Ground States and Phase Ordering Studies of the Random Field Ising Model

Varsha Banerjee

Department of Physics IIT Delhi

December 29, 2017

Outline

- I. Random Field Ising Model (RFIM)
- II. Ground States (T = 0)
 - Graph-Cut Method
 - Determination of Critical Points
 - Textures of Domains and Interfaces
- III. Phase Ordering after a Thermal Quench ($T \neq 0$)
 - Dynamical Scaling and Super-Universality Violations
 - Algebraic vs. Logarithmic Growth Laws

IV. Summary

Collaborators - Gaurav Shrivastav, Manoj Kumar, Arunkumar Bupathy, Sanjay Puri (JNU)

I. Random Field Ising Model

The Random Field Ising Model (RFIM) is an archetypal example of a system with disorder and frustration.

Energy function

$$E = -J \sum_{\langle ij \rangle} s_i s_j - \sum_{i=1}^N h_i s_i, \quad s_i = \pm 1.$$

- The interaction J > 0 prefers a magnetized structure.
- ▶ The disordering random fields {*h_i*} are generally drawn from:

$$P(h_i) = \frac{1}{\sqrt{2\pi}\Delta} e^{(-h_i^2/2\Delta^2)}.$$

Small region of (T, Δ)-values where equilibrium phase is ferromagnetic (d = 3). T_c(Δ = 0) ≃ 4.51, Δ_c(T = 0) ≃ 2.28.

向下 イヨト イヨト ニヨ

Some Experimental Realizations of the RFIM

Diluted antiferromagnets (DAFs) in a uniform field.

Fishman & Aharony, J. Phys. C, 1978; Ye et al, PRB 2006; Miga et al., PRB, 2009

• Dipolar quantum magnet $LiHo_x Y_{1-x}F_4$.

Schechter & Stamp, PRL, 2005; Schechter, PRB, 2008

Binary mixture (AB) in porous medium (oil-water, colloid-polymer).

P.G. De Gennes, J. Phys. Chem. Lett., 1984; Vink et al., PRL, 2006

Ising spins do not have an intrinsic dynamics. Contact with heat bath generates stochastic spin-flips.

- Glauber model with non-conserved kinetics. (DAFFs, LiHo_xY_{1-x}F₄.)
- \blacktriangleright Kawasaki model with conserved kinetics. (Binary mixture with A \leftrightarrow B interchanges.)
- Although the two models describe different time-dependent behavior, the equilibrium state is unique.

Difficulties with Disorder

Competing interactions create a complex free energy landscape:

- Many local minima separated by energy barriers $\sim O(e^N)$.
- Standard minimisation procedures such as Metropolis, Cluster, Parallel Tempering, etc. involve O(1) spin-flips at a time; Convergence time to global minimum is non-polynomial in N.
- System opts for a local minimum far from the global minimum.

白 と く ヨ と く ヨ と …

II. Max-Flow/Min-Cut or Graph Cut Methods

A specialized graph for the energy function is constructed such that the cheapest cut on the graph minimizes energy either globally or locally.

- The cut enables simultaneous relabeling of several spins or nodes.
- Large portion of the phase-space can be sampled in one move.
- ▶ The convergence time to the global minimum is polynomial in *N*.
 - Ford-Fulkerson $O(N^3)$
 - ► Goldberg-Tarjan O(N³)
 - Boykov-Kolmogorov O(N)

Flows in Networks, Princeton University Press, 1962

J. ACM, 1988

IEEE Transactions on PAMI, 2004

소리가 소문가 소문가 소문가

- Facilitate search for a "good quality" local minimum, if the global minimum is difficult to reach.
- Often provide optimality bounds.

- ► A graph G = (V, E) consisting of vertices V and edges E that connect then.
- An edge ij joining vertices i and j is assigned a weight V_{ij}.
- A cut C is a partition of the vertices \mathcal{V} into two sets \mathcal{R} and \mathcal{Q} .
- Any edge $ij \in \mathcal{E}$ with $i \in \mathcal{R}$ and $j \in \mathcal{Q}$ (or vice-versa) is a cut edge.
- The cost of the cut is defined to be the sum of the weights of the edges crossing the cut.
- The min-cut problem is to find the cut with the smallest cost.

(ロ) (同) (E) (E) (E)

The Graph Construction

A standard energy function:

$$E(\{s_i\}) = \sum_{\{ij\}\in\mathcal{N}} V_{ij}(s_i, s_j) + \sum_i D_i(s_i), \quad s_i \in \mathcal{L} = (\alpha, \beta, ..., \gamma),$$

= $E_{smooth} + E_{data}.$

• Two-terminal graph ($s_i = \alpha, \beta$):

(Boykov & Kolmogorov, IEEE PAMI, 2004)

Edge	Weight	For		
t_i^{β}	∞	$i\in \mathcal{R}_{lpha}$		
t_i^{β}	$D_i(s_i)$	$i\notin \mathcal{R}_{\alpha}$		
t_i^{lpha}	$D_i(\alpha)$	$i\in \mathcal{R}_{lpha}$		
$e_{\{i,a\}}$	$V(s_i, \alpha)$			
$e_{\{a,j\}}$	$V(\alpha, s_j)$	$\{i, j\} \in \mathcal{N}, s_i \neq s_j$		
t_a^eta	$V(s_i, s_j)$			
$e_{\{i,j\}}$	$V(s_i, \alpha)$	$\{i, j\} \in \mathcal{N}, s_i = s_j$		

Ground States and Phase Ordering Studies of the Random Field

When can the Global Minimum be reached?

Exact min-cut can be found in polynomial time if

- 1. E is quadratic,
- 2. s_i 's are binary (0 or 1 say),
- 3. interactions satisfy the regularity condition:

 $V_{ij}(0,0) + V_{ij}(1,1) \leq V_{ij}(1,0) + V_{ij}(0,1).$

(Picard, Ratliff, Networks, 1975; Papadimitriou, Steiglitz, Combinatorial Optimization, 1982)

•
$$n_i = (1 + \sigma_i)/2$$
 transforms $\sigma_i = \pm 1$ to $n_i = 0, 1$.

- ▶ In physical systems, 3 corresponds to interactions $J_{ij} > 0$.
- Ground states of the RFIM are assured by min-cut algorithms.

(d'Auriac, Preissmann, Rammal, J. Phys. (France) Lett. 1985)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Comparison between MC and BK-GCM

• Morphologies for a lattice of size 128³ and disorder $\Delta = 2.4$:

- (a) Steady-state morphology using the MC method;
- (b) Ground-state morphology obtained using the BK-GCM.
- MC morphology is not as compact or well defined.
- ► Energy per spin: ~ -3.05 (BK-GCM); ~ -2.69 (MC).
- ► The BK-GCM yields a 99% overlap with the GS in the first iteration.

Δ_c of isometric lattices

Binder cumulant
$$U_4 = 1 - \langle m^4 \rangle / 3 \langle m^2 \rangle^2$$
, $m = N^{-1} \sum_{i=1}^N s_i$

Averaging over $\sim 10^6$ disorder realizations; Symbols size \equiv error bar.

(Shrivastav, Kumar, VB, Puri, Phys. Rev. E, 2014)

(Bupathy, VB, Puri, Phys. Rev. E, 2016)

L = 160; $\delta = (\Delta - \Delta_c)/\Delta_c;$ SC: L^3 , BCC: $2 \times L^3$, FCC: $4 \times L^3$.

- The green and blue regions correspond to $s_i = 1$ and $s_i = -1$.
- Emergence of domains of size ξ as Δ reduced from $\Delta = \infty$.

•
$$\xi \to \infty$$
 as $\Delta \to \Delta_c^+$.

Standard probe is the correlation function:

$$\mathcal{C}(\mathbf{r}) = \langle \psi(\mathbf{r}_i) \psi(\mathbf{r}_j) \rangle - \langle \psi(\mathbf{r}_i) \rangle \langle \psi(\mathbf{r}_j) \rangle,$$

where $\psi(\vec{r_i})$ is an appropriate variable $[s_i]$ and $r = |\vec{r_i} - \vec{r_j}|$. The angular brackets denote an ensemble average.

Correlation length ξ : Distance over which C(r) decays to (say) $0.2 \times$ maximum value.

Small-angle scattering experiments yield the structure factor:

$$S(\vec{k}) = \int d\vec{r} e^{i\vec{k}\cdot\vec{r}}C(r),$$

where \vec{k} is the wave-vector of the scattered beam.

Rough Interfaces, Cusp Singularities and Non-Porod Tails

Interfaces separating correlated regions of up and down spins are rough in disordered systems with important implications in systemic relaxation.

Small-*r* behavior exhibits a *cusp singularity*:

$$C(r,t;\Delta) = 1 - Ax^{\alpha} + O(x^{2+\alpha}),$$

where $x = r/\xi$, A is a constant, and α is the *cusp exponent*.

- For smooth interfaces, $\alpha = 1$. For fractal interfaces, $0 < \alpha < 1$ and the fractal dimension $d_f = d \alpha$. (*d* is the Euclidian dimension.)
- For α = 1, S (k, Δ) ∼ k^{-(d+1)} yielding the Porod law due to scattering from smooth interfaces.
- For 0 < α < 1, S(k, Δ) ≃ Ã(kξ)^{-(d+α)} exhibiting a non-Porod tail indicative of scattering off rough interfaces:

Europhys. Lett. 2013; Phys. Rev. E, 2014; Phys. Rev. E, 2016

Interfacial Features (Para Phase)

 Universal scaling function for all disorder amplitudes, disorder types and lattice types. The morphologies are characterized by a unique length scale ξ(Δ).

(Kumar, VB, Puri, EPJE, 2017)

- Small-r behaviour characterized by a universal cusp exponent α ~ 0.5 with d_f = 2.5.
- Large-k behaviour exhibits non-Porod tail due to scattering off fractal interfaces.

BCC

э

SC

BCC

- Distinct cusp exponents from the para phase.
- $\alpha = 0.68 \pm 0.01$ (SC), 0.66 ± 1 (BCC) and 0.64 ± 1 (FCC).
- Though minor, these variations have important consequences for relaxation behaviour.

A ₽

Comparisons with Experimental Data

Small-angle scattering data from DAFs (para regime).

(Belanger, et al., Phys. Rev. B, 1985)

All three data exhibit an asymptotic cusp regime $[S(k) \sim k^{-3.5}]$.

(Shrivastav, Kumar, VB, Puri, Phys. Rev. E, 2014)

III. Domain Growth after a Temperature Quench

- Domain growth in d = 3 C-RFIM for (a) Δ = 1.0, t = 10⁵ MCS;
 (b) Δ = 1.0, t = 10⁷ MCS; and (c) Δ = 2.0, t = 10⁷ MCS.
- The lattice size is 128^3 and the temperature $T = 2 < T_c(\Delta)$.

Kumar, VB, Puri, Europhys. Lett. 2017

イロト イポト イヨト イヨト

Interfacial Characteristics during Domain Growth

(a) Disorder-dependent roughness exponent $\alpha(\Delta) \simeq 1.0, 0.8, 0.5$ for $\Delta = 0, 1.0, 2.0$, respectively.

(b) Plot of scaled structure factor, $L(t)^{-d}S(k, t; \Delta)$ vs. kL(t), for $t = 10^7$ MCS and $\Delta = 0, 1.0, 2.0$. Solid lines denote relevant Porod and non-Porod tails.

Kumar, VB, Puri, Europhys. Lett. 2017

Growth Laws: Algerbraic vs. Logarithmic

> Plot of the characteristic length scale, L(t) vs. t on a log-log scale:

For pure systems ($\Delta = 0$): $L(t) \sim t^{1/3}$. Lifshitz-Slyozov (LS) law

- Notice the slowing down of domain growth at late times for higher disorder strengths.
- (i) Algebraic growth at early times: $L(t, \Delta) \sim t^{1/\bar{z}}$ with disorder-dependent exponent $\bar{z}(\Delta)$. (For $\Delta = 0, \bar{z} = 3$.)

(ii) Cross-over to logarithmic domain growth at late times: $L(t, \Delta) \sim (\ln t)^{1/\psi}$, ψ is a disorder-independent *barrier* exponent.

Kumar, VB, Puri, Europhys. Lett. 2017

Assume that the growth law scales as:

$$L(t,\Delta) \sim t^{1/z_{\rm eff}} = t^{1/z} F(\Delta/t^{\phi}), \tag{1}$$

$$F(x) \sim \begin{cases} \text{const.}, & \text{for } x \to 0, \\ x^{1/\phi z} \ \ell \left(x^{-1/\phi} \right), & \text{for } x \to \infty. \end{cases}$$
(2)

 $z_{
m eff}$ is the *effective* growth exponent, ϕ is the *crossover* exponent. Corberi et al. Phys. Rev. E 2012, 2013

- Cross-over from power law L(t) ~ t^{1/z} to asymptotic form L(t) ~ ℓ (x^{-1/φ}) if φ < 0 and vice versa if φ > 0.
- Disorder is asymptotically relevant if $\phi < 0$ and irrelevant if $\phi > 0$.

Exponents from Scaling of L(t)

• Parameters \overline{z} and λ for different Δ -values.

<i>d</i> = 2	Δ	0	0.25	0.50	0.75	1.00
	Ī	3.0	3.38	3.84	4.38	4.59
<i>d</i> = 3	Δ	0	0.5	1.0	1.5	2.0
	Ī	3.0	3.57	3.78	4.05	4.40

• $\psi \simeq 3.3$ for d = 2; $\psi \simeq 5.6$ for d = 3.

Varsha Banerjee Ground States and Phase Ordering Studies of the Random Field

Slow Logarithmic Growth and Rough Interfaces

- ▶ Domain growth in disordered systems proceeds via activation over barriers of energy $E_B \sim \epsilon_B L^{\psi}$. Here, ϵ_B is the barrier energy per unit length, and ψ is the barrier exponent.
- For curvature-driven growth in non-conserved systems,

• dL/dt = a(L, t)/L.

In systems with quenched disorder,

- $a(L,t) = a_0 \exp(-\epsilon_B L^{\psi}/T)$,
- $L(t) \sim (T\epsilon_B^{-1})^{1/\psi} (\ln t)^{1/\psi}$.
- Same form from our scaling ansatz.
- ► Villain argued that the barrier exponent $\psi = 2 \alpha$, where α is the cusp exponent. (Villain, Phys. Rev. Lett., 1984)

Fractal interfaces lead to slow logarithmic domain growth.

Lai, Mazenko, Valls, Phy. Rev. B 1988

イロト イボト イヨト イヨト 二日

Summary

- Efficient algorithm to determine ground states (T = 0) of the RFIM in d = 3.
- Accurate estimation of the critical disorder strength Δ_c in isometric lattices; Identification of fractal interfaces; Accurate estimation of the fractal dimension d_f.
- ▶ Interfacial textures in para and ferro phase are distinct. In the para phase, the cusp exponent $\alpha \simeq 0.5$ is universal. In the ferro phase, it exhibits dependence on disorder and local environment.
- Comprehensive MC study of domain growth after a temperature quench (T ≠ 0) in the RFIM with conserved dynamics in d = 3. (No knowledge of equilibrium states.)
- Observe *clean* cross-overs from a disorder-dependent power-law growth to a disorder-independent logarithmic growth.
- Fractal interfaces have important implications in growth, relaxation and response.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

 $L(t,\Delta) \sim t^{1/z_{\rm eff}} = t^{1/z} F(\Delta/t^{\phi}), \tag{3}$

$$F(x) \sim \begin{cases} \text{const.}, & \text{for } x \to 0, \\ x^{1/\phi z} \ \ell \left(x^{-1/\phi} \right), & \text{for } x \to \infty. \end{cases}$$
(4)

 $z_{\rm eff}$ is the *effective* growth exponent, ϕ is the crossover exponent.

• The evaluation of z_{eff} is easier using the inverted form:

$$t = L^{z} G(L/\lambda).$$
(5)

Here, $\lambda = \Delta^{1/\phi z}$ is the crossover length scale and $G(y) = [F(x)]^{-z}$.

• The effective exponent as a function of $y \ (= L/\lambda)$ is then

$$z_{\text{eff}}(y) = \frac{\partial \ln t}{\partial \ln L} = z + \frac{\partial \ln G(y)}{\partial \ln y}.$$
 (6)

Exponents \bar{z} , ϕ and ψ

(a) $z_{\text{eff}} = [d(\ln L)/d(\ln t)]^{-1}$ vs. t (semi-log). Dashed lines: disorder-dependent exponents $\overline{z}(\Delta)$ of the power law. This is followed by a late regime where z_{eff} is time-dependent.

(b) Scaling collapse of $z_{\rm eff} - \overline{z}$ vs. L/λ , where $\lambda = \Delta^{1/\phi\overline{z}}$. The solid line is the best power-law fit: $z_{\rm eff} - \overline{z} = b(L/\lambda)^{\psi}$ with $b \simeq 0.022$, $\psi \simeq 5.6$.

(c) Δ -dependence of λ . Power-law fit: $\lambda \sim \Delta^{-0.95}$.

Kumar, VB & Puri, EPL, 117, 10012, 2017

Δ	0	0.5	1.0	1.5	2.0
Ī	3.0	3.57	3.78	4.05	4.40
$\lambda \ (= \Delta^{1/\phi \bar{z}})$	∞	42.1	22.5	16.5	11.0

Varsha Banerjee Ground States and Phase Ordering Studies of the Random Field

Why logarithmic domain growth?

Generalizing Eqs. (1)-(4) by replacing $z \to \bar{z}$,

$$\frac{\partial \ln G(y)}{\partial \ln y} = z_{\text{eff}} - \overline{z} = b y^{\psi} \quad \Rightarrow \quad G(y) \sim \exp\left(\frac{b}{\varphi} y^{\psi}\right). \tag{7}$$

Substituting in Eq. (5) results in the asymptotic logarithmic growth form:

$$y = \frac{L}{\lambda} \simeq \left[\frac{\psi}{b} \ln(t/\lambda^{\bar{z}})\right]^{1/\psi}.$$
(8)

The disorder-independent exponent ψ has great physical significance:

- Domain growth in disordered systems (e.g. RFIM) proceeds via activation over barriers of energy E_B ~ ε_BL^ψ, ε_B: barrier energy per unit length; ψ: barrier exponent.
- The asymptotic growth law is then logarithmic: $L(t) \sim (T/\epsilon_B)^{1/\psi} (\ln t)^{1/\psi}.$

Huse & Henley, PRL 1985; Lai et al., PRB 1988