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Learning versus Testing

Learning: Given examples (𝑥, 𝑓 𝑥 ) where 𝑓 is an 
unknown function in hypothesis class ℋ, find 
approximation of 𝑓 w.r.t. a norm.

Testing: Given examples (𝑥, 𝑓(𝑥)), is 𝑓 from the 
hypothesis class ℋ, or is 𝑓 far from ℋ w.r.t. a 
norm?



Property Testing

• Prelude to learning

• Typically based on a robust local characterization 
of membership in ℋ.

Extensively studied since ‘90’s for algebraic properties (linearity, 
membership in error-correcting codes, etc), graph-theoretic 
properties (bipartiteness, triangle-freeness, etc), expressibility as 
Boolean formulae, etc. [Rubinfeld-Shapira ‘06, Ron ’08].



Testing Sparsity

Given a set of vectors 𝑦1, 𝑦2, … , 𝑦𝑝 ∈ ℝ𝑑, which of the two is 

true?

i. [Structure] There exists a matrix 𝐴 ∈ ℝ𝑑×𝑚 and 𝑘-sparse 
vectors 𝑥1, … , 𝑥𝑝 ∈ ℝ𝑚 such that 𝑦𝑖 ≈ 𝐴𝑥𝑖 for all 𝑖 ∈ [𝑝]

ii. [Noise] For every dictionary 𝐴 ∈ ℝ𝑑×𝑚 and 𝑘-sparse vectors 

𝑥1, … , 𝑥𝑝 ∈ ℝ
𝑚, 𝑦1, … , 𝑦𝑝 is “far” from 𝐴𝑥1, … , 𝐴𝑥𝑝

Property testing of a continuous property of real vectors



Motivation

Is there a different characterization of 
natural inputs?

versus



Sparse Coding & The Brain

Originally developed to explain early visual 
processing in the brain (edge detection) 
[Olshausen-Field ‘96]

Task: Given a set of image patches 𝑦1, … , 𝑦𝑝, learn 
a dictionary of bases [Φ1, Φ2, … ,Φ𝑚] minimizing 
both:
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and number of nonzero 𝑎𝑖𝑗



Other applications

• Similar experiments done for early auditory 
processing and early somatosensory 
processing

• Widely used in machine learning now to learn 
natural feature representations for data

• Hierarchical sparse coding → Deep learning



Dictionary Learning Problem

Given a set of vectors 𝑦1, 𝑦2, … , 𝑦𝑝 ∈ ℝ𝑛, find a matrix 𝐴 ∈ ℝ𝑛×𝑚

and 𝑘-sparse vectors 𝑥1, … , 𝑥𝑝 ∈ ℝ𝑚 such that:

𝑦𝑖 ≈ 𝐴𝑥𝑖 for all 𝑖 ∈ [𝑝]

• Considered a solved problem in practice: alternating 
minimization, K-SVD, etc

• For rigorous proofs, we need to make some assumption on 
the dictionary 𝐴 and distribution of the inputs [Spielman-
Wang-Wright, Agarwal-Anandkumar-Jain-Netrapalli-Tandon, 
Arora et al]. Somewhat unsatisfactory.



Motivation: Recap

Is there a data-driven way to estimate the sparsity that’s 
more efficient than learning the sparse representation?

• Could be useful in a scenario where most of the dataset is noise

A robust characterization of sparsity according to an 
unknown dictionary



Computational Model

• Linear measurements of input vectors

• Query complexity: # of rows in sketch matrix

𝑦1 𝑦2 𝑦3 𝑦𝑝Linear Sketch



Our Contribution

• Makes a connection between sparsity and 
high-dimensional geometry

• Algorithm estimates the gaussian width of 
the input vectors by projecting them into a 
constant-dimensional space



Dictionary Structure

• RIP Assumption: We assume that in the 
structured case, any submatrix of the dictionary 
matrix 𝐴 with at most 𝑘 columns is well-
conditioned.

• Very common assumption in rigorous theorems 
about compressed sensing, sparse regression, 
sparse coding.



Main Theorem



Gaussian Width

Given a set 𝑆 ⊆ ℝ𝑛:
𝜔 𝑆 = 𝔼𝑔[sup

𝑣∈𝑆
〈𝑣, 𝑔〉]

where 𝑔 ∈ ℝ𝑛 is a random 
Gaussian.



Our Tester

Estimate the Gaussian width by 
choosing a random Gaussian vector 
𝑔 and measure its correlation with 
all given vectors 𝑦1, … 𝑦𝑝. Accept if 

the estimated width is at most 

~ 𝑘 log
𝑚

𝑘
.



Bounds on Width

• If 𝑆 is finite, 𝜔 𝑆 ≲ log |𝑆|

• If 𝑆 is of dimension 𝑘, then 

𝜔 𝑆 ≲ 𝑘

• If 𝑆 ⊆ ℝ𝑑 consists of 𝑘-sparse 

vectors, then 𝜔 𝑆 ≲ 𝑘 log
𝑑

𝑘



Incoherent dictionaries

≈𝒚 𝑨 𝒙

Approximately preserves Gaussian 
width if columns are  “roughly 
orthogonal” (RIP)

Gaussian width of 𝑘-sparse unit 

vectors is at most 𝑂 𝑘 log
𝑚

𝑘





Soundness

•But does the tester reject when the 
input is “far” from being sparsely 
coded?

•Equivalently, can we conclude 
approximate sparse coding when 
the Gaussian width is small?



Dimensionality

•𝜔2(𝑆) is a robust measure of “intrinsic 
dimensionality” of a data set.

• Generalized Johnson-Lindenstrauss
Theorem: For any set 𝑆 ⊆ ℝ𝑑

, there is a 

linear map Φ:ℝ𝑑 → ℝ𝑛 where 𝑛 = 𝑂
𝜔2 𝑆

𝜖2

such that Φ is an 𝜖-isometry on 𝑆 (preserves 
pairwise distances upto 1 ± 𝜖 factor)



Soundness Analysis

• Assume that 𝑆 = {𝑦1, … , 𝑦𝑝} have Gaussian 

width < 𝑘 log
𝑚

𝑘

• Will show that 𝑆 is “close” to an incoherent 
linear map applied to Θ(𝑘)-sparse vectors in 
𝑚 dimensions.



Analysis Outline

Case 1 • Low Intrinsic Dimension

Case 2 • High Intrinsic Dimension



Case 1: 𝜔 𝑆 ≾ 𝜖 𝑑

Lemma: With probability at least ½, for a 
uniformly chosen random rotation 𝑅 ∼ 𝕆𝑑:

max
𝑦∈𝑅 𝑆

𝑦 ∞ ≤ 𝑂
𝜔 𝑆

𝑑

So, in this case, 𝑌 = 𝑅𝑍, where 𝑅 is a rotation 
and all entries of 𝑍 at most 𝜖.



Case 2: 𝜔 𝑆 ≿ 𝜖 𝑑

• In this case, 𝑑 ≤ 𝑂(𝑘𝜖−2 log(𝑚/𝑘))

• Hence, there exists set 𝑋 of 𝑂 𝑘𝜖−4 -sparse 
vectors such that 𝑦𝑖 −Φ(𝑥𝑖) ≤ 𝑂(𝜖1/4).

Key Lemma: If 𝑑 ≤ 𝑂(𝑘𝜖−2 log 𝑚/𝑘 ), and Φ ∼
ℝ𝑑×𝑚 random gaussian matrix, then whp, Φ(𝑆ℓ)
is an 𝑂(𝜖1/4)-cover of the unit sphere in 𝑑
dimensions (after normalization). 𝑆ℓ is the set of 
all 𝑂(𝑘𝜖−4)-sparse vectors in 𝑚 dimensions.



Proof of Key Lemma

• Gaussian width strikes again!

• Informally, if a set of unit vectors 𝑇 ⊂ ℝ𝑛 has 
gaussian width at least 𝑛(1 − 𝜖), then for any 
unit vector 𝑥, whp over random rotations 𝑅, 

there is an element of 𝑅(𝑇) that is 𝑂(𝜖1/4) close 
to 𝑥 in ℓ2-norm.

• Proof uses this fact along with lower bound on 
gaussian width of ℓ-sparse vectors.



In Summary

We obtain a fast and robust distinguisher between sparse and very 
non-sparse sets of vectors (with respect to unknown dictionary).

Robust geometric characterization of sparse coding

Characterizations for other hypotheses classes in machine 
learning? Neural networks with 1 hidden layer?




