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Introduction

In this talk we shall discuss the constraint imposed on the
equations of the relativistic hydrodynamics by two related physical
requirement that

these equations admit a stationary solution on an arbitrarily
weakly curved stationary background spacetime.

the conserved currents (e.g. the stress tensor) on the
corresponding solution follow from an equilibrium partition
function.
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Entropy current

The traditional way of thinking about the fluid dynamics
(Landau-Lifshitz ) is that the equations are consistent with a local
form of the second law of thermodynamics. This in particular
imposes

inequalities on several parameters (like viscosities and
conductivities) that appear in the equations of hydrodynamics
(Landau-Lifshitz ).

requirement of local entropy increase also yields equalities
relating otherwise distinct fluid dynamical parameters, and so
reduces the number of free parameters that appear in the
equations of fluid dynamics. (see recent AdS/CFT inspired
works, Son, Surowka, arXiv:0906.5044, Bhattacharya etall
arXiv:1105.3733).
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Entropy current vs partition function

Inequalities corresponds to dissipation. They are not captured
by partition function technique.

In the examples that so far has been checked implies equalities
obtained on both the ways are the same.

Partition function analysis is much simpler and lead to some
novel relations between various coefficients which could not be
got other wise easily.

Are these two way of thinking same? No proof yet.
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Plan of the talk

Brief overview of local entropy current method and
constraints. Example of charged first order fluid and
uncharged second order fluid.

General discussion on partition function method and
constraints.

Examples: Second order uncharged fluid, Anomalous case....

Summary.
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Charged first order fluid

Tµν = (ε+ p)uµuν + pgµν + Tµν
diss , Jµ = quµ + jµdiss

They satisfy conservation

∇µTµν = FµνJν , ∇µJµ = 0. (1)

In order to specify Tµν
diss , jµdiss we need to specify onshell

independent first derivative data.

Tensor: σµν = 1
2P

µαPνβ
(
∇αuβ +∇βuα − Pαβ

(
∇λuλ

))
Scalar: ∇µuµ.

Vector:
V1 = −Pµν∂ν µT + Fµνuν

T
V2 = uν∇νuµ
V3 = Fµνuν

See arXiv:1105.3733 by J.Bhattacharya, S. Bhattacharyya, S.
Minwalla, A. Yarom for details.
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One needs to supplement this with entropy current as well.

Jµs = suµ − 1

T
uµT

µν
diss −

µ

T
Jµdiss + s1 S1u

µ +
3∑

i=1

viV
µ
i . (2)

Schematically, divergence of entropy current will have

∂µJ
µ
S = independent two derivative and curvature data +

quadratic form in first order data .

The first term on the right hand side of above equation must
vanish while the second term must be tuned to be positive.
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The two derivative part of the divergence of the entropy is given by

−v1Pµν∇µ∂ν
µ

T
+ (s1 + v2)uµ∇µ∂νuν +

(
v3 +

v1
T

)
∇µ(Fµνuν) .

This implies

v1 = v3 = 0 and v2 = −s1.
One obtains

JµS = suµ − 1

T
uµT

µν
diss −

µ

T
Jµdiss + s1 (S1u

µ − V µ
2 ) . (3)

where s1 is still an arbitrary function of T and µ.
Putting system in arbitrarily curved background sets s1 = 0.
Stress tensor and current are given by

T diss
µν = ησµν + Pµνζ∇µuµ, Jµdiss = σV µ

1 +
3∑

i=2

ciV
µ
i . (4)

Now analyzing divergence of entropy current coming from
remaining parts gives (well known results)

η ≥ 0, ζ ≥ 0, σ ≥ 0. (5)

Other two transport coefficients appearing in current vanishes.
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Uncharged second order fluid

Here computation becomes very messy. See for example
arXiv:1201.4654, S. Bhattacharyya.

Symmetry considerations determine the expansion of the
hydrodynamical stress tensor up to 15 parity even transport
coefficients. It turns out the 7 of the parity even are
dissipative that is they satisfy some inequality type relation
where as remaining 8 coefficients satisfy 5 equality type
relations among themselves.
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One can show that the most general symmetry allowed two
derivative expansion of the constitutive relations is given by

T diss
µν = T

[
τ (u.∇)σ〈µν〉 + κ1R̃〈µν〉 + κ2K〈µν〉 + λ0 Θσµν

+ λ1 σ〈µ
aσaν〉 + λ2 σ〈µ

aωaν〉 + λ3 ω〈µ
aωaν〉 + λ4 a〈µaν〉

]
+ TPµν

[
ζ1(u.∇)Θ + ζ2R̃ + ζ3R̃00

+ ξ1Θ2 + ξ2σ
2 + ξ3ω

2 + ξ4a
2

]
(6)

The equality type relation ship is obeyed by

Πµν

T
= κ1R̃〈µν〉 + κ2K〈µν〉 + λ3ω

α
〈µ ωαν〉 + λ4a〈µaν〉

+ Pµν(ζ2R̃ + ζ3R̃00(u0)2 + ξ3ω
2 + ξ4a

2) (7)
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Details

uµ = The normalized four velocity of the fluid

Pµν = gµν + uµuν = Projector perpendicular to uµ

Θ = ∇.u = Expansion, aµ = (u.∇)uµ = Acceleration

σµν = PµαPνβ
(
∇αuβ +∇βuα

2
− Θ

3
gαβ

)
= Shear tensor

ωµν = PµαPνβ
(
∇αuβ −∇βuα

2

)
= Vorticity

Kµν = R̃µaνbuaub, R̃µν = R̃aµbνgab (R̃abcd = Riemann tensor)

σ2 = σµνσ
µν , ω2 = ωµνω

νµ

(8)
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Equality type relation

κ2 = κ1 + T
dκ1
dT

,

ζ2 =
1

2

[
s
dκ1
ds
− κ1

3

]
ζ3 =

(
s
dκ1
ds

+
κ1
3

)
+

(
s
dκ2
ds
− 2κ2

3

)
+

s

T

(
dT

ds

)
λ4

ξ3 =
3

4

( s

T

)(dT

ds

)(
T
dκ2
dT

+ 2κ2

)
− 3κ2

4
+
( s

T

)(dT

ds

)
λ4

+
1

4

[
s
dλ3
ds

+
λ3
3
− 2

( s

T

)(dT

ds

)
λ3

]
ξ4 = − λ4

6
− s

T

(
dT

ds

)(
λ4 +

T

2

dλ4
dT

)
− T

(
dκ2
dT

)(
3s

2T

dT

ds
− 1

2

)
− Ts

2

(
dT

ds

)(
d2κ2
dT 2

)
(9)
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Summary of results obtained from entropy current method

For charged first order fluid, we only had inequality type
relations. No equality type relation for non vanishing term
coefficients.

For uncharged second order system, there are seven inequality
type relations and rest of the eight coefficients satisfy 5
equality type relations. So there are three independent
non-dissipative transport coefficients.

Computation for parity odd second order fluid is not yet
performed and it’ll take considerable amount of effort to reach
at the result.

In both the cases, end results were not very complicated but
computations to reach at the results are tedious.
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Constraint from equilibrium

Consider a relativistically invariant quantum field theory on a
manifold with a time like killing vector. By a suitable choice of
coordinates, any such manifold may be put in the form

ds2 = −e2σ(~x)
(
dt + ai (~x)dx i

)2
+ gij(~x)dx idx j (10)

where i = 1 . . . p. ∂t is the killing vector on this manifold, while
the coordinates ~x parametrize spatial slices. Here σ, ai , gij are
smooth functions of coordinates ~x .
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Constraint from equilibrium

In the long wavelength limit the background manifold may be
thought of as a union of approximately flat patches, in each of
which the system is in a local flat space thermal equilibrium at
the locally red shifted temperature

T (x) = e−σT0 + . . . (11)

(where T0 is the equilibrium temperature of the system and
the . . . represent derivative corrections).

It is easy to verify that the equations of perfect fluid
hydrodynamics (hydrodynamics at lowest order in the
derivative expansion) admit a stationary ‘equilibrium’ solution
in the background (10) given by

uµ(0)(~x) = e−σ(1, 0, . . . , 0), T(0)(~x) = Toe
−σ (12)
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Constraints

It can be shown that just the requirement that the equilibrium
solution is consistent with forst orderenergy momentum tensor
and charge current give us the same result that we discussed
earlier.

For second order, appropriately correcting the velocity,
tempeature at the second order (which comes automatically
by demanding consistency of equations) one again obtains
same equality type relations.

Though this is considerably simpler than entropy current
method, one still needs to handle differential equations.
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Partiton function technique

Let H denote the Hamiltonian that generates translations of the
time coordinate t.

Question: What can we say, on general symmetry grounds,
about the dependence of the the partition function of the
system

Z = Tre
− H

T0 , (13)

on σ, gij and ai?

We focus on the long wavelength limit (manifolds whose
curvature length scales are much larger than the ‘mean free
path’ of the thermal fluid). In this limit the question
formulated above may addressed using the techniques of
effective field theory.
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Partition function technique

The form of the metric is preserved by p dimensional spatial
diffeomorphism together with redefinitions of time of the form

t ′ = t + φ(~x), x ′ = x . (14)

Under coordinate changes of the form (14) the Kaluza Klein
gauge field ai transforms like a connection:

a′i = ai − ∂iφ.

Under this upper spatial indices as well as lower temporal
indices are invariant.

On the other hand lower spatial indices and upper temporal
indices transform under the Kaluza Klein gauge
transformation (14) according to

V ′i = Vi − ∂iφV0, (V ′)0 = V 0 + ∂iφV
i . (15)
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Partition function should be three dimensional diffeomorphism
invariant as well as KK gauge invariant.

Consequently the partition function of the system is given by

lnZ =

∫
dpx
√
gp

1

T (x)
P(T (x)) + . . . (16)

where P(T ) is the thermodynamical function that computes
the pressure as a function of temperature in flat space.
Substituting (11) into (16) we find (zeroth order)

lnZ =

∫
dpx
√
gp

eσ

T0
P(T0e

−σ) (17)

Starting from this partition function and evaluating the stress
tensor and requiring that it reproduces the zeroth order energy
momentum tensor also gives

uµ(0)(~x) = e−σ(1, 0, . . . , 0), T(0)(~x) = Toe
−σ (18)
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Partition function at higher order

At first order one can show that there is no possible scalar
consistent with the symmetries that were mentioned in the
last slide. Consequently there are no equality (non-dissipative
transport coefficient) type relations, which is what also
obtained from entropy current method.

Generalizing this to (parity even) charged system where one
has background gauge field turned on (here one extra
parameter namely chemical potential), one can easily conclude
that there is no possible scalar which is consistent with gauge
symmetry and previous discussed symmetries.

So just by this simple analysis we again reach at the
conclusion that for first order charged fluid, apart from
conductivity (shear and bulk viscosities as well) there are no
other transport coefficients. The terms containing viscosities
and conductivities as coefficients vanishes at equilibrium.
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Second order uncharged fluid

First thing to notice: Seven coefficients vanish giving us
remaining 8 nondissipative transport coefficients.

At second order, the partition function (parity odd as well)
consistent with symmetry takes the form

logZ =∫
dpx
√
gp

(
P1(σ)R + T 2

0P2(σ)(∂iaj − ∂jai )2 + P3(σ)(∇σ)2

)
(19)

where P1(σ), P2(σ) and P3(σ) are arbitrary functions.

The most general fluid dynamical partition function, on the
other hand, is given in terms of three functions of σ.
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Before doing any computation we conclude

Among eight parity even symmetry allowed nondissipative
transport coefficients, only three are independent. To find
precise relations between them we need to do more work. But
even to reach at this conclusion one needs to do lots of
computation in the other way.
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Second order uncharged fluid: Parity odd

Here we shall do simple counting

Symmetry considerations determine the expansion of the
hydrodynamical stress tensor up to 5 parity odd transport
coefficients.

2 of the odd terms vanish in equilibrium. In other words, on
symmetry grounds our system has 2 parity odd dissipative
coefficients.

So we have 3 parity odd non dissipative coefficients.

It turns out that the partition function (only probable term is
f (σ)εijk∂iσfjk , which is total derivative) has no parity odd
contribution at second order. So it implies, all the three
non-dissipative transport coefficients must vanish. Again in
order to verify (computation not being dome yet using
entropy positivity approach) this statement one needs to do
lots of work.
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Details of partition function technique

In order to proceed further, we need following ingredients

The stress tensor is defined as

Tµν = −2T0
δ lnZ

δgµν
(20)

By application of the chain rule to the above expression for
stress tensor, we find

T00 = − T0e
2σ√

−g(p+1)

δW

δσ
, T i

0 =
T0√
−g(p+1)

δW

δai
,

T ij = − 2T0√
−g(p+1)

g ilg jm δW

δg lm
, (21)

where, for instance, the derivative w.r.t σ is taken at constant
ai , g

ij .
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steps of computation

Write down most general symmetry allowed two derivative
stress tensor.

Write down most general symmetry allowed two derivative
equilibrium velocity and temperature configuration at
equilibrium

Evaluate stress tensor up to second order at equilibrium
(including correction to zeroth order piece coming from
velocity and temperature correction).

Using expression for stress tensor in terms of the partition
function, compute the stress tensor and compare with above.
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steps of computation

One obtains relation between transport coefficients, velocity
coefficients and temperature coefficients.

Eliminate the velocity and temperature coefficients to obtain
relation between transport coefficients.

One also obtains equilibrium velocity and temperature up to
second order in derivative expansion.
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Relations

One obtains same relation as was obtained from entropy positivity
method.

κ2 = κ1 + T
dκ1
dT

, ζ2 =
1

2

[
s
dκ1
ds
− κ1

3

]
ζ3 =

(
s
dκ1
ds

+
κ1
3

)
+

(
s
dκ2
ds
− 2κ2

3

)
+

s

T

(
dT

ds

)
λ4

ξ3 =
3

4

( s

T

)(dT

ds

)(
T
dκ2
dT

+ 2κ2

)
− 3κ2

4
+
( s

T

)(dT

ds

)
λ4

+
1

4

[
s
dλ3
ds

+
λ3
3
− 2

( s

T

)(dT

ds

)
λ3

]
ξ4 = − λ4

6
− s

T

(
dT

ds

)(
λ4 +

T

2

dλ4
dT

)
− T

(
dκ2
dT

)(
3s

2T

dT

ds
− 1

2

)
− Ts

2

(
dT

ds

)(
d2κ2
dT 2

)
(22)
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Summary

To summarize, we have shown an alternate way to constrain the
fluid dynamics which gives similar results as the entropy current
method. This is remains to be proven or dis proven that both
methods will always give rise to same constraint.
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Anomalous transport

Here one has

∇µTµν = F ναJ
α, ∇µJµ = c ∗ (F ∧ F )

Tµν
diss = −ζθPµν − ησµν
Jµdiss = σ

(
Eµ − TPαµ ∂αν

)
+ α1E

µ + α2Pµα∂αT + ξωω
µ + ξBB

µ

(23)

Most general entropy current is

JµS = suµ − νJµdiss + DθΘuµ + Dc (Eµ − TPµα∂αν) + DEE
µ

+ Daa
µ + Dωω

µ + DBB
µ + hεµνλσAν∂λAσ

where h is a constant

(24)
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The constraints that one obtains by demanding positivity is given
by

ξω = Cν2T 2
(
1− 2q

3(ε+ P)
νT
)

+ T 2
[
(4νC0 − 2C2)− qT

ε+ P
(4ν2C0 − 4νC2 + 4C1)

]
,

ξB = CνT
(
1− q

2(ε+ P)
νT
)

+ T
(
2C0 −

qT

ε+ P
(2νC0 − C2)

)
,

α1 = α2 = 0 (25)

here c1 and c2 are integration constants. So free parameter three.
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Partition function method

Here one can easily write down the partition function up to first
order in derivative

lnZ = W 0 + W 1
inv + W 1

anom

W 0 =

∫ √
g3

eσ

T0
P
(
T0e

−σ, e−σA0

)
W 1

inv =
C0

2

∫
AdA +

T 2
0C1

2

∫
ada +

T0C2

2

∫
Ada

W 1
anom =

C

2

(∫
A0

3T0
AdA +

A2
0

6T0
Ada

)
(26)

So here naturally three parameters appear. One can follow same
procedure as discussed above to reach at the same result as
obtained above.
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In two dimensions one has

∇µJµ = csε
µνFµν , ∇µTµν = F νµJµ + cg ε

µν∇νR (27)

Most general current in two dimensions can be written as

Jµ = quµ + c1ε
µνuν . (28)

It turns out that there is a relation between cg and c1. Notice the
derivative order mixing. Recently, using the frame work of partition
function this is shown to be hold. See arXiv:1207.5824, Jensen,
Loganayagam, Yarom.
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