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» part1 : Quantum Entropy of Black Holes
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* part3 : Localization in Supergravity
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» part5 : Quantum Holography
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Today and tomorrow, I’ll give an overview in the
first half of the lecture.
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Quantum Entropy of Black Holes

* Classical black holes

e Semi-classical blac

e Quantum black ho

K holes

es

Quantum black holes provide us with an
invaluable tool to learn about the short
distance (UV) structure of quantum gravity by
studying long distance (IR) properties.
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* A black hole is at once the most simple and yet
the most complex object.

* Understanding the simplicity is in the realm of
classical gravity and understanding the
complexity is in the realm of quantum gravity.

A great deal of quantitative information about
semiclassical and quantum properties of a
black hole has been obtained entirely on the
strength of theoretical considerations. Makes
for an interesting study in history of science.
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Classical Black Holes

* No hair theorem:

A black hole is completely specified by mass,
spin, charge much like an elementary particle.

Kerr-Newman Metric.
A black hole (unlike a star) is simple!
e Fvent Horizon:

A one way surface that causally separates the
outside from the inside of the black hole.
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Paradox |

 What happens if you throw a bucket of hot
water into a black hole? The entropy of the
world outside the black hole would decrease,
violating the second law of thermodynamics.

Bekenstein

* Resolution: Second law can be saved if the
black hole also has entropy. Then the total
entropy of black hole + bucket can increase in
accordance with the second law.
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Paradox Il

* |f a black hole has entropy and mass then by
first law of thermodynamics, it must also have
temperature. But then it must radiate which is
impossible for a classical black hole because
the event horizon is a one way surface.

* Resolution: Because of quantum pair creation
near the event horizon, a black hole can
radiate. Metric is still treated classically.

Hawking
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Semi-classical Black Holes

* A black hole has temperature and entropy

AcS A
S p— = ——
A4hG 412

 This Bekenstein-Hawking” area formula is
remarkably general and involves all three
fundamental constants of nature. Enormous
entropy signifying a huge complexity.

ATISH DABHOLKAR QUANTUM BLACK HOLES



Paradox I

* |f a black hole has entropy then in quantum
theory it must be an ensemble of microstates
according to Boltzmann. How do we associate
so many microstates with a hole in spacetime?

* To resolve this paradox we really need a
guantum theory of gravity with a well-defined
guantum Hilbert space.

Partially understood in string theory.
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Quantum Gravity

 One of the enduring challenges of theoretical
physics is to find a consistent framework for
Quantum Gravity that unifies General Relativity
with Quantum Mechanics.

e String theory offers a promising route towards
such a Quantum Theory of Gravity:

perturbatively UV finite, strong-weak dualities,
AdS/CFT holography...

However.....
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Hurdles for String Theory

* We do not have a microscope like a super-LHC
to probe the theory directly at Planck scale.

 We do not even know which phase or
‘compactification’ of the theory may
correspond to the real world.

How can we be sure that string theory is
the right approach to quantum gravity in
the absence of direct experiments?
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How can we proceed?

* |[n a such a situation, a good strategy is to focus
on universal features that must hold in all
phases of the theory. Analogy with water.

* Entropy of a black hole is one such quantity
which gives very precise quantitative
thermodynamic information.

* |[n a quantum gravity, it should be possible to
interpret a black hole as an ensemble of states
in the Hilbert space of the theory.
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Quantum Black Holes

Any black hole in any phase of the theory should
be interpretable as an ensemble of quantum states
including finite size effects.

* Universal and extremely stringent constraint
* An IR window into the UV
 Connects to a broader problem of

Quantum Holography at finite N.
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Micro from Macro

* |[n the absence of a microscope, one can often
learn a lot about the microstructure from

thermodynamic properties.

* For example, temperature dependence of
specific heat of a metal tells you whether
phonons or electrons are the relevant degrees

of freedom.

Quantum properties of black holes can be put
to good use in an analogous fashion.
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Historical Analogy

e Kinetic theory of gases was a triumph of 19th
century physics that formed the basis for the
atomic hypothesis & later for qguantum theory.

* |t started with the attempts to explain
macroscopic properties of ideal gases in terms
of microscopic atoms’ even though there
were no microscopes at the time that could
establish the reality of atoms directly.
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Entropy of dilute Nitrogen gas

d(N) is the number of ways N molecules of
size A (de Broglie wavelength) can be
distributed in volume V. Microscopic counting
explains Macroscopic Entropy!
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This line of reasoning has already led to some
important advances in the 1990s.

* A large class of supersymmetric (charged) black
holes can indeed be interpreted as ensembles
of microstates as required by Boltzmann.

» Study of black branes (extended versions of
black holes) led to holographic equivalence
between a theory with gravity (AdS) and a
theory without gravity (CFT).

Mostly for large area or large charge.
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Black Hole as an Ensemble

* Does this entropy satisfy Boltzmann relation?
S = log(d)

* Yes! For example, for a susy black hole with
three charges Q,, Q,, Q, (all large )

A ? ?
(Q1 j?z Q3) _ 27?\/621@2@3
Macroscopic Microscopic

Bekenstein-Hawking Strominger-Vafa
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A black hole is simple not because it is like an
elementary particle but rather because it is like
a thermodynamic ensemble.

This explains why it is both simple & complex!

Can we mine further this very important clue
about quantum gravity?
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Quantum Entropy

Given such a beautiful approximate agreement,
it is natural ask:

. What exact formula does it approximate?
What is a quantum generalization of the
Bekenstein-Hawking area formula for entropy?

 How to systematically compute the corrections
to this quantum entropy and compare with
microscopic counting?
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More subtle statistical considerations can
vield more interesting information. Let us
return to our historical analogy.

For example, we need the N! in our counting
because all molecules of nitrogen molecules
are identical. Gibbs deduced this important
fact about the microstructure from
extensivity of macroscopic entropy decades
before the spin-statistics theorem in QFT.
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* Classical equipartition theorem gives wrong
specific heat for nitrogen. Because vibrational
degrees are frozen at low temperature

o e |

- Maxwell regarded this as the greatest
difficulty of classical molecular theory’ as
early as 1859. Jeans made a prescient
remark in 1890 that somehow the
degrees of freedom seem to be frozen.’

* Serious crisis of classical physics.
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What is new?

 Much of earlier work on black holes and
holography is for black holes with large area.

* QOur focus here will be on finite size (finite
charge) corrections to the black hole entropy.

e Unlike the leading Bekenstein-Hawking
formula, these depend sensitively on the
phase under consideration & provide a useful
window into the UV structure of the theory.
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Why obsess with black holes?

* Universal and extremely stringent constraint

In any phase of the theory that admits any
black hole as a solution, it should be possible
to view it as an ensemble of quantum states.

 Quantum Entropy as IR window into the UV

Finite size corrections to quantum entropy of a
black hole give very precise quantitative
information about the UV of the theory.
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What is the exact quantum generalization of the
celebrated Bekenstein-Hawking formula?

A 1
S:Z+0110g(A)—|—CQZ...+€_A—|_...

Generalization due to Wald is applicable only for
local actions. We need a definition that includes
nonlocal quantum effects from massless loops.

 The exponential of the quantum entropy must
vield an integer. This is extremely stringent.

e Subleading corrections depend sensitively on the
phase & provide a window into the UV structure.
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Holography

 Paradox IV: If the entropy in a volume of space
scales with volume then the spontaneous process
of collapse into a black hole would decrease
entropy violating second law. Unless the initial
entropy scales with area and not volume.

A (d+1)-dimensional theory must have the
degrees of freedom of a d-dimensional theory like
the holographic imprint of a 3d object onto a 2d

hologram.
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Holography in String Theory

* This heuristic idea is realized concretely in string
theory in the AdS/CFT correspondence. Maldacena

* A remarkable quantum equivalence between
a theory with gravity AdS
(strings moving in Anti de Sitter spacetime)
&
and a theory without gravity CFT

(Conformal Field Theory in one less dimension).
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AdS,5/CFT,

* Near horizon limit of a p-brane geometry is
Anti de Sitter spacetime AdS , .

* Low energy modes of the p-brane are desribed by
Conformal Field Theory CFT,,,

RG scale of the CFT gives an additional dimension.
Much evidence for this equivalence, its full
implications for quantum gravity are far from being
understood.
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AdS>/CFT; and Quantum Entropy

 The near horizon geometry of a extremal
charged (non-spinning) black hole is AdS, .

 Quantum entropy can then be defined as a
functional integral W(Q) in AdS, over all

string fields with appropriate boundary
conditions, operator insertion, and a
renormalization procedure. Sen

* For large charges, logarithm of W(Q) reduces
to Bekenstein-Hawking-Wald entropy.
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 Euclidean AdS, space is a disk with a metric

2 .2 2
ds® = (r< — 1)do~ A T

e Putacutoffatr= r,
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Black Hole (charge Q) Brane (charge Q)
Quantum Entropy Counting of States
AdS, CFT,

Spacetime Geometry Hilbert Space

This gives the proper quantum generalization of
Bekenstein-Hawking ----  Boltzmann
Can we compute both sides?
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How to evaluate it?

 d(Q)isthe number of bound states of a brane
system which is an extremely difficult
dynamical problem in general.

 W(Q)is given as a formal functional integral
and it is far from clear what to do with it.

A lot of progress has been made in several
models in these computations. | will describe a
couple of simpler examples for illustration.
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Computing d(Q)

* For alarge class of models this problem has
been solved through the work of many people
over several years.

* For a black hole with electric charge vector g
and magnetic charge vector p, the degeneracy
often depends only on a few duality invariants.

* Degeneracy given in terms of Fourier
coefficients of modular forms.
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Computing W(Q)

* |ntegrate out massive string modes to get a
Wilsonian effective action for massless fields.

e Still need to make sense of the formal path
integral of supergravity fields. Using it do explicit
computations is fraught with danger.

* It helps to have microscopic degeneracies d(())
from brane counting to compare with:
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Localization in Supergravity

e Localization has enabled many powerful
computations in QFT over the past two decades.
One could access aspects of strongly coupled QFT
which were otherwise inaccessible.

e Qur results can be viewed as a beginning of a
similar program for quantum gravity.

* Rules are less clear. Comparison with boundary
results is a useful guide. One hopes these methods
will develop further in the coming years.
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Modular forms

* A holomorphic function F(7)on the upper

half complex plane is a modular form of weight
k, if it transforms as

at + b

F
(CT—I—d

) = (T + d)kF(T)

fora, b, ¢, d, k integers and ad-bc =1

The matrices (CCL Z) form the group SL(2, Z)
under matrix multiplication.
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Electric States in Heterotic String

 Degeneracy d(q) depends not only on the

duality invariant g4/2 =N . Itis given by

1 2TLT
PO = a1

> c(n)g"”

d(N) = ¢(N).

Here F'(7)isa modular form of weight -12.
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One-eighth BPS states in N=8

e Type-ll compactified on 7
* Dyonic states with charge vector (Q, P)
* U-duality invariant A = Q*P* — (Q - P)?
* Degeneracy given by Fourier coefficients ('(A) of
(T, 2)?
n(7)°

d(A) = (-1)2MC(A)
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Computing W (A)

 The structure of the microscopic answer suggests
that W (A) should have an expansion

* Each W_.(A) corresponds to a Z. orbifold of the
Euclidean near horizon black hole geometry.

 The higher c are exponentially subleading. Unless
one can evaluate each of them exactly it is not
particularly meaningful to add them.

Localization enables us to do this.

ATISH DABHOLKAR QUANTUM ENTROPY OF BLACK HOLES



Path Integral on AdSs

* Including the M-theory circle, there is a family of
geometries that are asymptotically AdS, x S*:

1 dr?
ds® = (r* — =)db> + ——

2 L
C (A 2

i 1 d \?*
R?(dy— —(r — 2)dO + =db

* These are Z. orbifolds of BTZ black hole. These
geometries M. 4 all have the same asymptotics
and contribute to the path integral.

» Related tothe SL(2,7Z) familyin AdS;
Maldacena Strominger (98), Sen (09), Pioline Murthy (09)

ATISH DABHOLKAR QUANTUM ENTROPY OF BLACK HOLES



Localization

e |f asupersymmetric integral is invariant under a
localizing supersymmetry Q which squares to a
compact generator H, then the path integral
localizes onto fixed manifold of the symmetry Q.

« We consider localization in N=2 supergravity
coupled to n,, vector multiplets whose chiral
action is governed by a prepotential F.

 We find the localizing submanifold left invariant
by Q and evaluate the renormalized action.
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Off-shell Localizing Solutions

« We found off-shell localizing instantons in AdS,

for supergravity coupled to n, vector multiplets
with scalars X' and auxiliary fields Y’
I 1 I
R
xloxi & oy OO
r e I=0,...,n,

 These solutions are universal in that they are

independent of the physical action and follow
entirely from the off-shell susy transformations.
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Renormalized Action

 The renormalized action for prepotential F is

Sren(¢7 Q7p) — _7Tq]¢l - F(¢7p)

F(¢,p) = —2mi {F(¢I+2ip1) A —22'29[)}

1 Iy .
§(¢I +ip") is the off-shell value of X7 at the origin.

e For each orbifold one obtains a Laplace integral
of |Z;,,|* reminiscent of OSV conjecture.

Ooguri Strominger Vafa (04) Cardoso de Wit Mohaupt (00)
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Final integral

The prepotential for the truncated theory is
1 X! <
F(X)=-5"5 ) CapX*X"  (n,=7)

2 XV
a,b=2

(dropping the extra gravitini multiplets)

The path integral reduces to the Bessel integral

ds | A
59/26Xp[ | 43]

Wi(A) = I; 5 (mVA)

Wi(A) = N
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Hardy-Ramanjuan-Rademacher Expansion

An exact convergent expansion (using modularity)

00 5 \/Z
CO(A) = N -9/2p (" K.(A
(A) (;:21 C 7/2( , ) (A)
. 1 €ro0 g 7
Fpa)=on | gmepls+ o
~ exp {z—4logz ‘ } z=A/4
<

The c=1 Bessel function sums all perturbative (in 1/2)
corrections to entropy. The c>1 are non-perturbative
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Generalized Kloosterman Sum K _(A)

Z 2T Nl )2 (<14
—c<d<0;
(d,e)=1 y=A mod 2

Relevant only in exponentially subleading nonperturbative
corrections . Even though highly subleading,
conceptually very important for integrality.

New results concerning these nonperturbative phases
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Multiplier System

M~'(y) is a particular two-dimensional
representation of the SL(2,Z)  matrix

M_l(T):<(1) 8) M—l(S)ze;;(} _11>

Use the continued fraction expansion:
Ny=T"™§... T™S
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Degeneracy, Quantum Entropy, Wald Entropy

A | C(A) | Wi(A) | exp(nvA)
3 | 8 7.972 | 230.765
4 | -12 | 12.201 | 535.492
7 | 39 | 38986 | 4071.93
8 | -56 | 55.721 | 7228.35
11| 152 | 152.041 | 22506
12 | -208 | 208.455 | 53252
15 | 513 | 512.958 | 192401
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e Notethat C'(A) are alternating in sign so that
d(A) = (—=1)2TLC(A) is strictly positive.
This is a prediction from IR quantum gravity for

black holes which is borne out by the UV.

 This explains the Bessel functions for all ¢ with
correct argument because for each orbifold the
action is reduced by a factor of ¢

. What about the Kloosterman sums?

It was a long standing puzzle how this intricate
number theoretic structure could possibly arise
from a supergravity path integral.
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Kloosterman from Supergravity

 Our analysis thus far is local and insensitive to
global topology. The Chern-Simons terms in the
bulk and the boundary terms are sensitive to the
slobal properties of M d

 Additional contributions to renormalized action
and additional saddle points specified by
holonomies of flat connections. Various phases
from CS terms for different groups assemble
neatly into precisely the Kloosterman sum!
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Kloosterman and Chern-Simons

I(A):/ Tr (A/\dA—FgAS)
Mc,d 3

In our problem we have three relevant groups
U™t SUQ2), SU(@2)xr

/

Z 62mg(A/4) M_l(%,d)yl p2mie(—1/4)

—c<d<0;
(d,c)=1
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Dehn Twisting

The geometries M., are topologically a solid
2-torus and are related to M o by Dehn-filling.

Relabeling of cycles of the boundary 2-torus:

(& )=(ta)la) o (&a)esen

(', is contractible and (s is noncontractible in M1

C.is contractible and C, is noncontractible in M4
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Boundary Conditions and Holonomies

* The cycle ¢, is the M-circle and ¢, is the boundary
of AdS, for the reference geometry M

* This implies the boundary condition

7{ Al = fixed, 7{ Al = not fixed
CQ C’1

and a boundary term
Ib(A) :/ TrAlAQdQQ?
T2

Elitzur Moore Schwimmer Seiberg (89)
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Contribution from SU(2)r

3 3
7{ A = 2min 7{ A = 2mis
C1 2 Ca 2

3 3
7{ A = 2mio— % A =2mig2
C., 2 Ch 2

Chern-Simons contribution to the renormalized action is
completely determined knowing the holonomies. For
abelian the bulk contribution is zero for flat connections

and only boundary contributes.

I,[AR] = 27246 I[AR] = 2120

Kirk Klassen (90)
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73 o
7{ AR:_ma | 7{ Ap =0
Cl 2 CQ

S

Supersymmetric z_ orbifold Jr =0
v=-1/c, 6=0, a=-1, [=—a/c
(using o= cvy+dd, B = avy + bd)
The total contribution to renormalized action is
g 2mik R a by — 1
4 c

in perfect agreement with a term in Kloosterman.
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Multiplier System from SU(2),

There is an explicit representation of the Multiplier
matrices that is suitable for our purposes.

c—1
M_l(’y)uu =C Z Z ee;_vzrc[d(’/+1)2_2(V+1)(27“n+6(u+1))+a(2rn+e(u+1))2]
e=+ n=0

Unlike SU(2)r the holonomies of sy7(2), are not
constrained by supersymmetry and have to be
summed over which gives precisely this matrix.

(Assuming usual shift of k goingto k +2 )
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Knot Theory and Kloosterman

 This computation is closely related to knot

invariants of Lens space L. 4 using the surgery
formula of Witten. Witten (89) Jeffrey (92)

 Thisis not an accident. Lens space is obtained by
taking two solid tori and gluing them by Dehn-

twisting the boundary of one of them. But Dehn-
twisted solid torus is our M. 4

* Intriguing relation between topology and
number theory for an appropriate CS theory.
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An /R Window into the UV

 The degeneracies d(Q) count brane bound states.
These are nonpertubative states whose masses are
much higher than the string scale.

* Qur supergravity computation of W(Q) can
apparently access this information with precision.

 |If we did not know the spectrum of branes a priori
in the N=8 theory then we could in principle deduce
it. For example, in N=6 models d(Q) is not known
but the sugra computation of W(Q) seems doable.
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Platonic Elephant of M-theory

 Quantum gravity seems more like an equivalent
dual description rather than a coarse-graining.

e [tis notonly UV-complete (like QCD) but UV-rigid.
E. g. Small change in the effective action of an
irrelevant operator will destroy integrality.

* AdS/CFT is just one solitonic sector of the theory. It
seems unlikely that we can bootstrap to construct
the whole theory from a single CFT which for a
black hole is just a finite dimensional vector space.
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Positivity

 Note that C'(A) are alternating in sign so that
d(A) = (—=1)2TLC(A) s strictly positive.

e Surprising for a quantum field theorist or for a
number theorist, because Fourier coefficients

of a modular form do not a priori have any
positivity property.

* This is a prediction from IR quantum gravity
for black holes which is borne out by the UV.
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Integrality

- The area of the black hole horizonis 47V A.
The Bessel function sums up an infinite series of
perturbative corrections in inverse powers of area.
Remarkably, the functional integral quantum
entropy gives an answer that is very close to the
integral degeneracy.

e By contrast, the exponential of Wald entropy is
very far from the integer. Even for A = 15

when area is large, the nonlocal quantum
corrections make a substantial contribution.
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Weyl| Multiplet

* In conformal supergravity in our gauge, conformal
factor of the metric has been traded for a scalar
field. The fiducial metric is held fixed but the
physical metric has a nontrivial profile for the off-
shell solution. Rather like Liouville in 2d.

 There are no additional solutions from the Weyl
multiplet that contains the metric Gupta Murthy (12)

 Subtleties with localization (because metric is
fluctuating) that need to be understood in better.
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Quantum Entropy: An Assessment

Choice of Ensemble: AdS, boundary conditions
imply a microcanonical ensemble.  sen (09)

Supersymmetry and AdS> boundary conditions
imply that index = degeneracy and Jz =0
Sen (10) Dabholkar Gomes Murthy Sen (12)
Path integral localizes and the localizing solutions
and the renormalized action have simple analytic

expressions making it possible to even evaluate
the remaining finite ordinary integrals. pGm (10, 11)
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Contributions from orbifolded localizing instantons
can completely account for all nonperturbative
corrections to the quantum entropy.

All intricate details of Kloosterman sum arise from
topological terms in the path integral. bGwv (14)

(Most) D-terms evaluate to zero on the localizing
solutions de Wit Katamadas Zalk (10) Murthy Reys (13)

Path integral of quantum gravity (a complex
analytic continuous object) can yield a precise
integer (a number theoretic discrete object).

W(Q) = /dCI)e_S[(D] = integer
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Open Problems

? Computation of the measure including one-loop
determinants. Subtleties with gauge fixing.

?  We used an N=2 truncation of N=8 supergravity.
This should be OK for finding the localizing
instantons because the near horizon has N=2
susy. But it’s a truncation.

?  We dropped the hypermultiplets. They are known
not to contribute to Wald entropy but could
contribute to off-shell one-loop determinants.
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One-loop determinants

* Computation of one-loop determinants is subtle because
of gauge fixing. The localization charge is a combination
of susy and BRST. Similar to computation by Pestun.

 For vector multiplets and hypermultiplets coupled to
gravity this computation has recently been done in
agreement with on-shell results. Additional subtleties in
supergravity in gauge-fixing conformal supergravity to
Poincareé su pergravity. Murthy Reys 2015, Gupta Ito Jeon 2015

* Inthe N=8 case, the net contribution of the fields that we
have dropped is zero. Justifies the truncation.
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Off-shell supergravity

? It would be useful to have off-shell realization of
the two localizing supercharges on all fields of
N=8 supermultiplet. Hard but doable technical
problem.

? We have treated gravity multiplet as any other
multiplet in a fixed background. This is not fully
justified for very off-shell configurations.

Kloosterman sum arising from topological terms is
essentially independent of these subtleties.
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* Black holes continue to be an important source of
new theoretical ideas. Because their
thermodynamic properties are deduced from
robust and well-tested physical principles, it
remains our most reliable guide in the search for a
coherent framework for qguantum gravity.

* String theory is an extremely rigid theoretical
structure and seems capable of explaining a black
hole as an ensemble in a quantum Hilbert space.

* |tis remarkable that gravity can ‘see’ the integrality
of a non-perturbative count of quantum states.
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