Fitting a manifold to noisy data

Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev, Matti Lassas, Hariharan Narayanan

Measurements can lie near a manifold

CRYO-ELECTRON MICROSCOPY

A beam of electron is fired at a frozen protein solution. The emerging scattered electrons pass through a lens to create a magnified image on the detector, from which their structure can be worked out.

Typical preprocessed cryo-EM images

Data on a manifold with additive Gaussian noise

• In the case of Cryo-Electron-Microscopy, or Cryo-EM, the manifold is

If the images are not centered, the relevant object is a two dimensional disc bundle over the same, corresponding to a manifold with boundary. • We would like to infer the manifold from noisy samples.

In order for this to be possible, we need to place restrictions on the manifold \mathcal{M} .

Assumptions:

- 1. $\mathcal{M} \subseteq \mathbb{R}^n$ has no boundary and is d-dimensional and C^2 .
- 2. The reach of \mathcal{M} is at least τ .
- 3. The d-dimensional Hausdorff measure is at most V.

 $\mathcal{M} \subset \mathbb{R}^n$ has no boundary and is d-dimensional and C^2 means that for every point x in \mathcal{M} there is $\epsilon > 0$ and a ball B^x_{ϵ} such that $B^x_{\epsilon} \cap \mathcal{M}$ is the graph of a function from a d-dimensional disc $Tan_x \cap B^x_{\epsilon}$ to the Normal space Nor_x at x.

Reach of a submanifold of Rⁿ

 τ is the largest number such that for any $r < \tau$

any point at a distance r of \mathcal{M} had a unique nearest point on \mathcal{M}

For a boundaryless C^2 manifold \mathcal{M} with positive reach the d-dimensional Hausdorff measure of \mathcal{M} is equal to

$$\lim_{\epsilon \to 0} \frac{vol(\mathcal{M}_{\epsilon})}{vol(B_{\epsilon})},$$

where B_{ϵ} is the ϵ -ball of dimension n - d and \mathcal{M}_{ϵ} is the tube of radius ϵ around \mathcal{M} .

Let x_1, x_2, \ldots, x_N be i.i.d draws from a measure whose Radon-Nikodym derivative with respect to the d-dimensional Hausdorff measure on \mathcal{M} lies between ρ_{min} and ρ_{max} . Let ζ_1, \ldots, ζ_N be a sequence of i.i.d spherical gaussians independent of x_1, \ldots, x_N having a Gaussian distribution whose density at x is

$$\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right),$$

where we assume

$$\frac{\tau}{d^2} > C_1 \sigma \sqrt{D \ln N}.$$

where D is the "effective ambient dimension" and N is the number of samples chosen (to be specified later). We observe $y_i = x_i + \zeta_i$ for i = 1, 2, ...and wish to reconstruct \mathcal{M} up to a small error measured in Hausdorff distance. Suppose using f(n) data points from the convolution $\mu * G(0, \sigma^2)$ we have constructed (via Principal Component Analysis) a subspace Y of dimension m. If $x \in \mathbb{R}^n$ and $S \subseteq \mathbb{R}^n$, we define

$$dist(x,S) := \inf_{y \in S} |x - y|.$$

The following theorem gives a probabilistic bound of α on the maximum distance of any point in \tilde{M} to Y.

Let

$$\beta^2 < (1/10) \left(\frac{\alpha^2 \tau}{2}\right)^2 \left(\frac{\alpha^2 \tau}{4}\right)^d \omega_d \rho_{min}.$$

$$D := -\frac{V}{2}$$

Let

$$D := \frac{V}{\omega_d \beta^d}.$$

Let

$$N = C(n\sigma^2 + \log(Cn\sigma^2/(\epsilon\delta)))\sqrt{\log(C/\delta)}(D/\epsilon^2),$$

where C is a sufficiently large universal constant.

Lemma:

Given N data points $\{x_1, \ldots, x_N\}$ drawn i.i.d from $\tilde{\mu}$, let S be a D dimensional subspace that minimizes

$$\sum_{i=1}^{N} dist(x_i, \tilde{S})^2,$$

as \tilde{S} ranges over all affine subspaces of dimension D, and $\beta < c\tau$. Then,

$$\mathbb{P}[\sup_{x \in \mathcal{M}} dist(x, S) < \alpha^2 \tau] > 1 - \delta.$$

Suppose that $\mathcal{M} \in \mathcal{G}(d, V, \tau)$. Let $\hat{U} := \{y | |y - \Pi_x y| \le \tau/8\} \cap \{y | |x - \Pi_x y| \le \tau/8\}.$

There exists a C^2 function $F_{x,\hat{U}}$ from $\Pi_x(\hat{U})$ to $\Pi_x^{-1}(\Pi_x(0))$ such that

$$\{y + F_{x,\hat{U}}(y) | y \in \Pi_x(\hat{U})\} = \mathcal{M} \cap \hat{U}.$$

Secondly, let $z \in \mathcal{M} \cap \hat{U}$ satisfy $|\Pi_x(z) - x| = \delta$. Let z be taken to be the origin and let the span of the first d canonical basis vectors be denoted \mathbb{R}^d and let \mathbb{R}^d be a translate of Tan(x). Let the span of the last n - d canonical basis vectors be denoted \mathbb{R}^{n-d} . In this coordinate frame, let a point $z' \in \mathbb{R}^n$ be represented as (z'_1, z'_2) , where $z'_1 \in \mathbb{R}^d$ and $z'_2 \in \mathbb{R}^{n-d}$. There exists an $(n-d) \times d$ matrix A_z such that

$$Tan(z) = \{(z'_1, z'_2) | A_z z'_1 - I z'_2 = 0\}$$

where the identity matrix is $(n-d) \times (n-d)$. For $\delta < \tau/8$, let

$$z \in \mathcal{M} \cap \{z | |z - \Pi_x z| \le \delta\} \cap \{z | |x - \Pi_x z| \le \delta\}.$$

Then $||A_z||_2 \le 20\delta/\tau$.

lemma:

Suppose \mathcal{M} is a C^2 submanifold of \mathbb{R}^n having reach τ and S is a D-dimensional linear subspace such that $\sup_{x \in \mathcal{M}} dist(x, S) < \alpha^2 \tau$ where $\alpha < \frac{1}{4}$ then $\Pi_S(\mathcal{M})$

is a submanifold of \mathbb{R}^n having reach at least $(1 - 4\alpha^2)\tau$.

Let X be a finite set of points in $E = \mathbb{R}^D$ and $X \cap B_1(x) := \{x, \tilde{x}_1, \dots, \tilde{x}_s\}$ be a set of points within a Hausdorff distance δ of some (unknown) unit *d*dimensional disc $D_1(x)$ centered at x. Here $B_1(x)$ is the set of points in \mathbb{R}^D whose distance from x is less or equal to 1. We give below a simple algorithm that finds a unit *d*-disc centered at x within a Hausdorff distance $Cd\delta$ of $X_0 :=$ $X \cap B_1(x)$, where C is an absolute constant. The basic idea is to choose a near orthonormal basis of d vectors from X_0 where x is taken to be the origin and let the span of this basis intersected with $B_1(x)$ be the desired disc.

Algorithm FindDisc:

1. Let x_1 be a point that minimizes |1 - |x - x'|| over all $x' \in X_0$. 2. Given $x_1, \ldots x_m$ for $m \le d - 1$, choose x_{m+1} such that

$$\max(|1 - |x - x'||, |\langle x_1/|x_1|, x'\rangle|, \dots, |\langle x_m/|x_m|, x'\rangle|)$$

is minimized among all $x' \in X_0$ for $x' = x_{m+1}$.

Let \tilde{A}_x be the affine *d*-dimensional subspace containing x, x_1, \ldots, x_d , and the unit *d*-disc $\tilde{D}_1(x)$ be $\tilde{A}_x \cap B_1(x)$.

lemma: Suppose there exists a *d*-dimensional affine subspace A_x containing x such that $D_1(x) = A_x \cap B_1(x)$ satisfies $d_H(X_0, D_1(x)) \leq \delta$. Suppose $0 < \delta < \frac{1}{2d}$. Then $d_H(X_0, \tilde{D}_1(x)) \leq Cd\delta$, where C is an absolute constant.

We introduce a family of n dimensional balls of radius r, $\{U_i\}_{i \in [\bar{N}]}$ where the center of U_i is p_i and a family of d-dimensional embedded discs of radius r $\{D_i\}_{i \in [\bar{N}]}, D_i \subseteq U_i$ where D_i is centered at p_i . The D_i and the p_i are chosen by a procedure described earlier. We will need the following properties of (D_i, p_i) :

- 1. The Hausdorff distance between $\cup_i D_i$ and \mathcal{M} is less than $\frac{Cdr^2}{\tau} = \delta$.
- 2. For any $i \neq j$, $|p_i p_j| > \frac{cr}{d}$.
- 3. For every $z \in \mathcal{M}$, there exists a point p_i such that $|z p_i| < 3 \inf_{i \neq j}, |p_i p_j|$.

Consider the bump function $\tilde{\alpha}_i$ given by

$$\tilde{\alpha}_i(p_i + rv) = c_i(1 - \|v\|^2)^{d+2}$$

for any $v \in B_n$ and 0 otherwise. Let

$$\tilde{\alpha}(x) := \sum_{i} \tilde{\alpha}_{i}(x).$$

Let

$$\alpha_i(x) = \frac{\tilde{\alpha}_i(x)}{\sum_i \tilde{\alpha}_i(x)},$$

for each i.

Let Π^i be the orthogonal projection onto the n - d-dimensional subspace containing the origin that is orthogonal to the affine span of D_i . We define the function $E_i: U_i \to \mathbb{R}^n$ by $E_i(x) = \Pi^i(x - x_i)$. Let $i \in U_i = U_i$

We define the function $F_i: U_i \to \mathbb{R}^n$ by $F_i(x) = \Pi^i(x - p_i)$. Let $\cup_i U_i = U$. We define

$$F: U \to \mathbb{R}^n$$

by $F(x) = \sum_{i} \alpha_i(x) F_i(x)$.

Given a symmetric matrix A such that A has n - d eigenvalues in (1/2, 3/2)and d eigenvalues in (-1/2, 1/2), let $\Pi_{hi}(A)$ denote the projection onto the span of the eigenvectors corresponding to the top n - d eigenvalues. For $x \in \bigcup_i U_i$, we define $\Pi_x = \prod_{hi} (A_x)$ where $A_x = \sum_i \alpha_i(x) \Pi^i$. Let U_i be defined as the $\frac{cr}{d}$ -Eucidean neighborhood of D_i inside U_i . Note that Π_x is C^2 when restricted to $\bigcup_i \tilde{U}_i$, because the $\alpha_i(x)$ are C^2 and when x is in this set, $c < \sum_i \tilde{\alpha}_i(x) < c^{-1}$, and for any i, j such that $\alpha_i(x) \neq 0 \neq a_j(x)$, we have $\|\Pi^i - \Pi^j\|_F < Cd\delta$.

We define the output manifold \mathcal{M}_o to be the set of all points x such that $\min_i dist(x, p_i) < r$ and $\prod_x F(x) = 0$.

lemma:Suppose $C\sigma\sqrt{D\ln(N)}$ is less than $\frac{\tau}{Cd^2}$. The reach of \mathcal{M}_o is at least $\frac{C}{d^4}\tau$ and the Hausdorff distance between \mathcal{M}_o and $\Pi_{\mathbb{R}^D}\mathcal{M}$ is less or equal to $Cd\sigma\sqrt{D\ln(N)}$.

Proof: Use Cauchy's Integral formula, to write

$$\Pi_x = \frac{1}{2\pi\iota} \oint_{\gamma} (zI - A_x)^{-1} dz,$$

for suitable γ .

- **lemma:**Suppose $C\sigma\sqrt{D\ln(N)}$ is less than $\frac{\tau}{Cd^2}$. The reach of \mathcal{M}_o is at least $\frac{C}{d^7}\tau$ and the Hausdorff distance between \mathcal{M}_o and $\Pi_{\mathbb{R}^D}\mathcal{M}$ is less or equal to $Cd\sigma\sqrt{D\ln(N)}$.
- **Proof:** Use Cauchy's Integral formula, Hölder Inequalities to get good bounds on the first and second derivatives of $\Pi_x F(x)$ and then apply a dimension-free quantitative form of the implicit function theorem.

Thank You!