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Learning versus Testing

Learning: Given examples (x, f(x)) where f is an
unknown function in hypothesis class H, find
approximation of f w.r.t. a norm.

Testing: Given examples (x, f(x)), is f from the
hypothesis class H, or is f far from H w.r.t. a
horm?




Property Testing

* Prelude to learning

* Typically based on a robust local characterization
of membership in H'.

Extensively studied since ‘90’s for algebraic properties (linearity,
membership in error-correcting codes, etc), graph-theoretic
properties (bipartiteness, triangle-freeness, etc), expressibility as
Boolean formulae, etc. [Rubinfeld-Shapira ‘06, Ron ’08].




Testing Sparsity

Given a set of vectors y4, V-, e Yp € R% which of the two is
true?

.. [Structure] There exists a matrix A € R4*™ and k-sparse
vectors xq, ..., X, € R™ such thaty; ~ Ax; foralli € [p]

ii. [Noise] For every dictionary A € R¥*™ and k-sparse vectors
X1, ., Xp € R™, (yl, ...,yp) is “far” from (Axl, ...,Axp)

Property testing of a continuous property of real vectors




Motivation

Is there a different characterization of
natural inputs?

versus




Sparse Coding & The Brain

Originally developed to explain early visual
processing in the brain (edge detection)
[Olshausen-Field 96]

Task: Given a set of image patches y;, ..., yp, learn
a dictionary of bases [®4, D, ..., D,,,| minimizing

both:
2 y: — 2 a;;P; ||
L J

and number of nonzero a;;




Other applications

* Similar experiments done for early auditory
processing and early somatosensory
processing

* Widely used in machine learning now to learn
natural feature representations for data

* Hierarchical sparse coding - Deep learning




Dictionary Learning Problem

Given a set of vectors y4,y5, ..., ¥, € R, find a matrix A € Rx™M
and k-sparse vectors xq, ..., X, € R™ such that:

y; = Ax; foralli € [p]

* Considered a solved problem in practice: alternating
minimization, K-SVD, etc

* For rigorous proofs, we need to make some assumption on
the dictionary A and distribution of the inputs [Spielman-
Wang-Wright, Agarwal-Anandkumar-Jain-Netrapalli-Tandon,
Arora et al]. Somewhat unsatisfactory.




Motivation: Recap

Is there a data-driven way to estimate the sparsity that’s
more efficient than learning the sparse representation?

e Could be useful in a scenario where most of the dataset is noise

A robust characterization of sparsity according to an
unknown dictionary




Computational Model

* Linear measurements of input vectors

...

* Query complexity: # of rows in sketch matrix

Linear Sketch




Our Contribution

* Makes a connection between sparsity and
high-dimensional geometry

* Algorithm estimates the gaussian width of
the input vectors by projecting them into a
constant-dimensional space




Dictionary Structure

* RIP Assumption: We assume that in the
structured case, any submatrix of the dictionary
matrix A with at most k columns is well-
conditioned.

* Very common assumption in rigorous theorems
about compressed sensing, sparse regression,
sparse coding.




Main Theorem

Theorem 1.2 (Unknown Design Matrix). Fix ¢.d € (0, 1) and positive integers d. k.m and p, such that (k/m)'/% <

= < o5 and k > 10log L. There exists a tester with query complexity O(c=2log (p/d)) which, given as input vectors

Yi.Y2.....¥p € R, has the following behavior (where Y is the matrix having yi.,yo. ..., Y as columns):

— Completeness: If Y admits a decomposition Y = AX, where A € RY*™ satisfies (¢, k)-RIP and X € R™*P
with each column of X in Sp}", then the tester accepts with probability > 1 — 9.

— Soundness: Suppose Y does not admit a decomposition Y = A(X +7Z) + W with

1. The design matrix A € R being (=, k)-RIP, with ||a;|| = 1 for every i € [m].
2. The coefficient matrix X € R™*P being column wise (-sparse, where { = O(k/<?).
3. The error matrices Z € R"™*? and W € R™*? satisfying

|12 || 0o < g2 |lw;ll2 < 0(51/4) foralli e [p).

Then the tester rejects with probability > 1 — 6.



Gaussian Width

Given aset S C R":
w(S) = E4[sup (v, g)]

VES

where g € R" is a random
Gaussian.




Our Tester

Estimate the Gaussian width by
choosing a random Gaussian vector
g and measure its correlation with
all given vectors yy, ... y,. Accept if
the estimated width is at most

~ [klog(%).




Bounds on Width

*If S is finite, w(S) < {/log|S|

*If S is of dimension k, then
w(S) s Vk

*If S € R? consists of k-sparse

d
vectors, then w(S) < N k log (E)




Incoherent dictionaries
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Width vs Sparsity for Image Data

Gaussian width

Average sparsity




Soundness

* But does the tester reject when the

input is “far” from being sparsely
coded?

* Equivalently, can we conclude
approximate sparse coding when
the Gaussian width is small?




Dimensionality

* w*(S) is a robust measure of “intrinsic
dimensionality” of a data set.

* Generalized Johnson-Lindenstrauss
Theorem: For any set S € R%, there is a
2
linear map @: RY - R™ wheren = 0 (w (S))

EZ
such that @ is an e-isometry on S (preserves

pairwise distances upto 1 + € factor)




Soundness Analysis

* Assume that S = {y;, ..., ¥, } have Gaussian

width < \/k log (%)

* Will show that S is “close” to an incoherent
linear map applied to ®(k)-sparse vectors in
m dimensions.




Analysis Outline
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Case 1: w(S) =S eVd

Lemma: With probability at least %3, for a
uniformly chosen random rotation R ~ Q:

R
max 00 > - —
yer(s) Jd

So, in this case, Y = RZ, where R is a rotation
and all entries of Z at most €.




Case 2: w(S) = eVd

In this case, d < 0(ke™?log(m/k))

Key Lemma: If d < O(ke™?log(m/k)), and ® ~
RY*™ random gaussian matrix, then whp, ®(S,)
is an O (e1/%)-cover of the unit sphere in d
dimensions (after normalization). S, is the set of
all 0(ke™*)-sparse vectors in m dimensions.

Hence, there exists set X of O(ke™*)-sparse
vectors such that |ly; — ®(x;)]| < 0(e/%).




Proof of Key Lemma

* Gaussian width strikes again!

* Informally, if a set of unit vectors T < R™ has
gaussian width at least v/n(1 — €), then for any
unit vector x, whp over random rotations R,
there is an element of R(T) that is 0(e'/%) close
to x in £,-norm.

* Proof uses this fact along with lower bound on
gaussian width of £-sparse vectors.




In Summary

We obtain a fast and robust distinguisher between sparse and very
non-sparse sets of vectors (with respect to unknown dictionary).

Robust geometric characterization of sparse coding

Characterizations for other hypotheses classes in machine
learning? Neural networks with 1 hidden layer?







