +0t) = it +08) — 5 (=7

Ma rag(t+0t) —di
rag(t + 0t)



Long Range Interactions: Ewald Sum

Normally, we trunctate the potential so that we need to consider
only the minimum image.

This method will not work for long range interactions (Coulomb
Interactions)

In the Ewald sum method, the potential due to other charges,
and all their periodic images, is carried out efficiently.

This is done by introducing a “screening” charge distribution
around each point charge, and adding a second compensating
charge distribution. The Coulomb interactions with screened
charges are now short ranged, and can be treated as such.

The potential due to the compensating charges (and all its
Images) is efficiently calculated in Fourier space, IF we include
also the charge distributions in the primary simulation cell.

This introduces a “self” interaction term, that needs to be
compensated.



Consider point charges q..Their total interaction is written as

N
, 1 |
E"ICﬂuI — a Z QEQ[TE}
T =1

Where P(r;) = Z

4]
= ri; +nL|

Exclusion of j=in=0 |ndicated by the prime

Add and subtract charge distributions for each point charge:

p(r) = —ai(=)*exp [~ar?]

m



Schematic:




Interaction with compensating charges

First we calculate he potential at r. due to periodic array of
compensating charges
Peomp(T) = Z qj Efge.rp —a | r — (r5+nL) |2]
n j
The Fourier transform of the charge distribution is:

1
Peomp(k) = v/ drexp [—ik.r qu 3exp [—a | r —rj |*]
all space j=

JECE
— _Ze.rp ?kr_]]lf*:rp( 4ﬂ)

=1

We obtain the electrostatic potential by solving the Poisson
equation in Fourier space

T )
kK p(k) = dmp(k)



The potential from the compensating charges then is:

ir 1 &

kE
2V g;exp (—ik.rj) exp ( 4{})

g=1

qﬁcamp{k) —

In real space

Geomp(r) = ZZ

k0 j=1

4 k*
4, Lexp [ik.(r — rj)] exp ( —1.-1)



The potential for all the charges is

1 .
'[ch:erp — 5 Z Qi{.ﬂl (Ti)

2
= S S 4?“}‘? exp [ik.(r; — rj)] exp ( j )
‘ e

Fa‘;r’:Di,_;r 1
k}:
. 2
= S e e (-4 ).
k;fzn
] o
with p(k) = 3 Y gieap [ik.xy]

=1



Correction for self interaction

The previous summation includes also the compensating
charge distribution at the location of the charge. To subtract it,
we calculate the potential due to a gaussian charge distribution
at a distance r:

ﬂﬁ’{?ﬂuss (T) —

erf(/an
i r

The self interaction therefore iIs

A
1 |
Useif — E Z Qi@seif['ri)
i=1

o N
- @y
i=1



Interaction with screened charges

The potential due to screened charges is

ﬁﬁsm'eened(rj ﬁ o _ET l:\/_}“)

T

= %erfc{ﬁ-r}

The energy

. Unscreened Potential

| 1
e Usereened = E Z di QJETf {‘[:\/ET') /If Tij
b

Vo)




The Ewald sum energy

Combining all these terms

i K
Voo = 5 Z 2l EIP( m)

k=0

N
Q.

— (Epry g
AR —
1

+ Ezijiqje-rfc(ﬁr]/?‘ij

7]
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