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Lectures on the Conformal Bootstrap

1 Introduction

Quantum Field Theories generically become scale-invariant at long distances. Under very
general conditions, scale invariance actually implies invariance under conformal transforma-
tions, which are transformations that locally look like a rescaling + rotation.1

We can think of a UV-complete QFT as a renormalization group flow between conformal
fixed-points,

CFTUV

↓
CFTIR

QFT. (1.1)

By studying CFTs, we can map out the possible beginnings and endings of RG flows, and
thus understand the space of QFTs. (You’ll see many other reasons that CFTs are interesting
over the course of the summer.)

RG-flows can be nonperturbative. A simple example is φ4 theory in 3-dimensions,

S =

∫
d3x

(
(∂φ)2 +

1

2
m2φ2 +

1

4!
gφ4

)
(1.2)

This theory is free in the UV. For generic values of m2, it becomes massive in the IR —
in this case, we can think of it as a flow between the free boson CFT and the trivial CFT.
However, for a special value of m2, the theory flows to a nontrivial interacting CFT. It is
hard to learn about this CFT using Feynman diagrams. Note that g has mass-dimension
1, so that perturbation theory leads to an expansion in xg, where x is a distance scale. At
distances x � 1/g, this expansion breaks down. The best perturbative tool we have is the
ε-expansion, where we start with the theory in 4− ε dimensions and then continue ε→ 1.

In the example above, the UV theory is a continuum QFT (the free boson). However,
interesting IR CFTs can arise from very different microscropic systems. An example is the 3d
Ising model, which is a lattice of classical spins si ∈ {±1} with nearest-neighbor interactions.
The partition function is given by

ZIsing =
∑
si

exp

∑
〈ij〉

−Jsisj

 . (1.3)

1In 2d and 4d, it is enough that the theory be Lorentz-invariant and unitary. In 3d or d > 4, the
appropriate conditions are not known, but conformal invariance appears in myriad examples.

1



We can think of this sum as a discretized path integral, where the spins si form a Z2-valued
field on the lattice that we integrate over. In the continuum limit, for a special value of J ,
this theory also flows to a nontrivial CFT. Actually it is the same CFT as for φ4 theory.
The 3d Ising CFT also arises in water at the critical point on its phase diagram, and uni-
axial magnets at their critical temperature. This IR equivalence of different microscopic
theories is called “critical universality.” IR equivalences show up all over high-energy and
condensed-matter physics, where they are sometimes called “dualities.”

The lattice description is relatively easy to simulate on a computer, but all of the
above realizations of the 3d Ising CFT (especially boiling water) make it difficult to do
computations. The main reason is that none of them fully exploit the symmetries of the IR
theory.

The conformal bootstrap philosophy is to:

1. Focus on the CFT itself and not a specific microscopic description,

2. Determine the full consequences of symmetries,

3. Impose consistency conditions,

4. Combine 2 and 3 to constrain or even solve the theory nonperturbatively.

The merits of this strategy for the 3d Ising model will become clear during this course.
However, sometimes bootstrapping is the only known strategy for understanding the full
dynamics of a theory. An example is the 6d CFT describing the IR limit of a stack of M5
branes in M-theory. This theory has no known Lagrangian description, but is amenable
to a bootstrap analysis.2 A beautiful and ambitious goal of the bootstrap program is to
eventually provide a fully nonperturbative and constructive definition of Quantum Field
Theory, obviating the need for a Lagrangian. We are not there yet, but you can help!

2 QFT Generalities

2.1 The Stress Tensor

The first step of the conformal bootstrap is to understand the full consequences of sym-
metries. For concreteness, let us imagine that we’ve taken the long distance/continuum
limit of φ4 theory or the 3d Ising model and focus on the structures that are present
nonperturbatively.

2At large central charge, this theory is essentially solved using the AdS/CFT correspondence. In
general, supersymmetry is an extremely powerful tool for learning about this theory, and many interesting
supersymmetrically-protected quantities can be computed using non-renormalization theorems, localization,
and other techniques. However, the bootstrap is currently the only known tool for studying non-protected
quantities at small central charge.

2



A local quantum field theory has a conserved stress tensor,

∂µT
µν(x) = 0 (operator equation) (2.1)

This holds as an “operator equation,” meaning it is true away from other operator insertions.
In the presence of other operators, there can be contact terms. In this case, we have the
Ward identity

∂µ〈T µν(x)O1(x1) . . .On(xn)〉 = −
∑
i

δ(x− xi)∂νi 〈O1(x1) . . .On(xn)〉. (2.2)

Exercise 1. Consider coupling our QFT to a background metric g. For concreteness, you
may imagine that a correlator is given by the path integral

〈O1(x1) . . .On(xn)〉g =

∫
DφO1(x1) . . .On(xn) e−S[g,φ] (2.3)

The stress tensor is defined by

〈T µν(x)O1(x1) . . .On(xn)〉g = − 2
√
g

δ

δgµν(x)
〈O1(x1) . . .On(xn)〉g (2.4)

Derive (2.2) by demanding that the theory is coupled to g in a diffeomorphism-invariant
way (i.e., the action should depend only on the metric and not on a choice of coordinates).
Generalize (2.2) to the case of operators with spin.

Let us choose a ball B surrounding some of the operators Oi. Integrating (2.2) over B
and using Stokes’ theorem, we get∫

Σ

dSµ〈T µν(x)O1(x1) · · · On(xn)〉 = −
∑

i inside Σ

∂νi 〈O1(x1) · · · On(xn)〉 (2.5)

where Σ = ∂B. Thus, the integral of T µν over a closed surface Σ,

P ν [Σ] ≡ −i
∫

Σ

dSµT
µν(x) (2.6)

is topological: we are free to deform Σ however we want as long as we don’t cross any
operator insertions.3 We say that P ν [Σ] is a “topological surface operator.” Whenever Σ
surrounds O and no other operators, we have

〈P µ[Σ]O(x) . . .〉 = i∂µ〈O(x) . . .〉. (2.7)

3The word “surface” usually refers to a 2-manifold, but here we will abuse terminology and use it to refer
to a d− 1-manifold in a d-dimensional theory (codimension-1 manifold).
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2.2 Quantization

A single path integral can be interpreted in terms of different time evolutions in different
Hilbert spaces. We refer to such interpretations as “quantizations” of the theory. The
example you’re all familiar with is that in a Lorentz invariant theory, we can consider time
evolution in reference frames that are boosted with respect to one other. In a rotationally-
invariant Euclidean theory on Rd, we are free to choose any direction as “time” and think
of states living on Rd−1-slices orthogonal to that direction.

In general, to specify a quantization, we pick a foliation of our spacetime by spatial slices.
A state |ψ〉 lives on a slice. A correlation function 〈O1(x1) · · · On(x2)〉 gets interpreted as a
time ordered expectation value

〈O1(x1) · · · On(xn)〉 = 〈0|T{O1(t1,x1) · · · On(tn,xn)}|0〉 (2.8)

where the time ordering T{. . . } is with respect to our choice of foliation, and |0〉 refers to
the vacuum in the Hilbert space living on a spatial slice. Other choices of initial and final
state correspond to different boundary conditions for the path integral.

Let Σt be a spatial slice at time t and consider the operator P ν [Σt]. Because P ν [Σt] is
topological, we are free to move it forward or backward in time from one spatial slice to
another P ν [Σt] = P ν [Σt′ ], as long as we don’t cross any operator insertions. Thus, we can
often neglect to specify the surface Σt and just write P ν (though we should keep in mind
where the surface lives with respect to other operator insertions). We call P ν “momentum,”
and the fact that it’s topological is the path integral version of the statement that momentum
is conserved.

We must take care when we move P ν past an operator insertion. Consider a local operator
O(x) at time t. If Σ2 is a spatial surface at time t2 > t and Σ1 is a spatial surface at time
t1 < t, then the difference P ν [Σ2]−P ν [Σ1] becomes a commutator because of time ordering,

〈(P µ[Σ2]− P µ[Σ1])O(x) . . .〉 = 〈0|T{[P µ,O(x)] . . . }|0〉. (2.9)

Because P µ is topological, Σ2−Σ1 can be freely deformed to a sphere Σ′ surrounding O(x),

〈0|T{[P µ,O(x)] . . . }|0〉 = 〈P µ[Σ2 − Σ1]O(x) . . .〉
= 〈P µ[Σ′]O(x) . . .〉
= i∂µ〈O(x) . . .〉
= i∂µ〈0|T{O(x) . . . }|0〉, (2.10)

where in the third line we’ve used the Ward identity (2.5). Figure ?? makes it clear that
this result is independent of how we choose to quantize our theory. Thus, we often write

[P µ,O(x)] = i∂µO(x) (2.11)

without specifying which quantization we are using. In general, a commutator [Q,O(x)] is
shorthand for surrounding O(x) with a topological surface operator Q[Σ].
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Equation (2.11) can be integrated to give

O(x) = e−iP ·xO(0)eiP ·x (2.12)

This statement is also true in any quantization of the theory. In fact, in path integral
language, e−iP ·x[Σ] can be thought of as a topological surface operator given by inserting
many P ν ’s on a given surface Σ. When we surround O(0) with e−iP ·x[Σ], it becomes
conjugation O(0)→ e−iP ·xO(0)eiP ·x in any quantization.

Consider the time-ordered correlator (2.8) with tn > · · · > t1. This is

〈O1(x1) · · · On(xn)〉 = 〈0|e−itnP 0On(0,xn)eitnP
0 · · · e−it1P 0On(0,x1)eit1P

0 |0〉 (2.13)

= 〈0|On(0,xn)ei(tn−tn−1)P 0 · · · ei(t2−t1)P 0O1(0,x1)|0〉 (2.14)

In other words, the path integral between spatial slices separated by time t computes the
action of U = eitP

0
. In a reflection-positive Euclidean theory, P 0 is anti-hermitian, P 0 =

iH, where H has positive spectrum. Thus, the factors ei(tk−tk−1)P 0
= e−(tk−tk−1)H lead to

suppression at large time separation. Note that a non-time ordered Euclidean correlator
doesn’t even make sense because it would have insertions of epositive×H and the spectrum of
H is generally unbounded above.

2.3 More Symmetries

Given a conserved current ∂µJ
µ = 0 (away from other operator insertions), we can always

define a topological surface operator by integration.4 For momentum P ν , the corresponding
currents were simply T µν(x). More generally, given a vector field ε = εµ(x)∂µ, the charge

Qε[Σ] =

∫
Σ

dSµενT
µν(x) (2.15)

will be conserved whenever

0 = ∂µ(ενT
µν) = ∂µενT

µν + εν∂µT
µν =

1

2
(∂µεν + ∂νεµ)T µν , (2.16)

where we’ve used that T µν is symmetric and conserved. Thus, we should demand

∂µεν + ∂νεµ = 0. (2.17)

This is the Killing equation. In flat space, it has solutions

ε = pµ = −i∂µ (translations)
ε = mµν = i(xµ∂ν − xν∂µ) (rotations).

(2.18)

The corresponding charges are momentum Pµ = Qpµ and angular momentum Mµν = Qmµν .

4It is an interesting question whether the converse is true. In the case of continuous symmetries, Noether’s
theorem gives a way to construct a current when a theory has a Lagrangian description. However, it is not
clear whether a current must exist when a microscopic Lagrangian is absent.
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3 Conformal Symmetry

In a conformal theory, the stress tensor satisfies an additional condition: it is traceless,

T µµ (x) = 0 (operator equation). (3.1)

This is equivalent to the statement that the theory is insensitive to position-dependent
rescalings of the metric δgµν = ω(x)gµν (near flat space).5 In the presence of a traceless
stress tensor, we can relax the requirement on ε further to

∂µεν + ∂νεµ = c(x)ηµν (3.2)

where c(x) is some scalar function.6 Equation (3.2) is the conformal Killing equation. It has
two additional types of solutions in Rd,

d = −ixµ∂µ (dilatations)
kµ = i(2xµx

ν∂ν − x2∂µ) (special conformal transformations).
(3.3)

The corresponding symmetry charges are D = Qd and Kµ = Qkµ .7

3.1 Finite Conformal Transformations

Before discussing the charges Pµ,Mµν , D,K, let us take a moment to understand the geomet-
rical meaning of the conformal Killing vectors (2.18) and (3.3). The vector fields pµ,mµν , d, kµ
generate infinitesimal spacetime transformations xµ → x′µ = xµ + εµ(x). The conformal
Killing equation implies

∂x′µ

∂xν
= δµν + ∂νε

µ =

(
1 +

1

2
c(x)

)(
δµν +

1

2
(∂νε

µ − ∂µεν)
)

(3.4)

This is an infinitesimal rescaling times an infinitesimal rotation. Exponentiating gives a
transformation of the same form,

∂x′µ

∂xν
= Ω(x)Oν

µ(x), OTO = Id×d. (3.5)

where Ω(x) and Oν
µ(x) are now finite (position-dependent) rescalings and rotations. Such

transformations define the conformal group. It is a finite-dimensional subgroup of the
diffeomorphism group of Rd. (We’ll see exactly which group in a moment.)

5In curved space, there can by Weyl anomalies.
6By contracting both sides with the metric, we find c(x) = 2

d∂ · ε(x).
7The above solutions are present in any spacetime dimension. In two dimensions, there are an infinite set

of additional solutions to the conformal Killing equation, leading to an infinite set of additional conserved
quantities. This is an extremely interesting subject which we unfortunately won’t have time for in this
course.
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The finite versions of translations and rotations are familiar. Exponentiating d gives a
scale transformation x→ λx which rescales the metric by a constant factor. The nontrivial
case is kµ. We can understand what it does by first considering an inversion

I : xµ → xµ

x2
(3.6)

I is a conformal transformation (though it is not continuously connected to the identity, and
thus can’t be obtained by exponentiating the conformal algebra).

Exercise 2. Verify that I ◦ pµ ◦ I = kµ. Conclude that eia·k = I ◦ eia·p ◦ I, or

x → x′(x) =
xµ + aµx2

1 + 2(a · x) + a2x2
. (3.7)

We can think of kµ as a “translation that moves infinity and fixes the origin” in the same
sense that the usual translations move the origin and fix infinity.

3.2 The Conformal Algebra

The charges Qε give a representation of the conformal algebra

[Qε1 , Qε2 ] = Q[ε1,ε2] (3.8)

where [ε1, ε2] is a commutator of vector fields.8 As usual, (3.8) is true in any quantization
of the theory. (In path integral language, it tells us how to move the topological surface
operators Qεi [Σ] through each other.)

Exercise 3. Show that

[Mµν , Pρ] = i(δνρPµ − δµρPν) (3.9)

[Mµν , Kρ] = i(δνρKµ − δµρKν) (3.10)

[Mµν ,Mρσ] = i(δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν) (3.11)

[D,Pµ] = iPµ (3.12)

[D,Kµ] = −iKµ (3.13)

[Kµ, Pν ] = −2i(δµνD −Mµν) (3.14)

(all other commutators vanish).

The first three commutation relations just say thatMµν generates the algebra of Euclidean
rotations SO(d) and that Pµ, Kµ transform as vectors. The last three are more interesting.
We’ll see shortly that the eigenvalues of D are of the form i∆ where the dimension ∆ is
a positive real number. Equations (3.12, 3.13) thus say that Pµ is a raising operator for
dimension and Kµ is a lowering operator. We will be more precise about this idea shortly.

8This is not obvious and deserves proof, which we leave as an exercise. In fact, in 2-dimensions, the algebra
of charges and the algebra of conformal killing vectors do not coincide (the former is a central extension of
the latter).
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Exercise 4. Define the generators

Lµν = Mµν

L−1,0 = D

L0,µ =
1

2
(Pµ −Kµ)

L−1,µ =
1

2
(Pµ +Kµ) (3.15)

Where Lab = −Lba and a, b ∈ {−1, 0, 1, . . . , d}. Show that Lab satisfy the commutation
relations of the algebra SO(d + 1, 1) (the algebra of linear transformations that preserve the
metric on d+ 2-dimensional Minkowski space Rd+1,1).

The fact that the conformal group is SO(d+1, 1) suggests that it might be a good to think
about its action in terms of Rd+1,1 instead of Rd. This is the idea behind the “embedding
formalism,” which provides a simple and powerful way of understanding the constraints of
conformal invariance. We will be more pedestrian in this course, but worry not — Joao will
tell you about the embedding formalism next week.

4 Primaries and Descendants

Now that we have our conserved charges, we can classify operators into representations of
those charges. We will do this in steps — first we classify them into Poincare representations,
then scale+Poincare representations, and finally conformal representations.

4.1 Poincare Representations

In a Poincare-invariant QFT, local operators at the origin transform in irreducible represen-
tations of the rotation group,

[Mµν ,Oa(0)] = −(Sµν)abOb(0) (4.1)

where Sµν satisfies the same algebra asMµν . The action (4.1), together with the commutation
relations of the Poincare group, determines how rotations act away from the origin.

To see this, it is convenient to adopt shorthand notation where commutators of charges
with local operators is implicit, [Q,O] → QO. This notation is valid because of the
Jacobi identity (more formally, the fact that adjoint action gives a representation of a Lie
algebra). Alternatively, in path integral language, Qn · · ·Q1O(x) means surrounding O(x)
with topological surface operators where Qn is the outermost surface and Q1 is the innermost.
The conformal commutation relations tell us how to re-order these surfaces.
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Acting with a rotation on O(x), we have

MµνO(x) = Mµνe
−iP ·xO(0) (4.2)

= e−iP ·x(eiP ·xMµνe
−iP ·x)O(0) (4.3)

= e−iP ·x(−xµPν + xνPµ +Mµν)O(0) (4.4)

= (−i(xµ∂ν − xν∂µ)− Sµν)O(x) (4.5)

= −(mµν + Sµν)O(x) (4.6)

where in the third line, we’ve used the Poincare algebra and the Hausdorff formula

eABe−A = e[A,·]B = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . (4.7)

Exercise 5. Check that the minus sign in (4.6) is consistent with the fact that Mµν, mµν,
and Sµν all satisfy the same algebra.

4.2 Scale+Poincare Representations

In a scale-invariant theory, it’s also natural to diagonalize the dilatation operator acting on
operators at the origin,

[D,O(0)] = i∆O(0) (4.8)

∆ is called the “dimension” of O.9

Exercise 6. Mimic the computation above to derive the action of dilatation on an O(x) with
dimension ∆,

[D,O(x)] = i(xµ∂µ + ∆)O(x). (4.9)

Equation (4.9) is constraining enough to fix two point functions of scalars up to a constant.
By rotation and translation invariance, we must have

〈O1(x)O2(y)〉 = f(|x− y|) (4.10)

for some function f . In a scale-invariant theory with scale-invariant boundary conditions,
the simultaneous action of D on all operators in a correlator must vanish.10 By (4.9), this is

i (xµ∂µ + ∆1 + yµ∂µ + ∆2) f(|x− y|) = 0 =⇒ f(|x− y|) =
C

|x− y|∆1+∆2
(4.11)

If we had an operator with negative scaling dimension, then its correlators would grow with
distance, violating cluster decomposition. This is unphysical, so we expect dimensions ∆ to
be positive. Shortly, we will prove this fact for unitary conformal theories (and derive even
stronger constraints on ∆).

9The dilatation operator is diagonalizable in all unitary (reflection positive) CFTs. However, there exist
interesting non-unitary theories where D has a nontrivial Jordan block decomposition. In these cases, we
define a local operator as a finite-dimensional representation of D.

10It is also interesting to consider non-conformally invariant boundary conditions. These can be interpreted
as a nontrivial operator at ∞.
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4.3 Conformal Representations

Note that Kµ is a lowering operator for dimension,

DKµO(0) = ([D,Kµ] +KµD)O(0) (4.12)

= i(∆− 1)KµO(0) (4.13)

(where again, we’re using shorthand notation [Q,O]→ QO). Thus, given an operator O(0),
we can repeatedly act with Kµ to obtain operators Kµ1 . . . KµnO(0) with arbitrarily low
dimension. Because dimensions are bounded from below in physically sensible theories, this
process must eventually terminate. That is, there must exist operators such that

[Kµ,O(0)] = 0 (primary operator). (4.14)

Such operators are called “primary.” Given a primary, we can construct operators of higher
dimension, called “descendants,” by acting with momentum generators, which act like raising
operators for dimension,

O(0) → Pµ1 · · ·PµnO(0) (descendant operators)

∆ → ∆ + n. (4.15)

For example, O(x) = e−ix·PO(0) is an (infinite) linear combination of descendant operators.
The conditions (4.1, 4.8, 4.14) are enough to determine how Kµ acts on any descendant using
the conformal algebra. For example,

Exercise 7. Let O(0) be a primary operator with rotation representation matrices Sµν and
dimension ∆. Using the conformal algebra, derive

KµO(x) =
(
−2ixµ∆− 2xνSµν + ix2∂µ − 2ixµx · ∂

)
O(x). (4.16)

To summarize, a primary operator satisfies

[D,O(0)] = i∆O(0)

[Mµν ,O(0)] = −SµνO(0)

[Kµ,O(0)] = 0 (4.17)

From these conditions, we can construct a representation of the conformal algebra out of
O(0) and its descendants

operator dimension
...

Pµ1Pµ2O(0) ∆ + 2
↑

Pµ1O(0) ∆ + 1
↑
O(0) ∆

(4.18)
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The action of any conformal generator on any state follows from the conformal algebra.
This should remind you of the construction of irreducible representations of SU(2) starting
from a highest-weight state. In this case, our primary is a lowest-weight state of −iD, but
the representation is built in an analogous way.11 It turns out that any local operator in a
unitary CFT is a linear combination of primaries and descendants. We will prove this in
section ??.

4.4 Finite Conformal Transformations

We can also act on primary operators with exponentiated charges U = e−iQε corresponding
to finite conformal transformations. (As usual, in path-integral language, acting with U
means surrounding O(x) with a topological surface operator U [Σ].) To act on an operator
O(x), we must find a decomposition

Ue−ix·P = e−ix
′(x)·P e−iλ(x)De−iω(x)·Me−ib(x)·K (4.19)

Using the primariness conditions (4.17), it follows that

UO(x)U−1 = eλ(x)∆eiω(x)·SO(x′(x)) (4.20)

Exercise 8. By thinking about (4.19), deduce that

eλ(x)∆ = Ω(x′)∆ (4.21)

(eiω(x)·S)ab = R[O(x′)]ab (4.22)

where the scalar factor Ω(x) and orthogonal matrix Oµ
ν(x) are given by

∂x′µ

∂xν
= Ω(x′)Oµ

ν(x
′), (4.23)

and R[O(x′)]ab denotes the action of O(x′) in the representation of SO(d) associated to the
operator O. For example,

R[O(x′)] = 1 when O is a scalar, (4.24)

R[O(x′)]µν = Oµ
ν(x
′) when Oν is a vector, etc. (4.25)

Thus, primary operators satisfy the transformation rule

UO(x)U−1 = Ω(x′)∆R[O(x′)]O(x′) (4.26)

We could have started the whole course with this relation, but the connection to the
underlying conformal algebra will be crucial in what follows, so it is best to derive it.

11The representation (4.18) can be thought of as an induced representation IndGH(RH), where H is the
subgroup of the conformal group generated by D,Mµν ,Kµ (sometimes called the isotropy subgroup), RH is
the finite-dimensional representation of H defined by (4.17), and G is the full conformal group.
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5 Conformal Correlators

5.1 Scalar Operators

We have already seen that scale invariance fixes two-point functions of scalars up to a
constant

〈O1(x1)O2(x2)〉 =
C

|x1 − x2|∆1+∆2
(SFT) (5.1)

For primary scalars in a CFT, the correlators must satisfy a stronger condition,

〈O1(x1) . . .On(xn)〉 = 〈(UO1(x1)U−1) · · · (UOn(xn)U−1)〉
= Ω(x′1)∆1 · · ·Ω(x′n)∆n〈O1(x′n) · · · On(x′n)〉. (5.2)

Let us check whether this holds for (5.1).

Exercise 9. Show that under a conformal transformation,

(x− y)2 =
(x′ − y′)2

Ω(x′)Ω(y′)
(5.3)

Hint: This is obviously true for translations, rotations, and scale transformations. It suffices
to check it for inversions I : x→ x

x2 , since k = IpI.

Thus,

C

|x1 − x2|∆1+∆2
= Ω(x′1)

∆1+∆2
2 Ω(x′2)

∆1+∆2
2

C

|x′1 − x′2|∆1+∆2
. (5.4)

Consistency with (5.2) requires C = 0 unless ∆1 = ∆2. In other words,

〈O1(x1)O2(x2)〉 =
Cδ∆1∆2

x2∆1
12

(CFT, primary operators). (5.5)

where x12 ≡ x1 − x2.

Exercise 10. Recover the same result by demanding that the action of Kµ on 〈O1(x1)O2(x2)〉
vanish.

Conformal invariance is also sufficiently powerful to fix a three-point function of primary
scalars. Using (5.3), it’s easy to check that the famous formula

〈O1(x1)O2(x2)O3(x3)〉 =
f123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(5.6)

(where f123 is a constant) satisfies the consistency condition (5.2).
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For four-point functions, there exist nontrivial conformally-invariant combinations of four
points called “conformal cross-ratios,”

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

23x
2
14

x2
13x

2
24

. (5.7)

The reason that there are exactly two independent cross-ratios can be understood as follows.

• Using special conformal transformations, we can move x4 to infinity.

• Using translations, we can move x1 to zero.

• Using rotations, we can move x3 to (1, 0, . . . , 0).

• Using rotations that fix x3, we can move x2 to the point (x, y, 0, . . . , 0).

There are exactly two undetermined quantities x, y, providing two independent conformal
cross-ratios. Evaluating u and v for this special configuration of points gives

u = zz, v = (1− z)(1− z). (5.8)

where z ≡ x+ iy.

Four-point functions can depend nontrivially on the cross-ratios. In the case of identical
scalars φ with dimension ∆φ,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(5.9)

is consistent with conformal invariance for a general function g(u, v) of two variables.

Exercise 11. Generalize (5.9) to the case of non-identical scalars φi(x) of dimension ∆i.

Note that the four-point function (5.9) is manifestly invariant under permutations of the
points xi. This leads to consistency conditions on g(u, v),

g(u, v) =
(u
v

)∆φ

g(v, u) from swapping 1↔ 3 (5.10)

g(u, v) = g(u/v, 1/v) from swapping 1↔ 2 or 3↔ 4 (5.11)

(All other permutations can be generated from the ones above.) We will see shortly that
g(u, v) is not arbitrary, but is actually determined in terms of the dimensions ∆i and three-
point function coefficients fijk of the theory. Together with (5.10) this leads to powerful
constraints on the ∆i, fijk.
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5.2 Operators With Spin

The story is similar for operators with spin. For brevity, we will simply write down the
answers without doing any computations. When Joao discusses the embedding formalism
next week, you will learn a totally transparent and practical way to derive all of these results,
so it’s not worth dwelling on them here.

Two-point functions of spinning operators are completely fixed by conformal invariance.
They vanish when the two operators have different dimensions or spins. For example, a
two-point function of spin-1 operators is given by

〈Jµ(x)Jν(y)〉 =
Iµν(x− y)

(x− y)2∆
, Iµν(x) ≡ δµν − 2

xµxν
x2

. (5.12)

Note that Iµν is the orthogonal matrix associated with an inversion, via ∂x′µ

∂xν
= ΩIµν .

Exercise 12. Check that (5.12) is consistent with conformal symmetry. Hint: it is enough
to check inversions.

Two-point functions of operators in more general spin representations can be constructed
from the above, for example for spin-` traceless symmetric tensors, we have

〈Jµ1...µ`(x)Jν1...ν`(0)〉 = symmetrize

(
Iµ1ν1(x) · · · Iµ`ν`(x)

x2∆

)
− traces. (5.13)

Three-point functions are fixed up to a finite number of coefficients. For example, a
three-point function of two scalars φ and a spin-` operator Jµ1...µ` is determined up to a
single coefficient fφφJ ,

〈φ1(x1)φ2(x2)Jµ1...µ`(x3)〉 = fφφJ
(Zµ1 · · ·Zµ` − traces)

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

,

Zµ ≡ |x13||x23|
|x12|

(
xµ13

x2
13

− xµ23

x2
23

)
. (5.14)

6 Radial Quantization and the State-Operator Corre-

spondence

So far, we’ve written a lot of commutation relations and I’ve been careful to point out that
they are true in any quantization of the theory. Now we’ll really put that idea to use. In
general, it’s a good idea to choose quantizations that respect symmetries of the theory. In a
CFT, it’s natural to foliate spacetime with spheres around the origin and consider evolving
states from smaller spheres to larger spheres using the dilatation operator. This is called
“radial quantization.” Field configurations on Sd−1 span a Hilbert space H. We can act on
H by inserting operators on the surface of the sphere. For example, to act with a symmetry
generator Q, we insert the surface operator Q[Sd−1] into the path integral.
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In radial quantization, a correlation function becomes a radially ordered product,

〈O1(x1) · · · On(xn)〉 = 〈0|R{O1(x1) · · · On(xn)}|0〉 (6.1)

= θ(|xn| − |xn−1) · · · θ(|x2| − |x1|)〈0|O(xn) · · · O(x1)|0〉
+permutations (6.2)

Of course, we can perform radial quantization around different points. In this way, the same
correlation function gets interpreted as an expectation value of differently ordered operators
in different vacuum states. This is totally analogous to changing reference frames in Lorentz
invariant theories. It is consistent because operators at the same radius but at different
directions on the sphere commute, just as spacelike-separated operators commute in the
usual quantization.

6.1 Operator =⇒ State

The simplest way to prepare a state in H is to perform the path integral over the interior
B of the sphere, with no operator insertions inside B. This gives the vacuum state |0〉 on
∂B. It’s easy to see that |0〉 is invariant under all symmetries because a topological surface
on the boundary of B can be shrunk to zero inside B.

A more exciting possibility is to insert an operator O(x) inside B and then perform the
path integral. This defines a state which we call O(x)|0〉 ∈ H. In general, by inserting many
operators inside B, we can prepare a variety of states on the boundary ∂B. In this language,
|0〉 is prepared by inserting the unit operator.

6.2 State =⇒ Operator

This construction also works backwards. Given a state |ψ〉 in radial quantization, it’s natural
to decompose it into eigenstates of the dilatation operator D

|ψ〉 = |O1〉+ |O2〉+ . . . (6.3)

D|ψ〉 = i∆1|O1〉+ i∆2|O2〉+ . . . (6.4)

These eigenstates |Oi〉 can themselves be used as operators. We can cut small spherical
holes out of the path integral centered around positions xi and glue in the states |Oi〉.
This procedure gives a quantity that behaves exactly like a correlator of local operators
〈O1(x1) · · · On(xn)〉.

6.3 State ⇐⇒ Operator

So far I’ve been vague about what I mean by a local operator. But now, we can give a
rigorous definition: we will simply define the space of local operators to be the space of
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states on the sphere in radial quantization.12 Its action is given by cutting and gluing as
described above. With this definition, the two constructions above are inverse to each other,
with the identification

O(0) ←→ |O〉 (6.5)

We call this the “state-operator correspondence.”

It is straightforward to see how the conformal group acts on states in radial quantization.
A primary operator creates a state that is killed by Kµ and transforms in a finite-dimensional
representation of D and Mµν ,

[Kµ,O(0)] = 0 ←→ Kµ|O〉 = 0, (6.6)

[D,O(0)] = i∆O(0) ←→ D|O〉 = i∆|O〉, (6.7)

[Mµν ,O(0)] = −SµνO(0) ←→ Mµν |O〉 = −Sµν |O〉. (6.8)

One can verify this by acting with the operator equations on |0〉 and using the fact that
K,D,M kill |0〉. A conformal multiplet in radial quantization is given by acting with
momentum generators on a primary state

|O〉, Pµ|O〉, PµPν |O〉, . . . (conformal multiplet). (6.9)

This is equivalent to acting with derivatives of O(x) at the origin, for example

i∂µO(0)|0〉 = [Pµ,O(0)]|0〉 = Pµ|O〉. (6.10)

O(x) creates a linear combination of descendant states,

O(x)|0〉 = e−iP ·xO(0)eiP ·x|0〉 = e−iP ·x|O〉 =
∞∑
n=0

1

n!
(−iP · x)n|O〉. (6.11)

As with the classification of operators, the action of the conformal algebra on a multiplet in
radial quantization is determined by the commutation relations of the algebra. In fact the
required computations look exactly identical to the computations we did to determine the
action of conformal generators on operators! This is because by surrounding operators with
charges supported on spheres, we were secretly already doing radial quantization.

6.4 Another View of Radial Quantization

To study a conformal Killing vector ε, it is useful to perform a Weyl rescaling of the metric
g → Ω(x)2g so that ε becomes a regular Killing vector (isometry). We can turn a dilatation

12The dilatation operator is diagonalizable in all unitary (reflection positive) CFTs. However, there exist
interesting non-unitary theories where D has a nontrivial Jordan block decomposition. In these cases, we
define a local operator as a finite-dimensional representation of D.
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into an isometry by performing a Weyl rescaling from Rd to the cylinder R× Sd−1,

ds2
Rd = dr2 + r2ds2

Sd−1

= r2

(
dr2

r2
+ ds2

Sd−1

)
= e2τ (dτ 2 + ds2

Sd−1) = e2τds2
R×Sd−1 , (6.12)

where r = eτ .

Dilatations r → λr become shifts of radial time τ → τ + log λ. Radial quantization in
flat space is equivalent to the usual quantization on the cylinder. States live on spheres and
time evolution is generated by acting with eiDτ .

Let us build a more detailed dictionary between the two pictures. Under a Weyl rescaling,
correlation functions of local operators transform as13

〈O1(x1) · · · On(xn)〉g
〈1〉g

=

(∏
i

Ω(xi)
∆i

)
〈O1(x1) · · · On(xn)〉Ω2g

〈1〉Ω2g

. (6.13)

This is a nontrivial claim — if we implement the Ising model in flat space, compute expecta-
tion values and take the continuum limit, it’s non-obvious that the answer should be related
in a simple way to the same lattice theory on the cylinder. In general it’s not, but at the
critical value of the coupling when the theory becomes conformal, tracelessness of the stress
tensor implies insensitivity to Weyl rescalings, and the answers become related.

Thus, given an operator O(x) in Rd, it is natural to define a cylinder operator

Ocyl.(τ,n) ≡ e∆τOflat(x = eτn) (6.14)

We often omit the subscript “cyl.” or “flat” and indicate which type of operator to use by
its coordinate.

Exercise 13. Using (6.13), compute a two-point function of cylinder operators

〈O(τ1,n1)O(τ2,n2)〉. (6.15)

Verify that it is time-translationally invariant on the cylinder. Show that in the limit of large
time separation τ = τ2 − τ1 � 1, the two-point function has an expansion in terms of the
form e−(∆+n)τ with integer n ≥ 0. Interpret these as coming from the exchange of states in
the conformal multiplet of O.

6.5 Reflection Positivity

In Lorentzian signature, we are usually interested in unitary theories — that is, theories for
which the symmetry generators, including the Hamiltonian, are Hermitian operators so that

13In even dimensions, the partition function itself can transform with a Weyl anomaly 〈1〉g =
〈1〉Ω2ge

SWeyl[g]. This will not be important for our discussion, so we have divided through by the partition
function.
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they become unitary transformations when exponentiated. Unitarity in Lorentzian signature
is equivalent to a property called “reflection positivity” in Euclidean signature. Suppose we
have a Lorentzian theory with energy-momentum generators (H,P). Local operators at
points are defined as

O(t,x) = eiHt−ix·PO(0, 0)e−iHt+ix·P (6.16)

If O(0, 0) is Hermitian, then it follows that O(t,x) is Hermitian. Now, let us Wick-rotate to
Euclidean signature t→ −itE,

O(tE,x) = eHt−ix·PO(0, 0)e−HtE+ix·P (6.17)

The Euclidean operator satisfies

O(tE,x)† = O(−tE,x) (6.18)

Thus, the natural notion of complex-conjugation in a Euclidean theory involves a reflec-
tion in the time-direction. This means that whether an operator is Hermitian or not depends
on how we choose to quantize the theory! For example, consider the momentum generators

P µ = −i
∫
dd−1xT µ0(0,x) (6.19)

Hermitian conjugation includes a reflection Θµ
ν = δµν − 2δµ0 δ

0
ν in the time direction,

Oµ1...µ`(tE,x)† = Θµ1
ν1 · · ·Θµ`

ν`Oν1···ν`(−tE,x) (6.20)

which acts nontrivially on operators with spin. In particular,

T i0(0,x)† = −T i0(0,x) (6.21)

T 00(0,x)† = T 00(0,x) (6.22)

It follows that P 0 is anti-Hermitian, while P i are Hermitian (this is the reason for the
conventional factor of i in front of the momentum charges). We may write P 0 = iH, where
H is Hermitian, and then we recover the same formula as we got from Wick rotation (6.17).

To reiterate, the correct notion of conjugation depends on how we quantize our theory.
This makes sense, because Hermitian conjugation is something that makes sense for operators
on a specific Hilbert space, and different quantizations have different Hilbert spaces.

This raises the question — given a Euclidean path integral, how do we tell it admits a
consistent notion of conjugation? One important condition is that norms of states should
be positive. Consider some in-state at time tE = 0, given by acting on the vacuum with a
bunch of operators at negative Euclidean time

|ψ〉 = O(tE1) · · · O(tEn)|0〉 (6.23)

For brevity, I’m suppressing the spatial positions xi of the operators. The conjugate state is
given by

〈ψ| = (O(tE1) · · · O(tEn)|0〉)† (6.24)

= 〈0|O(−tEn) · · · O(−tE1) (6.25)

18



That is, the conjugate state is given by starting with the vacuum in the future and positioning
operators in a time-reflected way. Thus, in path-integral language, the condition

〈ψ|ψ〉 ≥ 0 (6.26)

says that a time-reflection symmetric configuration of Hermitian operators should have a
positive path integral. This is called “reflection positivity.” It follows if the theory is a Wick-
rotation of a unitary theory in Lorentzian signature. However, sometimes the definition of
a theory is more natural in Euclidean space. In this case, reflection positivity is often very
easy to check. For example, in the 3d Ising lattice model, reflection-positivity is obvious:
by cutting the path integral at tE = 0, it’s clear that the expectation value of a reflection-
symmetric configuration of operators is a sum of squares, and hence positive.

6.6 Reflection Positivity on the Cylinder

Reflection-positivity (or unitarity) has interesting consequences when we view our CFT on
the cylinder. The first consequence, as you can easily check, is that D is anti-Hermitian in
radial quantization. This is why we’ve been writing its eigenvalues as i∆. The conjugate of
a cylinder operator is given by

Ocyl.(τ,n)† = Ocyl.(−τ,n) (6.27)

In flat space, this becomes

Oflat(e
τn)† = e−2∆τOflat(e

−τn) (6.28)

Oflat(x)† = x−2∆Oflat

(
xµ

x2

)
(radial quantization) (6.29)

This is just the image of O(x) under an inversion I : xµ → xµ

x2 . For operators with spin,
we must use the full formula (4.26), so that conjugation also involves an action of Iµν on
spin-indices.

Exercise 14. Check that the 2-point function of spin-1 operators (5.12) satisfies reflection-
positivity.

The action of conjugation on the conformal charges is

Q†ε = QIεI (6.30)

In particular, we have

M †
µν = Mµν

D† = −D
P †µ = Kµ (6.31)
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These facts let us calculate properties of correlation functions purely algebraically. As an
example, consider a two-point function.

〈O(y)O(x)〉 = 〈0|(y−2∆O(y/y2))†O(x)|0〉
= y−2∆〈0|(e−i(y/y2)·PO(0)ei(y/y

2)·P )†e−ix·PO(0)eix·P |0〉
= y−2∆〈0|(e−i(y/y2)·KO(0)†ei(y/y

2)·Ke−ix·PO(0)eix·P |0〉
= y−2∆〈0|O(0)†ei(y/y

2)·Ke−ix·PO(0)|0〉
= y−2∆〈O|ei(y/y2)·Ke−ix·P |O〉 (6.32)

Where we’ve defined 〈0|O(0)† ≡ 〈O|. By expanding the exponentials, we can evaluate this
using the conformal algebra. For example, the first couple terms are

〈O(y)O(x)〉 = y−2∆

(
〈O|O〉+

yµ

y2
xν〈O|KµPν |O〉+ . . .

)
(6.33)

Here we’ve used that K|O〉 = 〈O|P = 0 because O is primary. We need to compute

〈O|KµPν |O〉 = 〈O|[Kµ, Pν ]|O〉
= 〈O| − 2i(Dδµν −Mµν)|O〉
= 2∆δµν〈O|O〉 (6.34)

since |O〉 is a scalar. Thus, we get

= y−2∆〈O|O〉
(

1 + 2∆
y · x
y2

+ . . .

)
(6.35)

Here we’ve used that K|O〉 = 〈O|P = 0 because O is primary. We’ve also used that M |O〉 =
0 (for a scalar) and D|O〉 = i∆|O〉. This exactly matches the expansion of 1/(x − y)2∆ in
small |x|/|y|! The overlap 〈O|O〉 is the normalization coefficient of our two-point function.
You can imagine similarly computing all the commutators for higher terms and matching
the whole series expansion.

Let us also prove our earlier claim that a two-point function of operators in different
irreducible spin representations must vanish. Consider a primary operator Oa transforming
in a nontrivial representation of SO(d). The dual state transforms in the complex-conjugate
representation, so we will write it with a lowered index (|Oa〉)† = 〈Oa|. Consider

〈Oa|Mµν |Ob〉 = 〈Oa| − (Sµν)bc|Oc〉 = −(Sµν)bc〈Oa|Oc〉 (6.36)

= 〈Oc|(−Sµν)ca|Ob〉 = −(Sµν)ca〈Oc|Ob〉 (6.37)

Where we’ve acted with Mµν first on the right, and then on the left (and also used that Mµν

and Sµν are Hermitian. As a matrix equation, this is

SµνN = NSµν (6.38)

where Na
b ≡ 〈Ob|Oa〉. By Schur’s lemma, Na

b must vanish if a and b index different
irreducible representations. If a, b index a single irreducible representation, then N is
proportional to the identity.
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Exercise 15. This computation is not directly relevant to the course, but it is instructive
for getting used to radial ordering. Consider a three-point function of scalars

〈Oi(x1)Oj(x2)Ok(x3)〉 = 〈0|R{Oi(x1)Oj(x2)Ok(x3)}|0〉 (6.39)

= θ(|x3| − |x2|)θ(|x2| − |x1|)〈0|Ok(x3)Oj(x2)Oi(x1)|0〉
+permutations (6.40)

Consider the operator e2πD1 where

D1 = i(x1 · ∂1 + ∆1). (6.41)

Using the fact that e2πD1Oi(x1) = e2πDOi(x1)e−2πD, compute the action of e2πD1 on each of
the terms above. You will get different answers for each of the different operator orderings.

Now determine the action of e2πD1 on the known answer for the scalar three-pt function
(5.6). Check that the two answers agree.

6.7 Unitarity Bounds

Thinking about the theory on the cylinder thus gives us a natural inner product on states in
radial quantization. Reflection positivity implies that the norms of states with respect to this
inner product should be nonnegative. For a nonzero primary operator Oa in an irreducible
representation RO of SO(d), we should have

〈Ob|Oa〉 = cδab (6.42)

with c > 0. Often, we normalize O so that c = 1. We can compute norms of descen-
dants using the conformal algebra, and demanding positivity gives interesting constraints
on operator dimensions. These are called “unitarity bounds” because they follow from
reflection-positivity, which is the Wick-rotated version of unitarity. For example,

(Pµ|Oa〉)†Pν |Ob〉 = 〈Oa|KµPν |Ob〉
= 〈Oa| − 2i(Dδµν −Mµν)|Ob〉
= 〈Oa|2∆δµν + 2i(Sµν)bc|Oc〉
= 2∆δµνδ

b
a + 2i(Sµν)

b
a (6.43)

If we think of this as a matrix with indices (µ, a) and (ν, b), then it must be positive semidef-
inite. This means that 2∆ must be greater than the maximum eigenvalue of −2i(Sµν)ba. For
scalar operators, this gives ∆ > 0. For non-scalars, let us write

−2i(Sµν)ba = −(Lαβ)µν(Sαβ)ba

(Lαβ)µν ≡ i(δαµδ
β
ν − δαν δβµ) (6.44)

where (Lαβ)µν is the generator of rotations in the vector representation V . Let us write this
more abstractly as

−LASA =
1

2

(
L2 + S2 − (L + S)2

)
=

1

2
(Casimir(V ) + Casimir(RO)− Casimir(V ⊗RO)) (6.45)

21



where A = αβ indexes the adjoint representation of SO(d), and L = L ⊗ 1 acts on the
first factor in the tensor product V ⊗ RO, while S = 1 ⊗ S acts on the second factor. This
should look familiar from quantum mechanics when we compute the eigenvalues of angular
momentum times spin.

Let’s specialize to the case where RO is V`, the spin-` traceless symmetric tensor repre-
sentation of SO(d). It has the Casimir `(`+d−2). To get the maximal eigenvalue of −L ·S,
we need the minimal eigenvalue of the Casimir acting on V ⊗ V` = V`−1 ⊕ . . . , where “. . . ”
are representations with larger Casimirs. Thus,

max-eigenvalue(−L · S) =
1

2
((d− 1) + `(`+ d− 2)− (`− 1)(`− 1 + d− 2))

= `+ d− 2 (6.46)

This computation was valid for ` > 0, since for scalars V ⊗ V`=0 = V .

One can also consider more complicated descendants.

Exercise 16. Compute the norm of PµP
µ|O〉, where O is a scalar. Show that nonnegativity

implies either ∆ = 0 or ∆ ≥ d−2
2

. This gives a slightly stronger condition than what we
derived above (∆ ≥ 0) for scalars.

It turns out that for a general conformal field theory, these inequalities are the best you
can do (other descendants give no new information). In theories with more symmetry, like
supersymmetric theories or 2d CFTs, unitarity bounds can be more interesting. In summary,
we have

∆ = 0 (unit operator), or

∆ ≥
{

d−2
2

` = 0
`+ d− 2 ` > 0

(6.47)

When ∆ saturates these bounds, it means that the conformal multiplet has a null state. For
the unit operator, all descendants are null. For a scalar, the null state is

P 2|O〉 = 0 (6.48)

Translated into operator language, this says ∂2O(x) = 0, which means O satisfies the Klein-
Gordon equation, and is thus a free scalar which decouples from the rest of the CFT. For a
spin-` operator, the null state is

Pµ|Oµµ2···µ`〉 = 0 (6.49)

(this is related to the fact that we used V`−1 ⊂ V ⊗ V` to compute the unitarity bound). In
operator language, this is

∂µOµµ2···µ`(x) = 0, (6.50)

which is the equation for a conserved current. We can also run this logic backwards to
conclude: an operator is a conserved current if and only if it satisfies

∆ = `+ d− 2 (conserved current) (6.51)
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Some important examples are global symmetry currents (` = 1, ∆ = d− 1) and the stress-
tensor (` = 2, ∆ = d). It is expected that for CFTs in d > 2, higher spin currents cannot be
present unless the theory is free. This has been proven in d = 3.

6.8 Only Primaries and Descendants

With a positive-definite inner product, we can now prove that all operators are linear
combinations of primaries and descendants. We will use one additional physical assumption,
which is that the partition function of the theory on Sd−1 × S1

β is finite,

ZSd−1×S1
β

= Tr(eiβD) <∞. (6.52)

In a unitary theory, this means that eiβD is Hermitian and trace-class, and hence diagonal-
izable. It follows that D is also diagonalizable with pure-imaginary eigenvalues i∆.

Now consider a local operator O, and assume for simplicity it is an eigenvector of
dilatation with dimension ∆. By finiteness of the partition function, there are a finite
number of primary operators Op with dimension less than or equal to ∆. Using the inner
product, we may subtract off the projections of O onto the conformal multiplets of Op to
get O′. Let us assume O′ 6= 0. Acting on it with Kµ’s, we must eventually get zero (again
by finiteness of the partition function), which means there is a new primary with dimension
below ∆, a contradiction. Thus O′ = 0, and O is a linear combination of states in the
multiplets Op.

7 The Operator Product Expansion

If we insert two operators Oai (x)Obj(0) and perform the path integral over the interior of the
sphere, then we get some state on the sphere. We can now decompose this state as

Oi(x)Oj(0)|0〉 =
∑
k

Cijk(x, ∂y)Ok(y)|y=0|0〉, (7.1)

where k runs over primary operators and Cijk(x, ∂y) is a differential operator that packages
together primaries and descendants in the same conformal multiplet. This expansion is an
exact equation that can be used in the path integral, as long as other operator insertions are
outside the sphere with radius |x|. Thus, we often write

Oi(x1)Oj(x2) =
∑
k

Cijk(x12, ∂2)Ok(x2) (7.2)

where it is understood that this equation is valid inside any correlation function where the
other operators Om(xm) have |x2m| ≥ |x12|. This equation is called the OPE, or Operator
Product Expansion.
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We could have considered both operators away from the origin and written

Oi(x1)Oj(x2) =
∑
k

C ′ijk(x1, x2, ∂y)Ok(y)|y=0 (7.3)

where C ′ijk(x1, x2, ∂y) is some other differential operator. It is more convenient for compu-
tations to use the first form of the OPE, but the existence of the second form is important.
It shows that we can do the OPE between two operators, replacing them with an infinite
sum over single operators, whenever it’s possible to draw any sphere that separates the two
operators from all the others.

We are being a bit schematic in writing the above equation. It’s possible for all the
operators to have spin. In this case, the OPE looks like

Oai (x)Obj(0) =
∑
k

Cab
ijkc(x, ∂y)Ock(y)|y=0 (7.4)

where Cab
c is a differential operator with nontrivial SO(d) indices.

7.1 Consistency with Conformal Invariance

Conformal invariance strongly restricts the form of the OPE. For simplicity, let’s focus on
scalar operators. Acting with e−iDλ on (7.1), the left-hand side becomes

eλ(∆i+∆k)Oi(eλx)Oj(0)|0〉 (7.5)

The right-hand side becomes

C(x, ∂y)e
∆kλOk(eλy)|y=0|0〉 = C(x, eλ∂y)e

∆kλOk(y)|y=0|0〉. (7.6)

Equating, we find

C(eλx, ∂y) = eλ(∆k−∆i−∆j)C(x, eλ∂y) (7.7)

So that C has an expansion

C(x, ∂) ∝ |x|∆k−∆i−∆j (1 + #xµ∂µ + #xµxν∂µ∂ν + . . .) (7.8)

This is just a fancy way of saying we can do dimensional analysis: Oi has length-dimension
−∆i, so by matching dimensions, we see that C(x, ∂) must have the expansion above. We’re
also implicitly using rotational invariance by contracting all the indices appropriately. We
could have argued for this too by acting with Mµν .

We get a more interesting constraint by acting with Kµ. In fact, consistency with Kµ

completely fixes Cijk up to an overall coefficient. In particular, the coefficients in (7.8) can
be determined in this way.
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This computation is a little annoying (exercise!), so here’s a simpler way to see why the
form of the OPE is fixed, and to get the coefficients. Let us take correlation function of (7.2)
with Ok(x3) (we will assume |x23| ≥ |x12|, so that the OPE is valid).

〈Oi(x1)Oj(x2)Ok(x3)〉 =
∑
k′

Cijk′(x12, ∂2)〈Ok′(x2)Ok(x3)〉 (7.9)

The three-point function on the left-hand side is fixed by conformal invariance, and this will
determine the right-hand side. Assume that primary operators are orthonormal, so that their
2-point functions are proportional to the identity 〈OiOj〉 = δijx

−2∆i . The sum collapses to
a single term and we get

fijk

x
∆i+∆j−∆k

12 x
∆j+∆k−∆i

23 x
∆k+∆i−∆j

31

= Cijk(x12, ∂2)
1

x2∆k
23

(7.10)

This determines Cijk to be proportional to fijk, times a differential operator that depends
only on the ∆i’s and can be obtained by matching the small |x12|/|x23| expansion of both
sides.

Exercise 17. Consider the special case ∆i = ∆j = ∆φ, ∆k = ∆. Show

Cijk(x, ∂) = fijkC(x, ∂)

C(x, ∂) = x∆−2∆φ

(
1 +

1

2
x · ∂ + αxµxν∂µ∂ν + βx2∂2 + . . .

)
(7.11)

where

α =
∆ + 2

8(∆ + 1)
, and β = − ∆

16(∆− d−2
2

)(∆ + 1)
(7.12)

Equation (7.9) gives an example of using the OPE to reduce a three-point function to a
sum of 2-point functions. In general, we can use the OPE to reduce any n-point function
to a sum of n− 1-point functions. Recursing, we can reduce everything to a sum of 1-point
functions. In a CFT in flat space, all 1-point functions vanish by dimensional analysis,
except for the unit operator which has 〈1〉 = 1.14 This gives an algorithm for computing
any flat-space correlation function using the OPE. It shows that all these correlators are
determined by dimensions ∆i and OPE coefficients fijk.

8 Conformal Blocks

8.1 Using the OPE

Let us use the OPE to compute a four-point function of identical scalars,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x
∆φ

12 x
∆φ

34

. (8.1)

14The OPE is also valid on any manifold which is conformally flat. The difference is that on nontrivial
manifolds, non-unit operators can have nonzero 1-point functions. An example is Rd−1 × S1

β , which has the

interpretation as a CFT at finite temperature. By dimensional analysis, we have 〈O〉Rd−1×S1
β
∝ β−∆O ∝ T∆O .
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The OPE takes the form

φ(x1)φ(x2) =
∑
O

fφφOCa(x12, ∂2)Oa(x2), (8.2)

where Oa can have nonzero spin in general. It turns out that in order for Oa to appear in the
OPE of two scalars, it must transform in a spin-` traceless symmetric tensor representation
of SO(d).

Exercise 18. By using the explicit form of the conformal 3-point function for two scalars
and a spin-` operator, show that fφφO vanishes unless ` is even.

Assuming the points are configured appropriately, we can pair up the operators (12) (34)
and perform the OPE between them,15

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑
O,O′

fφφOfφφO′Ca(x12, ∂2)Cb(x34, ∂4)〈Oa(x2)O′b(x4)〉

=
∑
O

f 2
φφOCa(x12, ∂2)Cb(x34, ∂4)

Iab(x24)

x2∆O
24

=
1

x
∆φ

12 x
∆φ

34

∑
O

f 2
φφOg∆O,`O(xi) (8.3)

g∆,`(xi) ≡ x
∆φ

12 x
∆φ

34 Ca(x12, ∂2)Cb(x34, ∂4)
Iab(x24)

x2∆
24

, (8.4)

where we have chosen an orthonormal basis of operators, and used that the two-point function
is fixed by conformal invariance to be

〈Oa(x)O′b(0)〉 = δOO′
Iab(x)

x2∆O
(8.5)

Iab(x) = Iµ1...µ`;ν1...ν`(x) = sym(Iµ1ν1(x) · · · Iµ`ν`(x))− traces. (8.6)

The functions g∆,`(xi) are called conformal blocks. Although it’s not obvious from the
way we’ve defined them, it turns out they are actually functions of the conformal cross-ratios
u, v alone, g∆,`(u, v). We thus have the conformal block decomposition

g(u, v) =
∑
O

f 2
φφOg∆O,`O(u, v) (8.7)

Exercise 19. Using the differential operator (7.11), show

g∆,0(u, v) = u∆/2 (1 + . . .) (8.8)

15Although our computation will make it look like we need x3,4 to be sufficiently far from x1,2, we will see
shortly that the answer will be correct whenever we can draw any sphere separating x1, x2 from x3, x4.
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8.2 In Radial Quantization

A conformal block represents the contribution of a single conformal multiplet to a four-point
function. It is instructive to think about these contributions in radial quantization. Let us
pick an origin such that |x3,4| ≥ |x1,2|, so that

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈0|R{φ(x3)φ(x4)}R{φ(x1)φ(x2)}|0〉 (8.9)

For a primary operator O, let |O| be the projector onto the conformal multiplet of O,

|O| ≡
∑

α,β=O,PO,PPO,...

|α〉N−1
αβ 〈β|, Nαβ ≡ 〈α|β〉 (8.10)

The identity is the sum of these projectors over all primary operators.

1 =
∑
O

|O| (8.11)

Inserting this into our four-point function gives

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑
O

〈0|R{φ(x3)φ(x4)}|O|R{φ(x1)φ(x2)}|0〉 (8.12)

Each term in the sum is essentially a conformal block,

〈0|R{φ(x3)φ(x4)}|O|R{φ(x1)φ(x2)}|0〉 =
f 2
φφO

x
2∆φ

12 x
2∆φ

34

g∆O,`O(u, v) (8.13)

One can verify the equivalence between this expression and the one in the previous section
by performing the OPE between φ(x3)φ(x4) and φ(x1)φ(x2) above.

This expression makes it clear why g∆,`(u, v) is a function of u and v: the projector |O|
commutes with all conformal generators (by construction). Thus, the object above satisfies
all the same Ward identities as a four-point function of primaries, and it must take the form
(5.9). In path integral language, we can think of |O| as a new type of topological surface
operator. Here, we’ve inserted it on a sphere separating x1,2 from x3,4.

8.3 From the Conformal Casimir

Recall that the conformal algebra is isomorphic to the SO(d + 1, 1), with generators Lab
given by (3.15). The Casimir C = 1

2
LabLab acts with the same eigenvalue on every state in

a conformal multiplet. For example, for an operator O(x) with dimension ∆ and spin `, we
have

CO(x)|0〉 = λ∆,`O(x)|0〉 (8.14)

λ∆,` ≡ −∆(∆− d)− `(`+ d− 2) (8.15)
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It follows that C gives this same eigenvalue when acting on the projection operator |O| from
either the right or left,

C|O| = |O|C = λ∆,`|O| (8.16)

Let Lab,i be the differential operator giving the action of Lab on the operator φ(xi). Note
that

(Lab,1 + Lab,2)φ(x1)φ(x2)|0〉 = ([Lab, φ(x1)]φ(x2) + φ(x1)[Lab, φ(x2)]) |0〉
= Labφ(x1)φ(x2)|0〉 (8.17)

Thus, we can generate the Casimir acting on φ(x1)φ(x2) with a differential operator,

D1,2φ(x1)φ(x2)|0〉 = Cφ(x1)φ(x2)|0〉 (8.18)

D1,2 ≡
1

2
(Lab1 + Lab2 )(Lab,1 + Lab,2) (8.19)

Now, acting with D1,2 on our conformal block, we have

D1,2〈0|R{φ(x3)φ(x4)}|O|R{φ(x1)φ(x2)}|0〉 = 〈0|R{φ(x3)φ(x4)}|O|CR{φ(x1)φ(x2)}|0〉
= λ∆,`〈0|R{φ(x3)φ(x4)}|O|R{φ(x1)φ(x2)}|0〉

(8.20)

It follows that g∆,` satisfies a differential equation of the form

Dg∆,`(u, v) = λ∆,`g∆,`(u, v). (8.21)

where D is a second-order differential operator in u, v. This equation can be solved to
determine g∆,`(u, v). For example,

g
(2d)
∆,` (u, v) = k∆+`(z)k∆−`(z) + k∆−`(z)k∆+`(z) (8.22)

g
(4d)
∆,` (u, v) =

zz

z − z
(k∆+`(z)k∆−`−2(z)− k∆−`−2(z)k∆+`(z)) (8.23)

kβ(x) ≡ xβ/22F1

(
β

2
,
β

2
, β, x

)
(8.24)

There are similar explicit formulae in any even dimension. In odd dimensions, no explicit
formula in terms of elementary functions is known. However the blocks can still be computed
from the Casimir equation, and alternative techniques like recursion relations.

8.4 Series Expansion

We can understand the series expansion of the blocks in terms of the exchange of states in
radial quantization. For these purposes, it’s useful to introduce a new cross-ratio. Using con-
formal transformations, we can place all four operators on a 2-plane. In complex coordinates
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on this 2-plane, let us set

x4 = −1 (8.25)

x3 = 1 (8.26)

x2 = ρ = reiθ (8.27)

x1 = −ρ = −eiθ (8.28)

with r = e−τ . This corresponds to placing operators x1,2 and x3,4 at diametrically opposite
points on the cylinder, separated by time τ . The coordinate ρ is related to z via

ρ =
z

(1 +
√

1− z)2
, z =

4ρ

(1 + ρ)2
. (8.29)

In terms of cylinder operators

φcyl.(τ,n) ≡ Φ(τ,n) = e2∆φτφ(eτn) (8.30)

we can write the block as

4−∆g∆,`(u, v) = 〈0|Φ(0,n1)Φ(0,−n1)|O|Φ(−τ,n2)Φ(−τ,−n2)|0〉
= 〈0|Φ(0,n1)Φ(0,−n1)|O|eiDτΦ(0,n2)Φ(0,−n2)|0〉 (8.31)

Let us write the projector |O| as a sum over states with definite energy E = ∆ + n and
angular momentum j

|O|eiDτ =
∑
E,j

∑
a

|E, j〉aa〈E, j|e−Eτ (8.32)

where a is an SO(d) index. The block becomes

=
∑
E,j

e−τE〈0|Φ(0,n1)Φ(0,−n1)|E, j〉aa〈E, j|Φ(0,n2)Φ(0,−n2)|0〉 (8.33)

By rotational invariance, we must have

µ1···µj〈E, j|Φ(0,n)Φ(0,−n)|0〉 = aE,j(nµ1 · · ·nµj − traces.) (8.34)

A contraction of two of these objects is a Gegenbauer polynomial

C
(d−2)/2
j (n1 · n2) = (n1µ1 · · ·n1µj − traces.)(nµ1

2 · · ·n
µj
2 − traces.) (8.35)

Thus,

g∆,`(u, v) =
∑
E,j

bE,jr
EC

(d−2)/2
j (cos θ) (8.36)

where we’ve defined bE,j = 4∆a2
E,j.

We notice a couple things
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• g∆,`(u, v) has an expansion in r with terms that go like r∆+n.

• The coefficients are linear combinations of Gegenbauer polynomials C
(d−2)/2
j (cos θ) with

positive coefficients (in a unitary theory).

• The coefficients bE,j are rational functions of ∆ because they are squares of overlaps of
normalized descendant states with ΦΦ|0〉. This is also clear from the construction using
the differential operators C(x, ∂), since their coefficients are also rational functions of
∆, as in (7.12).

Exercise 20. Expand g
(2d)
∆,` (u, v) and g

(4d)
∆,` (u, v) to the first few orders in ρ, ρ, and verify the

above properties. Verify that some of the coefficients bE,j become negative when ∆ violates
the unitarity bound.

9 The Conformal Bootstrap

Let us summarize the consequences of conformal symmetry and unitarity so far

• All operators are primaries or descendants.

• Primary operators satisfy the unitarity bounds

∆ = 0 (unit operator)

∆ ≥
{

d−2
2

(` = 0)
`+ d− 2 (` > 0)

(9.1)

• Correlation functions can be computed using the OPE

Oi(x)Oj(0) =
∑
k

fijkC(x, ∂)Ok(0) (9.2)

where the C(x, ∂) are fixed by conformal invariance.

• For four-point functions, this implies

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(9.3)

g(u, v) =
∑
O

f 2
φφOg∆O,`O(u, v) (9.4)

where g∆,`(u, v) are conformal blocks. Only even spins `O appear in a four-point
function of identical scalars.

Recall that permutation symmetry of the xi led to the constraint

g(u, v) =
(u
v

)∆φ

g(v, u). (9.5)

This is not obvious from the conformal block expansion. It imposes an infinite set of
consistency conditions on the OPE coefficients fφφO, dimensions ∆O and spins `O.
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Exercise 21. The other constraint

g(u, v) = g

(
u

v
,

1

v

)
(9.6)

follows from the fact that only even spins appear in a four-point function of scalars. Show that
g∆,`(−ρ,−ρ) = (−1)`g∆,`(ρ, ρ), and show that when rewritten in terms of u, v this implies
the above holds block-by-block.

More generally, the OPE should be associative

O1O2O3 = O1O2O3 (9.7)

If this holds, then we will get the same answer in an n-point function no matter what order
we do the OPE in. Associativity of the OPE is equivalent to crossing symmetry of all four-
point functions in the theory. There is a simple graphical argument: crossing of a four-point
function means gives us a move that we can use in any network of OPEs to turn it into any
other network of OPEs, see figure ??.
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