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Outline of this talk

JdWhat are Biomolecules?
dSignificance of knowing the structure
of a biomolecule?

dWhy simulate a biomolecule?

JdWhat is the current status?

dBiomolecular simulation: An example



Biopolymers

Proteins
Nucleic acids
Carbohydrates
Lipids

Building Blocks

Amino acids
Nucleotides
Sugars

Fatty acids



Proteins play crucial roles in all biological processes

Trypsin, Chmytrypsin - enzymes
Hemoglobin, Myoglobin - transports oxygen
Transferrin - transports iron

Ferritin - stores iron

Myosin, Actin - muscle contraction

Collagen - strength of skin and bone

Rhodopsin - light-sensitive protein

Acetylcholine receptor - responsible for transmitting nerve impluses

Antibodies - recognize foreign substances

Repressor and growth factor proetins



Proteins are made up of 20 amino acids

‘CORN’

NH,

H— F_COOH

R varies in size, shape, charge, hydrogen-bonding
capacity and chemical reactivity.

Only L-amino acids are constituents of proteins
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20 amino acids are linked into proteins by
peptide bond
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Peptide bond has partial double-bonded
character and its rotation is restricted.
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Polypeptide backbone is a repetition of
basic unit common to all amino acids
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terminus Peptide bonds Carboxy
terminus




Frequently encountered terms in
protfein structure

Backbone
Side chain

Residue
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Met
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Pro
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Arg
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Thr
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Trp
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alanine

cysteine

aspartic acid
glutamic acid

phenylalanine

glycine
histidine
isoleucine
lysine
leucine
methionine
asparagine
proline
glutamine
arginine
serine
threonine
valine
tryptophan

tyrosine

One letter and
three-letter
codes for amino
acids



Proteins can exist in two types of
environments

Globular proteins

Membrane proteins - Dr. Satyavani



Each protein has a characteristic
three-dimensional structure which
is important for its function



Protein Structure: Four Basic Levels

Primary Structure
Secondary Structure
Tertiary Structure

Quaternary Structure
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Protein - Primary Structure

Linear amino acid sequence

Determines all its chemical and biological
properties

Specifies higher levels of protein
structure (secondary, tertiary and
quaternary)

Most proteins contain between ~200 to
~500 residues



Histone (human)

SETVPPAPAASAAPEKPLAGKKAKKPAKAAAASKKKPAGPSVSELIVQAASSSKER
GGVSLAALKKALAAAGYDVEKNNSRIKLGIKSLVSKGTLVQTKGTGASGSFKLNK

KASSVETKPGASKVATKTKATGASKKLKKATGASKKSVKTPKKAKKPAATRKSSK
NPKKPKTVKPKKVAKSPAKAKAVKPKAAKARVTKPKTAKPKKAAPKKK

Rhodopsin (human)

MNGTEGPNIFYVPFSNATGVVRSPFEYPQYYLAEPWQIFSMLAAYMF G-P
NFLTLYVTVQHKKLRTPLNYILLN DLEMVLGGFTSTLYTSLHGYFVEGPTGEC
NLEGFFATLGGELALWS ERYVVVCKPMSNIFRFGENHAIMGVAFTWVM

CAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPM
CYGQLVFTVKEAAAQQQRESATTQKAEKEV TRMITM CWVPYAS
YIFTHQGSNFGPIFMTIP KSAATYNPVIYIMMNKQFRNCMLTTICCGKNP

GDDEASATVSKTETSQV AP




Thrombin

Heavy chain:
IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLLYPPW
DKNFTENDLLVRIGKHSRTRYERNIEKISMLEKTYIHPRYNWRENLDRDIAL
MKLKKPVAFSDYIHVCLPDRETAASLLQAGYKGRVTGWGNLKETWTANVG
KGQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCAGYKPDEGKRGDACEGDS
GGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFY
THVFRLKKWIQKVIDQFGE

Light Chain: TFGSGEADCGLRPLFEKKSLEDKTERELLESYIDGR









Primary to Secondary structure

Importance of Dihedral Angle




Dihedral angles and ®




0 = 180°% y = 180° 0 = 0%y =0°






Limiting distances for various interatomic contacts

Types of contact Normal Limit Extreme Limit
H..H 2.0 19
H..O 2.4 2.2
H..N 2.4 2.2
H..C 2.4 2.2
0..0 2.7 2.6
0..N 2.7 2.6
0..C X 2.7
N..N 2.7 2.6
N...C 2.9 2.8
C.C 3.0 2.9
C..C(H) 3.2 3.0
C(H)...C(H) 3.2 3.0

Ramachandran & Sasisekharan (1968) Adv. Protein Chem.



Ramachandran




Ramachandran Plot
Data from 500 high-resolution proteins

Gly Symmetrized: Data & Defined Regions Pro: Data & Defined Regions




Secondary Structure

o-helix
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o-helix

3.6 residues per turn

Translation per residue 1.5 A
Translation 5.4 A per turn

C=0 (i) ... H-N (i+4)

0 = -B7° v = -47° (classical value)

0 = -62° y = -41° (crystal structures)
Preference of residues in helix

Can proline occur in a helix?

Average helix length ~ 10 residues



Antiparallel B-sheet
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B-strand

Polypeptide fully extended

2.0 residues per turn

Translation 3.44 per residue

Stable when incorporated into a B-sheet

H-bonds between peptide groups of
adjacent strands

Adjacent strands can be parallel or
antiparallel




Turns

Secondary structures are connected by loop regions
Lengths vary; shapes irregular

Loop regions are at the surface of the molecule

Rich in charged and polar hydrophilic residues

Role: connecting units; binding sites; enzyme active sites
Loops are often flexible; adopt different conformations

Hairpin loop Hairpin loop

B-turns: Type I, Type IT eftc.
v-turns; classical, inverse

i strand | oo pstrand 2




Structure Determination: Experimental Methods
X-ray crystallography

http://www.dbs.nus.edu.sg/staff/henry.htm
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26,880 structures (24/8/2003)
32,355 structures (25/8/2005)
38,198 structures (15/8/2006)
45,055 structures (7/8/2007)

52,402 structures (12/8/2008)
59,330 structures (7/8/2009)

67,131 structures (10/08/2010)
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Main Classes of Protein Structures

o domains o-helices

8 domai Antiparallel B-sheets
omains

Combinations of B-a-B motifs

0./p domains Discrete o and B motifs

o + B domains

Disulfide bonds/metal atoms



Coiled-caoil

Four-helix bundle

Large alpha-helical
domain

Globin fold



Rossman fold

TIM-barrel

a/p structures

Horseshoe fold



Beta-helix

Greek-key



Is knowledge of 3-D structure
enough to understand the function?

What we don't know?



Example 1: Myoglobin

Breathing motions in myoglobin opens up pathways for
oxygen atoms to enter its binding site or diffuse out



Example 2: Rhodopsin

C-terminus

GLU 113 COO-

NH
e TN X N N XD TNy 206
- - r ; - ‘

498nm
270nm
F f/ H.etlnal 450nm S43nm
£ pigment .
. 477nm
GLU 113 COOH 380nm
5 .ﬁ .|.§ Y .|.§ At LYS 296 497nm
480nm

GLU 113 COO-

+ LYS 296
N-terminus WH’V‘

GPCRs like rhodopsin undergo conformational changes
during signal transduction






Example 4: Hemagglutinin

fusion

receplor binding sites peplide

Hemagglutinin from
influenza virus undergoes
large conformational
changes

At low PH, the N-terminal

e M helix moves 100 A to

iewrd bring the fusion peptide
closer to the host cell

membrane

HA trimer Low pH
high pH fragment




Why Molecular Dynamics?

“*Experimentally determined structures
are static

“*They represent the average structure
of an ensemble of structures

“*They do not provide the dynamic picture
of a biomolecule

“*Molecular dynamics is one way to
understand the conformational flexibility
of a biomolecule and its functional
relevance



Biological molecules exhibit a wide range of time
scales over which specific processes

-Local Motions (0.01 to 5 A, 105 1o 10 s)
*Atomic fluctuations
Sidechain Motions
Loop Motions

‘Rigid Body Motions (1 to 104, 10 to 1s)
‘Helix Motions
‘Domain Motions (hinge bending)
-Subunit motions

‘Large-Scale Motions (> 54, 107 to 10* s)
*Helix coil transitions

-Dissociation/Association
*Folding and Unfolding

http://cmm.info.nih.gov/modeling/guide documents/molecular dynamics document.html



Potential Energy Function (Equations)

+ Potential Energy is given by the sum of these contributions:

VhondedR= Y h=10>+ Y 1o @-8)

bonds angles

Y k@@ Y All+coind—y)]

impropers torsions

min min
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Molecular Dynamics

Calculate Energy 'E' using the v - Hi
potential Energy function 1

Calculate Force by
differentiating the potential

Energy

. v . 1
Calculate Acceleration ‘a’ using dt
Newton's second Law

dr

Calculate Velocity at a later b dt
time 't+dt’

Calculate Position at a later
time 't+dt’

Calculate Energy at new
position. o1

Create a Trajectory by t t+ At

;ﬁﬁ,\eg g;%ﬁg%@g%’ o.gitx.eg%% anIodel ing/guide_documents/molecular_dynamics_document.htm



Some Popular Simulation Force Fields

» AMBER (Assisted Model Building with Energy Refinement)

» CHARMm (Chemistry at HARvard Macromolecular Mechanics)
> CVFF (Consistent-Valence Force Field)

» GROMOS (GROningen MOlecular Simulation package)

» OPLS (Optimized Potentials for Liquid Simulations)



First Biomolecular simulation was performed in 1977

<3 Dynamics of folded proteins - Microsoft Internet Explorer :
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Simulations reaching the million-atom mark

Arrays of light-harvesting proteins - 1
million atoms (Chandler et al., 2008)

BAR domain proteins - 2.3 million atoms
(Yin et al., 2009)

The flagellum - 2.4 million atoms (Kitao
et al., 2006)




MD of protein-conducting channel
bound to ribosome

Bacterial ribosomes
are important targets
for antibiotics

2.7 million atoms

50 ns simulation

Largest system
simulated to date

Gumbart et al. (2009)



Biomolecular structures should be simulated under

Simulation conditions should be similar to that observed
under physiological conditions



Bcl-X, protein has different affinities for different
BH3 pro-apoptotic peptides

Bol-X-Bak _/'Bol-X-Bad Bcl-X,-Bim

340 nm

What are the factors that contribute to the different
affinities of Bcl-X,?



RMSD Analysis
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Lama and Sankararamakrishnan, Proteins (2008)




Distance between helix H3 and the BH3 peptide

Bel-X (Bak)
— Bcl-X (Bad)
Bcl-X (Bim)

2.0 -

1.8 —

Distance(nm)
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Bak peptide moves away from helix H3
Lama and Sankararamakrishnan, Proteins (2008)




Protein-peptide interactions

Bel-X, residue® Bad residue™®

F162 — 364 (85)

FI62 — 347 (97)

FI62 — 363 (88)

F158 — 353 (91)
R100 (H2B) M154 — 3.73 (85); 5155 —4.11 (71)
¥101 (H2B) L151 — 3.78 (78); M154 — 3.71 (B6)
A104 (H2B) ¥147 — 3.21 (98): E150 — 3.89 (76); L151 — 392 (T1)
F105 (LB) L151 — 3.79 (82)
S106 (LB) Y147 — 3.22 (95)
Q111 (LB) N140 — 3.83 (64); A143 — 3.55 (90); ¥147 — 317 (82, W142 — 341 (M)
L112 (LE) Al44 — 403 (62)
H113 (LB) N140 — 4.20 (56)
$122 (H3) N140 — 353 (78); A144 — 3.52 (96)
0125 (H3) L141 — 358 (87); A144 — 363 (89); 145 — 3.19 (99)
V126 (H3) Al44 — 337 (98); G148 — 3.68 (87): LI51 — 413 (50)
E129 (H3) (145 — 363 (B1); G148 — 3.84 (72); R149 — 3.37 (93); R152 - 307 (%9)
L130 (H3) G148 — 375 (75); L151 — 3.70 (30} R152 — 3.40 (94)
N136 (LC) D160 — 3.25 (95
W137 (LC) V159 — 3.36 (97)
G138 (LC) FI58 — 362 (79): V159 — 3.78 (80); D160 — 3.72 (71)
R139 (LC) R152 — 3.62 (80)
A142 (H4) L151 — 3.71 (86)
E193 (HE) K164 — 3.64 (80)
L194 (H6) K163 — 3.27 (99); K164 — 3.31 (95)
¥195 (C-Ter) D160 — 301 (93)

Lama and Sankararamakrishnan, Proteins (2008)
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