

Statistical Mechanics and Turbulence Truncated Systems and Time Scales in Turbulence

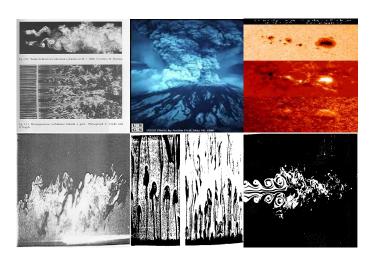
Samriddhi Sankar Ray

Laboratoire Lagrange
Observatoire de la Côte d'Azur
Nice, France

International Centre for Theoretical Sciences - Tata Institute of Fundamental Research

21 June 2012

Turbulence in Various Forms



Lessons

- We need a probabilistic description of turbulence.
- Velocity signals from turbulent flows are disorganised.
- They are unpredictable in their detailed behaviour.
- ► Some average properties of the signals are quite reproducible.

Lessons

- Large spatial scales: contain most of the energy.
- Small scales: Inertial and dissipation ranges.
- Small scales: Homogeneous and isotropic, to a good approximation (far from boundaries, etc.).
- Inertial-range correlation (or structure functions) exhibit power laws with universal exponents (reminiscent of critical phenomena).

Pioneers

Leonhard Euler (1707-1783), Claude-Louis Navier (1785-1836), George Gabriel Stokes (1819-1903), and Andrey Nikolaevich Kolmogorov (1903-1987).

The Equations

► Fluid flows are governed by the Navier–Stokes equation augmented by the incompressibility condition

$$\partial_t \vec{u} + (\vec{u}.\vec{\nabla})\vec{u} = \nu \nabla^2 \vec{u} - \vec{\nabla} \rho/\rho + \vec{f}/\rho;$$

$$\vec{\nabla}.\vec{u}=0.$$

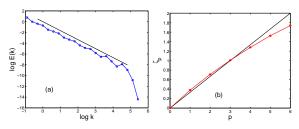
 \vec{u} : Eulerian velocity

p: pressure

 ν : kinematic viscosity

 ρ : density

 \vec{f} : external force



Challenges

- Engineers: Characterisation and control of turbulent flows such as flows in pipes or over cars and aeroplanes.
- ► Mathematicians : Proofs for the smoothness, or lack thereof, of solutions of the Navier-Stokes and related equations.
- Challenges also for fluid dynamicists, astrophysicists, geophysicists, climate scientists, plasma physicists

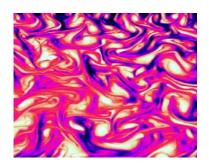
Principal Research Interests

- Statistical studies of different turbulent flows
- Inertial (finite-size) particles in turbulent flows
- Truncated systems and thermalization
- Singularities in the equations of hydrodynamics

Principal Research Interests: Statistical Studies Observatorie

Principal Collaborators: U. Frisch, D. Mitra, and R. Pandit

- ► Statistical studies of fluid, magnetohydrodynamic, passive-scalar, and Burgers turbulence.
- Lagrangian (tracer) particles.
- ► Fundamental questions of scaling behaviour and corrections to scaling in turbulence.

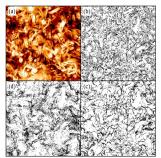


Principal Research Interests: Inertial Particle

CITS

Principal Collaborators: J. Bec, E. Bodenschatz, and H. Homann **Experiments, Direct Numerical Simulations, and Theory**

- Effect of collisions and hydrodynamic interactions on inertial particles.
- Modelling collision kernels and understanding droplet-growths in clouds.
- Granular media.



Principal Collaborators: U. Frisch, S. Nazarenko, and I. Procaccia

- ► The role of statistical mechanics in understanding the physics of turbulent flows.
- Thermalised states in turbulence.

Principal Research Interests : Singularities

Principal Collaborators: C. Bardos, U. Frisch, and E. S. Titi

▶ Singularities in the equations of hydrodynamics.

Outline of my talk

- Part I : Truncated Systems Equilibrium Statistical Mechanics
 - ► The Tyger Phenomenon in 1D Burgers and 2D Euler Equations
 - Turbulence in Fractal Dimension
- Part II : Timescales in Turbulent Flows Critical Phenomena
 - Dynamic Multiscaling
 - Topological Structures of 2D Flows

Part I: Truncated Systems

References:

- 1. Turbulence in Noninteger Dimensions by Fractal Fourier Decimation,
 - U. Frisch, A. Pomyalov, I. Procaccia, and S. S. Ray, **Physical Review Letters**, **108**, 074501 (2012).
- 2. Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations,
 - S. S. Ray, U. Frisch, S. Nazarenko, and T. Matsumoto, **Physical Review E**, **84**, 016301 (2011).
- 3. Hyperviscosity, Galerkin truncation and bottlenecks in turbulence,
 - U. Frisch, S. Kurien, R. Pandit, W. Pauls, S. S. Ray, A. Wirth, and J-Z Zhu,
 - Physical Review Letters, 101, 144501 (2008).

Outline

- ▶ Introduction : Statistical Mechanics and Turbulence
- Truncated Systems
 - ► The Tyger Phenomenon
 - ▶ Turbulence in Fractal Dimensions

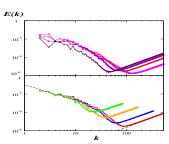
Equilibrium Statistical Mechanics and Turbulence

Cnrs

- Equilibrium statistical mechanics is concerned with conservative Hamiltonian dynamics, Gibbs states, ...
- ► Turbulence is about dissipative out-of-equilibrium systems.
- ▶ In 1952 Hopf and Lee apply equilibrium statistical mechanics to the 3D Euler equation and obtain the equipartition energy spectrum which is very different from the Kolmogorov spectrum.
- ▶ In 1967 Kraichnan uses equilibrium statistical mechanics as one of the tools to predict the existence of an inverse energy cascade in 2D turbulence.

Equilibrium Statistical Mechanics and Turbulence

- ▶ In 1989 Kraichnan remarks the truncated Euler system can imitate NS fluid: the high-wavenumber degrees of freedom act like a thermal sink into which the energy of low-wave-number modes excited above equilibrium is dissipated. In the limit where the sink wavenumbers are very large compared with the anomalously excited wavenumbers, this dynamical damping acts precisely like a molecular viscosity.
- In 2005 Cichowlas, Bonaiti, Debbasch, and Brachet discovered long-lasting, partially thermalized, transients similar to high-Reynolds number flow.



The Galerkin-truncated 1D Burgers equation Observatories

► The (untruncated) inviscid Burgers equation :

$$\partial_t u + \partial_x (u^2/2) = 0;$$
 $u(x,0) = u_0(x).$

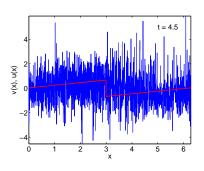
▶ The associated Galerkin-truncated (inviscid) Burgers equation

$$\partial_t v + P_{K_G} \partial_x (v^2/2) = 0;$$
 $v_0 = P_{K_G} u_0.$

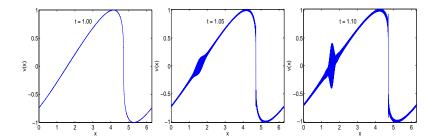
where

$$P_{K_{G}}u(x)=\sum_{|k|\leq K_{G}}\mathrm{e}^{\mathrm{i}kx}\hat{u}_{k}.$$

Thermalisation



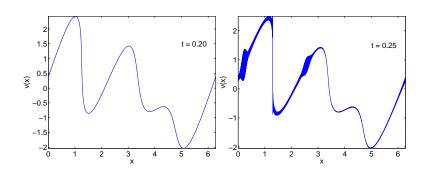
Tygers



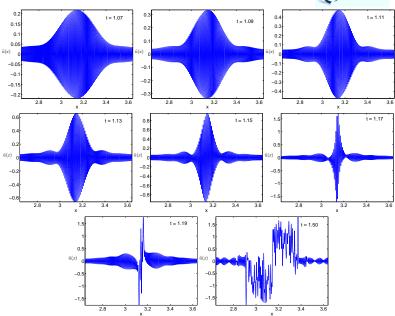
Growth of a tyger in the solution of the inviscid Burgers equation with initial condition $v_0(x) = \sin(x - \pi/2)$. Galerkin truncation at $K_G = 700$. Number of collocation points N = 16,384. Observe that the bulge appears far from the place of birth of the shock.

Tygers only at regions of positive strain

$$u_0(x) = \sin(x) + \sin(2x + 0.9) + \sin(3x)$$



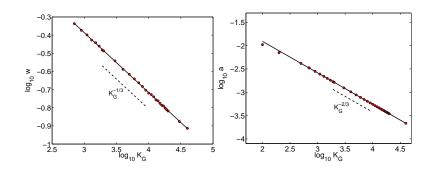
From tygers to thermalization



Phenomenological Explanation: 1D Burgers Observatorie

- ▶ A localized strong nonlinearity, such as is present at a preshock or a shock, acts as a source of a *truncation wave*.
- ▶ Away from the source this *truncation wave* is mostly a plane wave with wavenumber close to K_G.
- ▶ Resonant interactions are confined to particles such that $\tau \Delta v \equiv \tau |v v_{\rm s}| \lesssim \lambda_{\rm G}$.
- In a region of negative strain a wave of wavenumber close to K_G will be squeezed and thus disappearing beyond the truncation horizon.

Scaling properties



width $\propto K_{\rm G}^{-1/3}$ amplitude $\propto K_{\rm G}^{-2/3}$

(using phase mixing arguments)
(using energy conservation arguments)

Scaling of Tygers

▶ Widths :

- ▶ By the time t_{\star} , truncation is significant only for a lapse of time $O(K_{\rm G}^{-2/3})$.
- ▶ The coherent build up of a tyger only at locations whose velocity differs from that at resonance by an amount $\Delta v \lesssim \frac{2\pi}{K_{\rm G}^{-2/3}K_{\rm G}} \propto {K_{\rm G}}^{-1/3}.$
- Since the velocity v varies linearly with x near the resonance point, the width of the t_{\star} tyger is itself proportional to $K_{\rm G}^{-1/3}$.

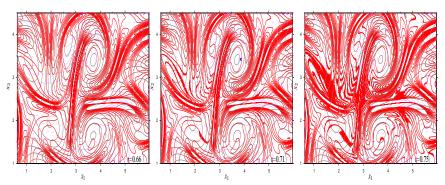
Amplitudes :

- ► The Galerkin-truncated Burgers equation conserves energy.
- ► The apparent energy loss due to truncation $\sim \int_0^{\lambda_{\rm G}} x^{2/3} dx \sim K_{\rm G}^{-5/3}$.
- ▶ Conservation demands that this energy-loss is transferred to the tygers which gives the tyger-amplitude scaling $\propto {K_{\rm G}}^{-2/3}$.

Truncated 2D Euler

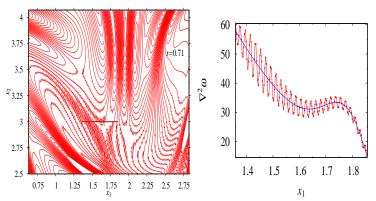
- Numerical integration of the truncated 2D incompressible Euler equation with random initial conditions and resolutions between 512² and 8192².
- Although for the untruncated solution real singularities are ruled out at any finite time, there is strong enhancement of spatial derivatives of the vorticity.
- ► The highest values of the Laplacian is found in the straight cigar-like structure.

2D Euler



A 2D tyger: before (t=0.66), early (t=0.71) and later (t=0.75). Figures, moderately zoomed, centered on the main cigar. Contours of the Laplacian of vorticity in red, ranging from -200 to 200 by increments of 25, streamlines in gray, ranging from -1.6 to 1.6 by increments of 2 and positive strain eigendirections in pink segments.

2D Euler tygers: Physical space



Left: zoomed version of contours of the Laplacian of vorticity at t = 0.71.

Right: plot of the Laplacian of vorticity along the horizontal segment near $x_2 = 3$, shown in the left panel.

Take Home Message: Truncated Inviscid System

- Tygers provide a clue as to the onset of thermalization.
- ▶ Tygers do not modify shock dynamics but modify the flow elsewhere because the tygers induce Reynolds stresses on scales much larger than the Galerkin wavelength; hence the weak limit of the Galerkin-truncated solution as $K_{\rm G} \to \infty$ is NOT the inviscid limit of the untruncated solution.
- ► There is good evidence that the key phenomena associated to tygers are also present in the two-dimensional incompressible Euler equation and also perhaps in three dimensions.
- ▶ It is clear that complex-space singularities approaching the real domain within one Galerkin wavelength are the triggering factor in both the 2D Euler and the 1D Burgers case.
- ► Can we "purge tygers away" and thereby obtain a subgrid-scale method which describes the inviscid-limit solution right down to the Galerkin wavelength?

Generalised Galerkin truncation : **Decimation**

CITS

▶ The forced incompressible Navier-Stokes equation

$$\partial_t \mathbf{u} = B(\mathbf{u}, \mathbf{u}) + \mathbf{f} + \Lambda \mathbf{u} ,$$

 $B(\mathbf{u}, \mathbf{u}) = -\mathbf{u} \cdot \nabla \mathbf{u} + \nabla p , \quad \Lambda = \nu \nabla^2$

 \triangleright Define a Fourier decimation operator P_D

If
$$\mathbf{u} = \sum_{\mathbf{k} \in \mathcal{Z}^2} e^{i\mathbf{k}\cdot\mathbf{x}} \hat{\mathbf{u}}_{\mathbf{k}}$$
, then $P_D \mathbf{u} = \sum_{\mathbf{k} \in \mathcal{Z}^2} e^{i\mathbf{k}\cdot\mathbf{x}} \theta_{\mathbf{k}} \hat{\mathbf{u}}_{\mathbf{k}}$.

$$heta_{f k} = egin{cases} 1 & ext{with probability } h_k \ 0 & ext{with probability } 1-h_k \ , & k \equiv |{f k}| \ . \end{cases}$$

▶ To obtain *D*-dimensional dynamics we choose

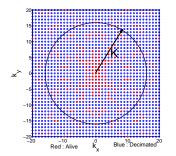
$$h_k = C(k/k_0)^{D-2}$$
, $0 < D \le 2$, $0 < C \le 1$.

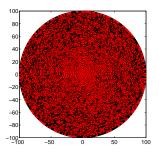
▶ The decimated Navier-Stokes equation

$$\partial_t \mathbf{v} = P_D B(\mathbf{v}, \mathbf{v}) + P_D \mathbf{f} + P_D \Lambda \mathbf{v} \ .$$

Are we able to do this numerically?

- Observatoire COIS
- ▶ We discovered fractal decimation appropriate for hydrodynamics, in which one keeps a randomly selected set of Fourier modes in such a way that the number of modes in a ball of radius *k* centered at wave vector zero varies as *k*^D for large *k*.
- ▶ We shall do our decimation starting from d = 2.





Digression: Two-dimensional Turbulence

Study of high-Reynolds-number solution of the incompressible Navier-Stokes equations:

$$D_t \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} \equiv 0$$

▶ Energy conservation in the inviscid, unforced limit.

$$\partial_t E = -2\nu\Omega$$

$$E = 1/2 \int_{\mathbf{x} \in R^3} |\mathbf{u}|^2$$

$$\Omega = 1/2 \int_{\mathbf{x} \in R^3} |\omega|^2$$

Enstrophy conservation in the inviscid, unforced limit.

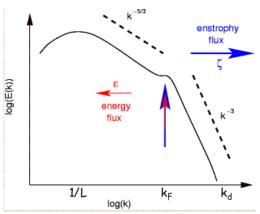
$$\partial_t \Omega = -2\nu P$$

$$P = 1/2 \int_{\mathbf{x} \in R^3} |\nabla \times \omega|^2$$

Cascades

[Kraichnan, Phys. Fluids, $\mathbf{10}$, (1967a), Batchelor, Phys. Fluids Suppl. II, $\mathbf{12}$, (1969)]

- ▶ Energy injected at a length scale l_{inj} will inverse-cascade to large length scales with $E(k) \sim k^{-5/3}$.
- ▶ Energy injected at a length scale l_{inj} will forward-cascade to small length scales with $E(k) \sim k^{-3}$.



Turbulence in non-integer dimensions less that 2 beautiful 2 beaut

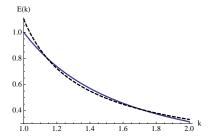
- ▶ In theoretical physics a number of interesting results have been obtained by extending the dimension to non-integer values.
- ► The same kind of extension can be carried out for turbulence using the Kraichnan–Wyld diagramatic formalism.
- ▶ A difficulty appears for d < 2: the energy spectrum E(k) can become negative in some band of wave numbers k, so that this kind of extension lacks probabilistic realizability.
- ▶ Nevertheless, if there exists a way of doing the extension below dimension 2 in which the nonlinearity conserves energy and enstrophy, then an interesting phenomenon should happen in dimension 4/3.

Decimated Systems and Statistical Mechanics Observatoire

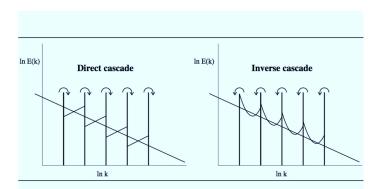
- ► The Galerkin-truncated and the decimated inviscid Navier–Stokes satisfies a Liouville theorem.
- ▶ This implies the existence of (statistically) invariant Gibbs states for which the probability is a Gaussian, proportional to $e^{-(\alpha E + \beta \Omega)}$.
- ► For such Gibbs states the corresponding energy spectrum $E(k) = \frac{k^{D-1}}{\alpha + \beta k^2}$; $\beta > 0$, $\alpha > -\beta$.
- ▶ For enstrophy equipartition: $\alpha = 0 \implies E(k) \propto k^{D-3}$.
- ► This equilibrium spectrum coincides with the Kolmogorov 1941 $k^{-5/3}$ spectrum at the critical dimension $D_c = 4/3$.

Kolmogorov Spectrum

- Energy transfer is dominated by triads of wavenumbers with comparable magnitudes.
- ▶ Decompose the energy inertial range into bands of fixed relative width, say one octave.
- Pure intraband dynamics would lead to thermalization.
- ▶ Perform a thermodynamic thought experiment : Starting from a $k^{-5/3}$ spectrum, prevent the various bands from interacting. In each band, the modes will then thermalize and achieve a Gibbs state with the constraint that the total band energy and enstrophy be the same as for the -5/3 spectrum.

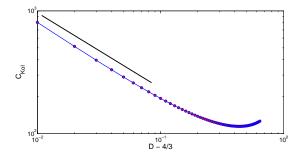


Cascade Direction



Kolmogorov Constant Blow-up

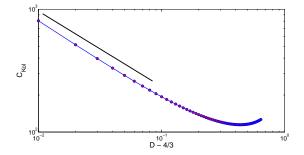
- Observatoire COTS
- ▶ Close to $D_c = 4/3$, use perturbation techniques and obtain for the upper-to-lower-band energy transfer 0.009(D-4/3) to leading order.
- ▶ In the K41 inertial range, the energy spectrum and the energy flux Π_E are related by $E(k) = C_{\mathrm{Kol}} |\Pi_E|^{2/3} k^{-5/3}$, where C_{Kol} is the Kolmogorov constant, we infer that the Kolmogorov constant diverges as $(D-4/3)^{-2/3}$.



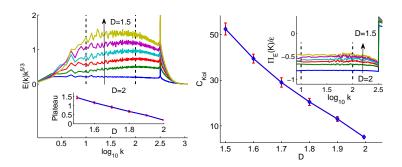
Closure Model

$$\partial_{t}E_{k} + 2\nu k^{2}E_{k} = \frac{8S_{1}}{S_{2}} \int \frac{dpdq}{\sin\alpha} \frac{k^{2}}{pq} \left(\frac{1}{k_{0}}\right)^{D-2} \left(\frac{k_{0}}{p}\right)^{D-2} \left(\frac{k_{0}}{q}\right)^{D-2} \theta_{kpq}$$

$$\left[a_{kpq}^{(2)}k^{D-1}E_{p}E_{q} - b_{kpq}^{(2)}p^{D-1}E_{q}E_{k}\right]$$



Direct Numerical Simulations



Take Home Message: D-Dimensional Turbulence

- ▶ We have shown that for $4/3 < D \le 2$, when the energy spectrum is prescribed to be $E(k) = k^{-5/3}$ over the inertial range, there is a *negative energy flux* Π_E , vanishing linearly with D-4/3 near the critical dimension $D_c = 4/3$.
- We finally observe that the fractal Fourier decimation procedure — that allows numerical experimentation by spectral simulation — can be started from any integer dimension and can be applied to a large class of problems in compressible and incompressible hydrodynamics and MHD.

Part II : Timescales in Turbulent Flows

References:

- Dynamic Multiscaling in Two-dimensional Turbulence,
 S. S. Ray, D. Mitra, P. Perlekar, and R. Pandit,
 Physical Review Letters, 107, 184503 (2011).
- 2. The Persistence Problem in Two-Dimensional Fluid Turbulence,

 D. Dordokov, S. S. Pou, D. Mitter and D. Dordith
 - P. Perlekar, S. S. Ray, D. Mitra, and R. Pandit, **Physical Review Letters**, **106**, 054501 (2011).
- The Universality of Dynamic Multiscaling in Homogeneous, Isotropic Navier-Stokes and Passive-Scalar Turbulence,
 S. S. Ray, D. Mitra, and R.Pandit,
 New Journal of Physics, 10, 033003 (2008).
- Dynamic Multiscaling in Turbulence,
 R. Pandit, S. S. Ray, and D. Mitra,
 European Physics Journal B 64, 463 (2008).

Outline

- Timescales
- ► Two-dimensional turbulence in soap films
 - Dynamic Multiscaling
 - Persistence and Flow Topology

Critical Phenomena

$$\Gamma(r,t,h) pprox rac{1}{r^{d-2+\eta}} \mathcal{F}(t^{
u}\xi,h/t^{\Delta})$$

- r: separation between the spins in d dimensions
- $t \equiv (T T_c)/T_c$
- ▶ $h \equiv H/k_B T_c$
- ▶ *k_B*: Boltzmann constant
- ► T: temperature
- ► T_c: critical temperature
- ▶ H: magnetic field
- \triangleright ξ : correlation length (diverges at criticality)
- \triangleright η, ν and \triangle : static critical exponents
- F: universal scaling function

Critical Phenomena

In Fourier space

$$ilde{\Gamma}(q,t,h)pproxrac{1}{q^{2-\eta}}\mathcal{F}(t^
u\xi,h/t^\Delta);$$

 \vec{q} : wave vector with magnitude q

Dynamic scaling for time-dependent correlation functions in the vicinity of a critical point.

$$\tilde{\Gamma}(q,\omega,t,h) pprox rac{1}{q^{2-\eta}} \mathcal{G}(q^{-z}\omega,t^{\nu}\xi,h/t^{\Delta});$$

- z: dynamic critical exponent
- $\blacktriangleright \omega$: frequency
- ▶ G: a scaling function

Relaxation time au diverges as

$$\tau \sim \xi^z$$
.

Equal-Time Structure Functions

Order-p, equal-time, structure functions:

$$S_p(r) \equiv \langle [\delta u_{\parallel}(\vec{x}, \vec{r}, t)]^p \rangle \sim r^{\zeta_p}$$

$$\delta u_{\parallel}(\vec{x},\vec{r},t) \equiv [\vec{u}(\vec{x}+\vec{r},t)-\vec{u}(\vec{x},t)]\cdot\frac{\vec{r}}{r}$$

 η_d : Kolmogorov dissipation scale;

- L: large length scale at which energy is injected into the system.
- Experiments favour multiscaling: ζ_p a nonlinear, convex monotone increasing function of p.
- ▶ Simple-scaling prediction of Kolmogorov: $\zeta_p^{K41} = p/3$.

Time-Dependent Structure Functions

► The order-*p*, time-dependent longitudinal structure function:

$$\mathcal{F}_{p}(r,\{t_{1},\ldots,t_{p}\}) \equiv \langle [\delta u_{\parallel}(\vec{x},t_{1},r)\ldots\delta u_{\parallel}(\vec{x},t_{p},r)] \rangle$$

For simplicity we consider $t_1 = t$ and $t_2 = \ldots = t_p = 0$.

▶ Given $\mathcal{F}(r,t)$, different ways of extracting time scales yield different exponents that are defined via dynamic-multiscaling ansätze:

$$\mathcal{T}_p(r) \sim r^{z_p}$$
.

Time Scales

► From the longitudinal, time-dependent, order-*p* structure functions, the order-*p*, degree-*M*, integral time scale is defined as,

$$\mathcal{T}_{p,M}^I(r) \equiv \left[rac{1}{\mathcal{S}_p(r)}\int_0^\infty \mathcal{F}_p(r,t)t^{(M-1)}dt
ight]^{(1/M)} \sim r^{z_{p,M}^I}.$$

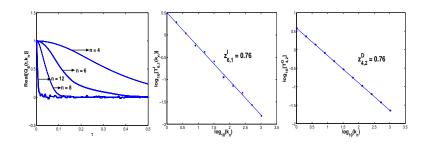
Similarly, the order-p, degree-M derivative time scale is defined as

$$\mathcal{T}^{D}_{p,M}(r) \equiv \left[rac{1}{\mathcal{S}_p(r)} rac{\partial^M \mathcal{F}_p(r,t)}{\partial t^M}
ight]^{(-1/M)} \sim r^{\mathcal{Z}^{D}_{p,M}}.$$

▶ The multifractal model predicts the following bridge relations:

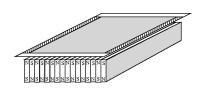
$$z'_{p,M} = 1 + \frac{[\zeta_{p-M} - \zeta_p]}{M}; \quad z^D_{p,M} = 1 + \frac{[\zeta_p - \zeta_{p+M}]}{M}.$$

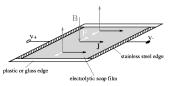
Timescales from Shell Models of 3D Turbulence Cheenatoire



Back to 2D : Electromagnetically forced soap

[M. Rivera, Ph.D. Thesis, arXiv:physics/010305v1]





- ► Soap film: 400*ml* distilled water + 40*ml* glycerol + 5*ml* commercial liquid detergent,
- The soap film is suspended on a rectangular frame,
- ► The magnetic array produces a Kolmogorov forcing $F_x = F_0 sin(k_y y)$.

Modelling soap films: Incompressible limit

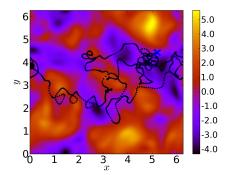
[Chomaz et al., PRA, **41**, (1990), Chomaz, JFM, (2001), P. Fast, arXiv:physics/0511175v1, (2005).]

- ▶ Mach Number $M_e \equiv u_{rms}/c$, where c is the speed of the sound in the soap films. For the experiments with electromagnetically forced soap films $M_e \sim 0.06$.
- ➤ To leading order soap-film behaviour is governed by the Navier-Stokes (NS) equations in two dimensions + an air drag

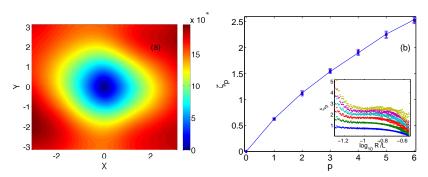
$$D_t \mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla p - \alpha \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Multiscaling in 2D Flows

- Multiscaling in equal-time, Eulerian vorticity structure functions.
- Investigating dynamic-multiscaling in time-dependent, quasi-Lagrangian vorticity structure functions.
- ► Tracking a single particle in a 2D flow with friction to generate quasi-Lagrangian fields.

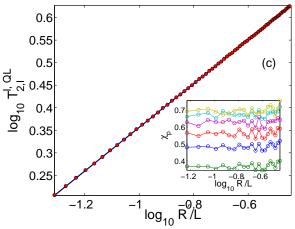


Equal-time Structure Functions



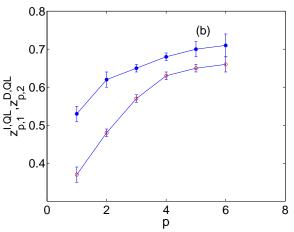
- ▶ Left : $S_3^{\omega}(\mathbf{R})$ for the quasi-Lagrangian field, obtained by averaging over the centers r_c .
- ▶ Right : Scaling exponents for equal-time, vorticity structure functions, for both the Eulerian and quasi-Lagrangian fields.

Time-dependent Structure Functions



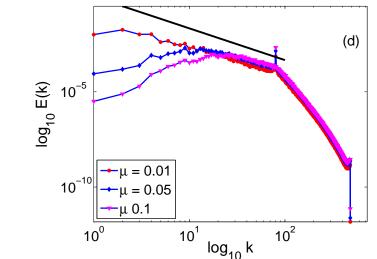
A loglog plot of $T_{2,1}^I$ versus the separation r; the data points are shown by open red circles and the straight black line shows the line of best fit in the inertial range.

Time-dependent multiscaling exponents



Plots of the vorticity, dynamic-multiscaling, quasi-Lagrangian exponents $z_{p,1}^{I,\mathrm{QL}}$ (open red circles) and $z_{p,2}^{D,\mathrm{QL}}$ (full blue circles) versus p with the error bars

Effect of Friction



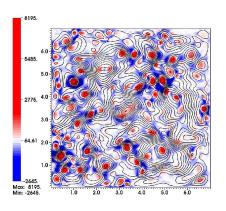
A log-log plot of the energy spectrum versus the wavevector k for various values of μ .

Take Home Message: Dynamic Multiscaling Observatorie

- ▶ Dynamic multiscaling exponents z_p depend on how $\mathcal{T}_p(r)$ is extracted.
- $ightharpoonup z_p$ is related to the equal-time exponents via bridge relations.
- ▶ In 2D, we find that friction also suppresses sweeping effects so, with such friction, even Eulerian vorticity structure functions exhibit dynamic multiscaling with exponents that are consistent with their quasi-Lagrangian counterparts.
- ► For passive-scalar, dynamic multiscaling is obtained only if the advecting velocity is intermittent.
- Simple dynamic scaling is obtained for a simple version of the passive-scalar problem in which the advecting velocity field is Gaussian, even though equal-time structure functions display multiscaling in this model.

Flow Topology: Okubo-Weiss parameter

- A. Okubo, Deep-Sea Res. 17, 17 (1970),
- J. Weiss, Physica, 48D, 273 (1991).
 - ► From the velocity-gradient tensor \mathcal{A} , with components $A_{ij} \equiv \partial_i u_j$, we obtain the Okubo-Weiss parameter Λ , the discriminant of the characteristic equation for \mathcal{A} .
 - If Λ is positive (negative) then the flow is vortical (extensional).
 - In an incompressible flow in two dimensions $\Lambda = \det A$; and the PDF of Λ has been shown to be asymmetrical about $\Lambda = 0$ (vortical regions are more likely to occur than strain-dominated ones). Note $\langle \Lambda \rangle = 0$.



- ▶ Contours of ψ overlayed on the pseudocolor plot of Λ .
- Λ > 0(centers)
- ► Λ < 0(saddles)
 </p>

The Persistence Problem

- Satya N. Majumdar, Persistence in Nonequilibrium Systems, Curent Science, **77**, 370 (1999); cond-mat/9907407v1 Let $\phi(x,t)$ be a nonequilibrium field fluctuating in space and time according to some dynamics. Persistence is simply the probability $P_0(t)$ that, at a fixed point in space, the quantity $sgn[\phi(x,t) \langle \phi(x,t) \rangle]$ does not change upto time t.
 - ▶ $P^{\phi}(\tau) \sim \tau^{-\beta}$ as $\tau \to \infty$, where β is the *persistence exponent*.
- ▶ We ask :
 - ► How long does a Lagrangian particle stay in region where $\Lambda > 0$ (center) or where $\Lambda < 0$ (saddle)?
 - ► How long does the Λ field not change sign at a position (x, y) i.e., persistence time of a center or a saddle?

Persistence in Two-dimensional Turbulence

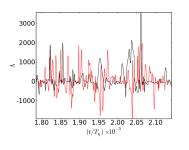
- ▶ Lagrangian persistence: We follow N_p particles and evaluate Λ along their trajectories.
- Eulerian persistence: We monitor the time evolution of Λ at N positions in the simulation domain.
- ▶ For both the cases we find the time-intervals τ over which $\Lambda > 0$ or $\Lambda < 0$. The PDF of these intervals characterizes the analog of persistence in two dimensional turbulence.

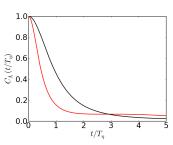
Persistence-time PDF

- ▶ We denote the persistence-time PDFs by P; the subscripts E and L on these PDFs signify Eulerian and Lagrangian frames, respectively; and the superscripts + or − distinguish PDFs from vortical points from those from extensional ones.
- ▶ To find out the persistence-time PDF $P_E^+(\tau)$ [resp., $P_E^-(\tau)$] we analyse the time-series of Λ obtained from each of the N_p Eulerian points and construct the PDF of the time-intervals τ over which Λ remains positive (resp., negative).
- The same method applied to the time series of Λ, obtained from each of the N_p Lagrangian particles, yields $P_L^+(\tau)$ [resp., $P_L^-(\tau)$].

Time series of Λ

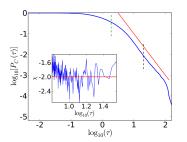
Lagrangian versus Eulerian frame

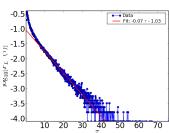




- Lagrangian Λ tracks (red) show rapid fluctuations in comparison to the corresponding Eulerian tracks (black).
- ▶ Autocorrelation $C_{\Lambda} = \langle \Lambda(t_0) \Lambda(t_0 + t) \rangle$ decays faster for the Lagrangian case.

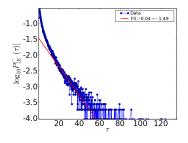
Persistence: particle in a vortex

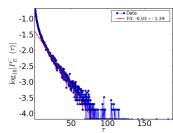




- $P^{C}(\tau) = \tau^{-(\beta-1)}, \ \beta = 2.9 \pm 0.2.$
- ▶ Independent of Re, $\textit{k}_{\textit{inj}}$, and α

Persistence: Eulerian Field





- Lin-log plot of the persistence time of the region of vorticity at position (x, y).
- Lin-log plot of the persistence time of the region of strain at position (x, y).

Take Home Message: Flow Topology

- The Okubo-Weiss parameter provides us with a natural way of formulating and studying the persistence problem in two-dimensional fluid turbulence.
- ► The persistence-time PDF of Lagrangian particles in vortical and strain-dominated regions are different.
- ▶ The persistence-time PDF of Lagrangian particles in vortical regions show a power-law tail with an exponent $\beta = 2.9$.
- ► The persistence-time PDF of Lagrangian particles in strain-dominated regions shows an exponential tail.