

## STRING THEORY: PAST AND PRESENT

# SPENTAFEST, BANGALORE

11-13 JANUARY 2017

## HADRONIC STRINGS: OLD AND NEW

Michael B. Green

DAMTP Cambridge and Queen Mary, U. of London

# MANY THANKS FOR YOUR NUMEROUS INSIGHTS DELIVERED WITH SUCH GRACIOUSNESS

AND FOR YOUR PASSION IN CREATING THIS MAGNIFICENT INSTITUTE.

HAPPY BIRTHDAY, SPENTA

#### INTUITIVE MOTIVATION FOR THIS TALK

SU(N) QCD in the large-N limit is expected to be some kind of string theory in which the coupling constant is 1/N.

"Fundamental" string theory clearly fails to capture many aspects of large-N QCD.

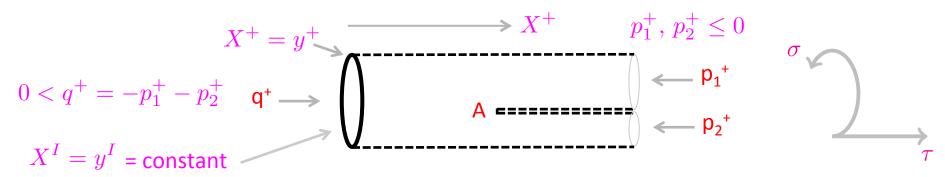
Notably: Absence of Point-Like Substructure — no hard partons fixed angle scattering amplitudes decrease exponentially with energy  $s \to \infty$ , fixed

 $\frac{t}{s} \leq 0$ 

Some successes within AdS/CFT: Curved extra dimensions captures certain point-like features of QCD (Polchinski and Strassler followed by many others). But weakly coupled QCD involves understanding fundamental string theory in a highly curved holographic dual.

Polyakov's discussion of QCD in terms of Liouville theory captures other qualitative features – but also involves highly curved space-time.

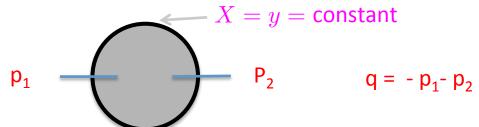
- THE FUNDAMENTAL STRING IS A DIFFUSE OBJECT WITH NO POINT-LIKE SUB-STRUCTURE.
   Point-like configurations contribute with zero measure to the fundamental string functional integral.
- BUT, IN QCD, OFF-SHELL CURRENTS MUST COUPLE LOCALLY TO POINT-LIKE ENERGY DENSITIES.


  Reconsider a "prehistoric" procedure for reweighting the measure so that point-like configurations contribute significantly in the relevant kinematic regimes.

I WILL HERE CONCENTRATE ON CLOSED STRINGS (GLUEBALL STRINGS).

#### POINT-LIKE COUPLING TO OFF-SHELL CURRENTS

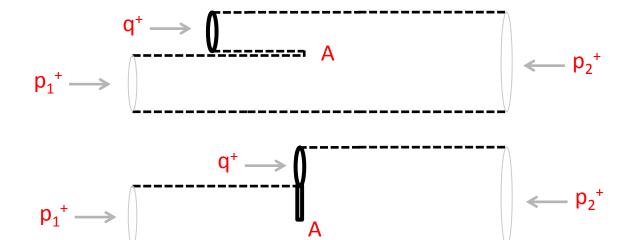
Physical intuition: Light-cone frame diagrams –  $X^+ = x^+ + p^+ au$  width in  $\sigma = p^+$ 


e.g. FORM FACTOR - string collapses to a point at  $X^+ = y^+$  ,  $X^I = y^I$  .



Point-like Boundary State c.f. first order contribution of a D-instanton

Integrate over the joining point A


Conformal map from upper half z-plane

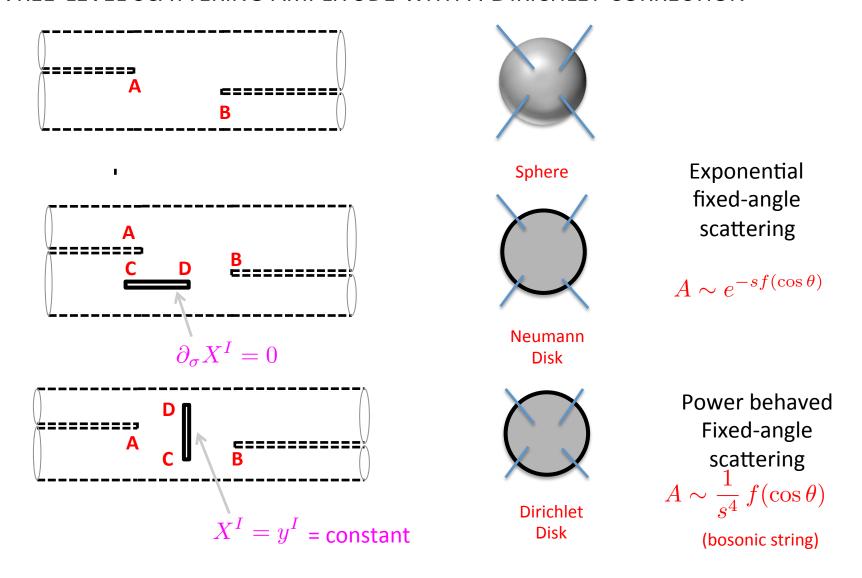


• Power dependence on  $q^2$  (modulo divergences in bosonic string).

$$F(q^2) = \int d^D y \tilde{F}(y) e^{iq \cdot y} \sim \int_0^\infty dt \, e^{-(q^2/2 + 2)t} \prod_{n=1}^\infty (1 - e^{-2nt})^{-24}$$

Space-like form factor  $0 < q^+ \le -p_1^+, -p_2^+$ 




Two distinct components of space-like form factor

Zero-momentum boundary insertion – Point-Like correction to propagator

Required by local coupling to off-shell currents

Must interpret problematic singularities: Dilaton singularity at L=0; open string divergence at L=  $p_1^+$ 

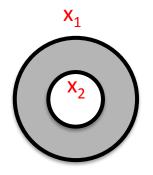
#### TREE-LEVEL SCATTERING AMPLITUDE WITH A DIRICHLET CORRECTION



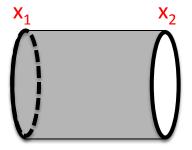
OR

Comes from region in which points

A and B pinch the line CD


Region in which 3 vertices approach boundary of the disk

#### WORLD-SHEETS LOOPS WITH DIRICHLET BOUNDARIES


Hamiltonian for open string with fixed end-points winding m times around a circle radius R

$$L_0^D = \frac{1}{4\alpha'} \left( \frac{x_2 - x_1}{\pi} + 2mR \right)^2 + \sum_{n=1}^{\infty} \alpha_{-n} \cdot \alpha_n$$

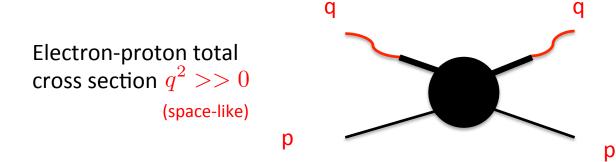
Two-current amplitude (viz. e<sup>+</sup>- e<sup>-</sup> annihilation)



$$\int_0^\infty \frac{dt}{t} \operatorname{Tr} e^{-(L_0^D - 1)t}$$

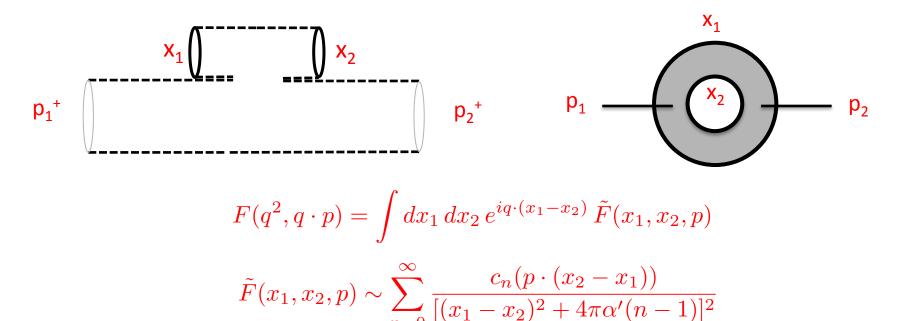


$$\langle B_1|rac{1}{L_0+ ilde{L}_0-2}|B_2
angle \ X(\sigma)\,|B_i
angle=x_i\,|B_i
angle \ {
m Dirichlet\ boundary\ state}$$


Singularities at:

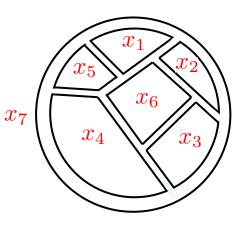
$$(x_2 - x_1)^2 = 4\pi\alpha'(1-n), \quad n \ge 0$$

Space-like singularity due to open-string tachyon.


Absent in certain superstring models (with BPS boundary Dirichlet states)

#### "DEEP INELASTIC SCATTERING"



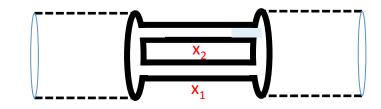

Total cross-section for current carrying large space-like momentum. Light-cone dominance  $q^2$ ,  $q:p>>1/\alpha'$ 

$$\operatorname{Im} A(q, p) = F(q^2, q \cdot p)$$



#### A CONDENSATE OF DIRICHLET BOUNDARIES






Express as integration over position-space variables,

Large- $\alpha'$  behaviour determined by singularities at  $(x_i - x_j)^2 = 0$ .

• E.g.Two boundary case. Integration over  $x_i$  generates log correction in 4-dimensional compactified theory (modulo problematic divergences of bosonic string theory) – could these indicate asymptotic freedom?

This diagram is NOT in light-cone gauge - stretch the two slits.



#### HIGH TEMPERATURE LIMIT OF THE CONFINING PHASE (Polchinski 1991)

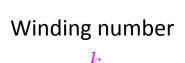
- QCD has a deconfinent phase transition. In the large-N limit this should correspond roughly to the Hagedorn transition of the equivalent string theory.
- Finite temperature analysis of large-N QCD. Consider the correlation function of two Wilson-Polyakov loops winding k times around the euclidean time dimension of radius  $\beta=1/kT$ .

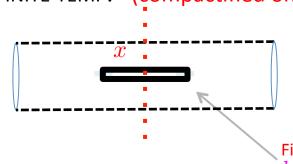
$$W_k(\mathbf{x}) = \frac{1}{N} \operatorname{Tr} P \exp \left( i \int_0^{\beta k} d\tau A^{\tau}(\tau, \mathbf{x}) \right)$$

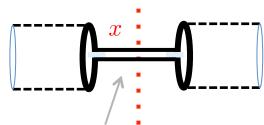
• Confinement phase signalled by unbroken  $Z_N$  in the centre of SU(N).

$$\langle W_k(0) W_{-k}(L) \rangle \sim e^{-M_k(\beta) L}, \qquad L \to \infty$$

• Lowest mass glueball exchange becomes tachyonic at  $\beta = \beta_c$ 


Continue to 
$$~\beta << 1$$
 
$$M_k^2(\beta) = -\frac{2g_{_{YM}}^2(\beta)\,N}{\pi^2\beta^2k^2} \qquad g_{_{YM}}(\beta) ~\text{Running coupling}$$
 (Polchinski 1991)


Compare with typical closed string theory result.


$$\alpha' M_k^2(\beta) = -c - \frac{1}{16\pi^2 \alpha'} \beta^2 k^2, \qquad c > 0$$

### Now consider closed string propagator with a Dirichlet boundary insertion

AT FINITE TEMP. (compactified on spatial circle of radius  $\beta$ )







Fixed endpoint string winding k times around temp. direction

Open string propagator 
$$\Sigma = \frac{1}{\frac{4 \, k^2 \beta^2}{\alpha'} + N_o - 1}$$

(  $N_o=0$  tachyon absent in type 0)

Closed string mass renormalisation. Renormalised closed string propagator to lowest order in  $w_d$   $g_s$  with winding number: k

$$\Delta(\beta) = \frac{1}{L_0 + \tilde{L}_0 - 2 - g_s w_D \Sigma}$$
  $L_0 + \tilde{L}_0 = \alpha' p^2 + N_c + \tilde{N}_c + \frac{\beta^2 k^2}{16\pi^2 \alpha'}$ 

$$L_0 + \tilde{L}_0 = \alpha' p^2 + N_c + \tilde{N}_c + \frac{\beta^2 k^2}{16\pi^2 \alpha'}$$

 $N_o=1$  term (massless vector) dominates as eta o 0:  $\Sigma \sim rac{lpha'}{4k^2eta^2}$ 

$$\Sigma \sim rac{lpha'}{4k^2eta^2}$$

$$\Delta(\beta) \sim \frac{1}{p^2 - \frac{g_s w_D}{4k^2 \beta^2}}$$

If we suppose that  $w_D=N$  and  $g_s=g_{_{YM}}^2/4\pi$ , there is a pole at

$$p^2 = -M_k^2(\beta) = \frac{g_{YM}^2 N}{16\pi^2 \beta^2 k^2}$$

## SOME COMMENTS/QUESTIONS

- Qualitative connection with fixed angle n-particle scattering of (scalar) glueball states in SU(N) QCD.
- Generalisation to superstring theory (far from QCD).
- Type IIB D-instanton boundary states are BPS holographic duals of YM instantons.

Precise connection in supersymmetric – low energy - limit

- Interpretation of logarithmic corrections in D=4 compactifications?
- Compactfication to a variety of D-instanton boundary states.
- May be a rôle for the Type 0 theory (no closed-string fermions).
- Entertaining extension to open-string (meson) strings dynamical massive end-points.
- How does the Dirichlet condensate Affect the spectrum? (is there a massless spin-2 state ??)