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I. Random Field Ising Model

The Random Field Ising Model (RFIM) is an archetypal example of a
system with disorder and frustration.

I Energy function

E = −J
∑
〈ij〉

si sj −
N∑
i=1

hi si , si = ±1.

I The interaction J > 0 prefers a magnetized structure.

I The disordering random fields {hi} are generally drawn from:

P(hi ) =
1√

2π∆
e(−hi 2/2∆2).

I Small region of (T ,∆)-values where equilibrium phase is
ferromagnetic (d = 3). Tc(∆ = 0) ' 4.51, ∆c(T = 0) ' 2.28.
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Some Experimental Realizations of the RFIM

I Diluted antiferromagnets (DAFs) in a uniform field.
Fishman & Aharony, J. Phys. C, 1978; Ye et al, PRB 2006; Miga et al., PRB, 2009

I Dipolar quantum magnet LiHoxY1−xF4.
Schechter & Stamp, PRL, 2005; Schechter, PRB, 2008

I Binary mixture (AB) in porous medium (oil-water, colloid-polymer).
P.G. De Gennes, J. Phys. Chem. Lett., 1984; Vink et al.,PRL, 2006

Ising spins do not have an intrinsic dynamics. Contact with heat bath
generates stochastic spin-flips.

I Glauber model with non-conserved kinetics. (DAFFs,
LiHoxY1−xF4.)

I Kawasaki model with conserved kinetics. (Binary mixture with A ↔
B interchanges.)

I Although the two models describe different time-dependent
behavior, the equilibrium state is unique.
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Difficulties with Disorder

I Competing interactions create a complex free energy landscape:

I Many local minima separated by energy barriers ∼ O(eN).

I Standard minimisation procedures such as Metropolis, Cluster,
Parallel Tempering, etc. involve O(1) spin-flips at a time;
Convergence time to global minimum is non-polynomial in N.

I System opts for a local minimum far from the global minimum.

Varsha Banerjee Ground States and Phase Ordering Studies of the Random Field Ising Model



logo

II. Max-Flow/Min-Cut or Graph Cut Methods

A specialized graph for the energy function is constructed such that the
cheapest cut on the graph minimizes energy either globally or locally.

I The cut enables simultaneous relabeling of several spins or nodes.

I Large portion of the phase-space can be sampled in one move.

I The convergence time to the global minimum is polynomial in N.

I Ford-Fulkerson - O(N3) Flows in Networks, Princeton University Press, 1962

I Goldberg-Tarjan - O(N3) J. ACM, 1988

I Boykov-Kolmogorov -O(N) IEEE Transactions on PAMI, 2004

I Facilitate search for a “good quality” local minimum, if the global
minimum is difficult to reach.

I Often provide optimality bounds.
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Background on Graphs

I A graph G = (V, E) consisting of vertices V and edges E that
connect then.

I An edge ij joining vertices i and j is assigned a weight Vij .

I A cut C is a partition of the vertices V into two sets R and Q.

I Any edge ij ∈ E with i ∈ R and j ∈ Q (or vice-versa) is a cut edge.

I The cost of the cut is defined to be the sum of the weights of the
edges crossing the cut.

I The min-cut problem is to find the cut with the smallest cost.
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The Graph Construction

I A standard energy function:

E ({si}) =
∑
{ij}∈N

V ij(si , sj) +
∑
i

D i (si ), si ∈ L = (α, β, ...., γ),

= Esmooth + Edata.

I Two-terminal graph (si = α, β):
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(Boykov & Kolmogorov , IEEE PAMI, 2004)

Edge Weight For

tβi ∞ i ∈ Rα

tβi D i (si ) i /∈ Rα

tαi D i (α) i ∈ Rα

e{i,a} V (si , α)

e{a,j} V (α, sj) {i , j} ∈ N , si 6= sj

tβa V (si , sj)

e{i,j} V (si , α) {i , j} ∈ N , si = sj
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When can the Global Minimum be reached?

I Exact min-cut can be found in polynomial time if

1. E is quadratic,
2. si ’s are binary (0 or 1 say),
3. interactions satisfy the regularity condition:

V ij(0, 0) + V ij(1, 1) ≤ V ij(1, 0) + V ij(0, 1).

(Picard, Ratliff, Networks, 1975; Papadimitriou, Steiglitz, Combinatorial Optimization, 1982)

I ni = (1 + σi )/2 transforms σi = ±1 to ni = 0, 1.

I In physical systems, 3 corresponds to interactions Jij > 0.

I Ground states of the RFIM are assured by min-cut algorithms.
(d’Auriac, Preissmann, Rammal, J. Phys. (France) Lett. 1985)
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Comparison between MC and BK-GCM

I Morphologies for a lattice of size 1283 and disorder ∆ = 2.4:

(a) Steady-state morphology using the MC method;
(b) Ground-state morphology obtained using the BK-GCM.

I MC morphology is not as compact or well defined.

I Energy per spin: ' -3.05 (BK-GCM); ' -2.69 (MC).

I The BK-GCM yields a 99% overlap with the GS in the first iteration.
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∆c of isometric lattices

Binder cumulant U4 = 1− 〈m4〉/3〈m2〉2, m = N−1
∑N

i=1 si
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Averaging over ∼ 106 disorder realizations; Symbols size ≡ error bar.

(Shrivastav, Kumar, VB, Puri, Phys. Rev. E, 2014)

(Bupathy, VB, Puri, Phys. Rev. E, 2016)

Varsha Banerjee Ground States and Phase Ordering Studies of the Random Field Ising Model



logo

Ground State Morphologies (Bupathy, VB, Puri, Phys. Rev. E, 2016)

L = 160; δ = (∆−∆c)/∆c ; SC: L3, BCC: 2× L3, FCC: 4× L3.

(d) (e) (f)

(a) (b) (c)

δ=0.08
δ=−0.01

I The green and blue regions correspond to si = 1 and si = −1.

I Emergence of domains of size ξ as ∆ reduced from ∆ =∞.

I ξ →∞ as ∆→ ∆+
c .
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Tools for Characterizing GS Morphologies

I Standard probe is the correlation function:

C (r) = 〈ψ (~ri )ψ (~rj)〉 − 〈ψ (~ri )〉〈ψ (~rj)〉,

where ψ (~ri ) is an appropriate variable [si ] and r = |−→ri −−→rj |. The
angular brackets denote an ensemble average.

Correlation length ξ: Distance over which C (r) decays to (say)
0.2× maximum value.

I Small-angle scattering experiments yield the structure factor:

S(~k) =

∫
d~re i~k·~rC (r),

where ~k is the wave-vector of the scattered beam.
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Rough Interfaces, Cusp Singularities and Non-Porod Tails

Interfaces separating correlated regions of up and down spins are rough in
disordered systems with important implications in systemic relaxation.

I Small-r behavior exhibits a cusp singularity:

C (r , t; ∆) = 1− Axα + O(x2+α),

where x = r/ξ, A is a constant, and α is the cusp exponent.

I For smooth interfaces, α = 1. For fractal interfaces, 0 < α < 1 and
the fractal dimension df = d − α. (d is the Euclidian dimension.)

I For α = 1, S (k,∆) ∼ k−(d+1) yielding the Porod law due to
scattering from smooth interfaces.

I For 0 < α < 1, S (k ,∆) ' Ã (kξ)−(d+α) exhibiting a non-Porod tail
indicative of scattering off rough interfaces:

Europhys. Lett. 2013; Phys. Rev. E, 2014; Phys. Rev. E, 2016
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Interfacial Features (Para Phase) (Bupathy, VB, Puri, Phys. Rev. E, 2016)
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I Universal scaling function for all disorder amplitudes,
disorder types and lattice types. The morphologies
are characterized by a unique length scale ξ(∆).

(Kumar, VB, Puri, EPJE, 2017)

I Small-r behaviour characterized by a universal cusp
exponent α ' 0.5 with df = 2.5.

I Large-k behaviour exhibits non-Porod tail due to
scattering off fractal interfaces.
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Interfacial Features (Ferro Phase) (Bupathy, VB, Puri, Phys. Rev. E, 2016)
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I Distinct cusp exponents from the para phase.

I α = 0.68± 0.01 (SC), 0.66± 1 (BCC) and 0.64± 1
(FCC).

I Though minor, these variations have important
consequences for relaxation behaviour.
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Comparisons with Experimental Data

I Small-angle scattering data from DAFs (para regime).
(Belanger, et al., Phys. Rev. B, 1985)

I All three data exhibit an asymptotic cusp regime [S (k) ∼ k−3.5].

(Shrivastav, Kumar, VB, Puri, Phys. Rev. E, 2014)
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III. Domain Growth after a Temperature Quench

I Domain growth in d = 3 C-RFIM for (a) ∆ = 1.0, t = 105 MCS;
(b) ∆ = 1.0, t = 107 MCS; and (c) ∆ = 2.0, t = 107 MCS.

I The lattice size is 1283 and the temperature T = 2 < Tc(∆).

Kumar, VB, Puri, Europhys. Lett. 2017
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Interfacial Characteristics during Domain Growth
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(a) Disorder-dependent roughness exponent α(∆) ' 1.0, 0.8, 0.5 for
∆ = 0, 1.0, 2.0, respectively.

(b) Plot of scaled structure factor, L(t)−dS (k , t; ∆) vs. kL(t), for
t = 107 MCS and ∆ = 0, 1.0, 2.0. Solid lines denote relevant Porod and
non-Porod tails.

Kumar, VB, Puri, Europhys. Lett. 2017
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Growth Laws: Algerbraic vs. Logarithmic

I Plot of the characteristic length scale, L(t) vs. t on a log-log scale:
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For pure systems (∆ = 0):
L(t) ∼ t1/3.

Lifshitz-Slyozov (LS) law

I Notice the slowing down of domain growth at late times for higher
disorder strengths.

(i) Algebraic growth at early times: L(t,∆) ∼ t1/z̄ with
disorder-dependent exponent z̄(∆). (For ∆ = 0, z̄ = 3.)

(ii) Cross-over to logarithmic domain growth at late times:
L(t,∆) ∼ (ln t)1/ψ, ψ is a disorder-independent barrier exponent.

Kumar, VB, Puri, Europhys. Lett. 2017
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Scaling Ansatz to determine z̄ and ψ

I Assume that the growth law scales as:

L(t,∆) ∼ t1/zeff = t1/zF (∆/tφ), (1)

F (x) ∼
{

const., for x → 0,
x1/φz `

(
x−1/φ

)
, for x →∞. (2)

zeff is the effective growth exponent, φ is the crossover exponent.
Corberi et al. Phys. Rev. E 2012, 2013

I Cross-over from power law L(t) ∼ t1/z to asymptotic form
L(t) ∼ `

(
x−1/φ

)
if φ < 0 and vice versa if φ > 0.

I Disorder is asymptotically relevant if φ < 0 and irrelevant if φ > 0.
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Exponents from Scaling of L(t)

I Parameters z and λ for different ∆-values.

d = 2 ∆ 0 0.25 0.50 0.75 1.00
z 3.0 3.38 3.84 4.38 4.59

d = 3 ∆ 0 0.5 1.0 1.5 2.0
z 3.0 3.57 3.78 4.05 4.40

I ψ ' 3.3 for d = 2; ψ ' 5.6 for d = 3.
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Kumar, VB, Puri, Europhys. Lett. 2017

Varsha Banerjee Ground States and Phase Ordering Studies of the Random Field Ising Model



logo

Slow Logarithmic Growth and Rough Interfaces

I Domain growth in disordered systems proceeds via activation over
barriers of energy EB ∼ εBLψ. Here, εB is the barrier energy per
unit length, and ψ is the barrier exponent.

I For curvature-driven growth in non-conserved systems,

I dL/dt = a(L, t)/L.

Lai, Mazenko, Valls, Phy. Rev. B 1988
I In systems with quenched disorder,

I a(L, t) = a0 exp(−εBLψ/T ),
I L(t) ∼ (T ε−1

B )1/ψ(ln t)1/ψ.
I Same form from our scaling ansatz.

I Villain argued that the barrier exponent ψ = 2− α, where α is the
cusp exponent. (Villain, Phys. Rev. Lett., 1984)

Fractal interfaces lead to slow logarithmic domain growth.
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Summary

I Efficient algorithm to determine ground states (T = 0) of the RFIM
in d = 3.

I Accurate estimation of the critical disorder strength ∆c in isometric
lattices; Identification of fractal interfaces; Accurate estimation of
the fractal dimension df .

I Interfacial textures in para and ferro phase are distinct. In the para
phase, the cusp exponent α ' 0.5 is universal. In the ferro phase, it
exhibits dependence on disorder and local environment.

I Comprehensive MC study of domain growth after a temperature
quench (T 6= 0) in the RFIM with conserved dynamics in d = 3.
(No knowledge of equilibrium states.)

I Observe clean cross-overs from a disorder-dependent power-law
growth to a disorder-independent logarithmic growth.

I Fractal interfaces have important implications in growth, relaxation
and response.
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Scaling ansatz to determine z̄ and ψ Corberi et al. PRE 2012, 2013

I

L(t,∆) ∼ t1/zeff = t1/zF (∆/tφ), (3)

F (x) ∼
{

const., for x → 0,
x1/φz `

(
x−1/φ

)
, for x →∞. (4)

zeff is the effective growth exponent, φ is the crossover exponent.

I The evaluation of zeff is easier using the inverted form:

t = LzG (L/λ). (5)

Here, λ = ∆1/φz is the crossover length scale and G (y) = [F (x)]−z .

I The effective exponent as a function of y (= L/λ) is then

zeff(y) =
∂ ln t

∂ ln L
= z +

∂ ln G (y)

∂ ln y
. (6)
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Exponents z̄ , φ and ψ
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(a) zeff = [d(ln L)/d(ln t)]−1 vs. t (semi-log).
Dashed lines: disorder-dependent exponents z(∆) of the power law.
This is followed by a late regime where zeff is time-dependent.

(b) Scaling collapse of zeff − z vs. L/λ, where λ = ∆1/φz̄ . The solid line
is the best power-law fit: zeff − z = b(L/λ)ψ with b ' 0.022, ψ ' 5.6.

(c) ∆-dependence of λ. Power-law fit: λ ∼ ∆−0.95.
Kumar, VB & Puri, EPL, 117, 10012, 2017

Varsha Banerjee Ground States and Phase Ordering Studies of the Random Field Ising Model



logo

Exponents and data collapse

∆ 0 0.5 1.0 1.5 2.0
z 3.0 3.57 3.78 4.05 4.40

λ (= ∆1/φz̄) ∞ 42.1 22.5 16.5 11.0
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Why logarithmic domain growth?

Generalizing Eqs. (1)-(4) by replacing z → z̄ ,

∂ ln G (y)

∂ ln y
= zeff − z = byψ ⇒ G (y) ∼ exp

(
b

ϕ
yψ
)
. (7)

Substituting in Eq. (5) results in the asymptotic logarithmic growth form:

y =
L

λ
'
[
ψ

b
ln(t/λz̄)

]1/ψ

. (8)

The disorder-independent exponent ψ has great physical significance:

I Domain growth in disordered systems (e.g. RFIM) proceeds via
activation over barriers of energy EB ∼ εBLψ,
εB : barrier energy per unit length; ψ: barrier exponent.

I The asymptotic growth law is then logarithmic:

L(t) ∼ (T/εB)1/ψ (ln t)1/ψ.
Huse & Henley, PRL 1985; Lai et al., PRB 1988
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