
Tutorial: Deep Learning

Rina Panigrahy

Google Corp.

Outline
• Basics

– Machine Learning problem specification
– Linear and logistic regression
– Gradient Descent Optimization
– Deep Learning

• Applications (will use online lectures/slides from application experts)

– MNIST
– Image and speech recognition
– Language Translation

• Theoretical Understanding?
– Local vs Global Minima
– Learning synthetic function classes.

Learning an unknown function

f
(unknown)

Inputs

x∊Rd

Outputs

y∊R

Learn f from training pairs (x,y) so that you can predict its output on new inputs

Like learning a manifold.

Learning an unknown function:
like curve fitting

Learn f from training pairs (x,y) so that you can predict its output on new inputs

Like curve/manifold fitting.

Learning a function: why?

• Want to make predictions in real life situations.
• Will a user click on an ad? (Directly affects profitability)
• User features encoded by a vector x (e.g. earlier queries)
• Predict y probability of clicking on an ad.
• Given training pairs (x, y) learn a function f so that

– f(x)=y

f
(unknown)

Inputs

x∊Rd

Outputs

y∊R

Learning a function: How

• Find f from a certain function class: Modelling f
• A simple model for f: linear regression
• Logistic regression
• Deep learning

– Useful in many engineering applications such as
image/speech recognition, ad-matching

Linear Regression: Line fitting

• For input x: fw(x)= w1.x + w0

• Find w so that predicted output f(xi) ≈ yi

Minimize error(loss) in prediction

• Square Error = L(w; x,y) = (fw(x) - y)2

– Other possibilities l1 loss = |fw(x) - y|1

• For many examples xi,yi

• L(w) = ∑i L(w; xi, yi) = ∑i (fw(xi) - yi)
2

• Find best fit w by minw L(w)

Loss measures error in prediction

• For Linear regression with l2 squared loss
• minw ∑i (w1.x + w0 - yi)

2

• Can be solved analytically
• For other loss functions use Gradient Descent

Gradient descent

• To minimize L(θ) change each parameter θi in the
direction that decreases L

Gradient descent

• Min_{w,b} \sum_i (wx_i + b - y_i)^2
• Can be solved analytically
• For more complicated Loss functions use gradient

descent

Learning a function: Linear Regression

x0 x1 x2 xd

w0 w1 w2 wd

Output f(xi) = w.xi

Want this to be ≈ yi

Hidden weight vector w

(to be learn’t from training

data)

Input vector xi

Σ

x

f(x)

Gradient update: BackPropagation.

x0 x2 x3 xd

w0 w2 w3 wd

Σ

Input vector x

Output f(x) = w.x
Compute f(x)

Apply gradient updates

Stochastic Gradient Descent: gradients over a few examples at a time.

x1 x2 x3 xd

w1 w2 w3 wd

Output f(x) = w.x

Input vector x

Σ

x

f(x)

Learning a function: Sigmoid, sign

xi,1 xi,2 xi,3 xi,d

w1 w2 w3 wd

Output f(xi) = σ(w.xi)

Hidden weight vector w

(to be learn’t from training

data)

Input vector x_i

σ

x

f(x) (binary)

Sigmoid, RELU

Logistic regression uses logloss

• Maximize predicted probability of observed data
• Or sum of log probabilities
• Probability = f if y=1, 1-f if y=0.
• Log loss = L(w; x,y) = y.log fw(x) + (1-y) log (1-fw(x))
• Cross entropy (similarity) between observed and

predicted probability

Neurons

Network of Neurons

Deep Network. Allows rich representation
Can express any function/circuit

Output f(x) = NNw(x)

Hidden edge weight matrix w

(to be learn’t from training

data)

Input vector x

x

w

NNw(x)

Hierarchical representation of Objects
[Qvoc V. Le et al, ICML 2012]

Training w: SGD to Minimize loss

• Square Error = L(w; x,y) = (fw(x) - y)2

– Other possibilities l1 loss = |fw(x) - y|1

• For many examples xi,yi

• L(w) = ∑i L(w; xi, yi) = ∑i (fw(xi) - yi)
2

• Find best fit w by minw L(w)
• Solve by GD
• SGD: Sample a few inputs.

Backpropagation: Gradient
Descent for one example

Softmax for multiclass output

Convergence of Gradient Descent for Model training

● Minimize Loss function over training data
● Loss function L = Ex [(y - fw(x))2]
● Minimize Loss function : minw Ex [(y - fw(x))2]
● Gradient over parameter space w
● Hope it converges to optimal parameters w
● This happens for linear/logistic regression
● What about deep learning?

Applications

Applications

● MNIST
● Image Recognition: Imagenet
● Speech Recognition
● Language Translation.

Many many others
● Ads matching
● Web search and ranking

http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

MNIST

Training data:

60,000 examples

32x32 pixels

Test data

10,000 examples

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

Convolution and Pooling

Imagenet

Alexnet paper:

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Presentation:

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

ImageNet

Speech Recognition

Hintons Slides:

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf

Machine Translation

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf

RNN

Videos/tutorials on Deep learning applications

Lectures by Geoff Hinton: search “hinton deep learning tutorial”

Lectures by Ruslan Salakhudinov: search “Salakhudinov deep learning tutorial

simons workshop”

Lan Yeccuns slides/talk: https://cs.nyu.edu/~yann/talks/lecun-ranzato-

icml2013.pdf

Language translation: http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-

summerschool/slides/Ilya_LSTMs_for_Translation.pdf

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf

https://cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ilya_LSTMs_for_Translation.pdf
http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf

Alexnet:

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyun

ghee.pdf

For imagenet results.

Here is another good source:

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec7.pdf

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf
http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

Theoretical

Understanding?

Deep Learning

● SGD works well in practice but does it reach optimum?

● Does deep learning work provably?

Main Question: Why does SGD solve

Nonconvex Optimization
● Deep learning involves minimizing non-convex loss functions, which makes

analysis difficult

● Recent work shows that

SGD escapes saddle points

(GeHJY15)

● But even a simple network

admit many local minimas

● Best “explanation”: “Random” loss

landscapes admit mostly saddle points

when error is high.

● Statistical Physics approcahes by Ganguly

et al, Choromanska et al

Low rank Approximation

m

n

≈
m

k

x

n

A U

V
k

Write matrix A as a product of two thin matrices U and V (say Netflix matrix)

Rows Ui= latent representation (embedding) of user, Columns Vj = latent representation of movie

No local minima in linear networks [Kawaguchi, NIPS 16, Ge et al, ICML 17]

● Low rank approximation is same as:

● Train 2 layer network with examples (x,Ax)

V

U

Input vector x

Output UVx

Deep Learning

● Theoretical Question: What “mathematical” function classes can learned

with deep learning (SGD/backprop)?

○ Using “mathematical” function classes instead of real-world functions

allows for analysis

● Important “mathematical” function classes:

○ Polynomials? [A,P,V,Z ICML14]

○ Decision Trees?

○ Arithmetic Circuits?

○ Neural Circuits/Networks?

Deep Learning

● In this work, we will focus on learning f(x) = neural networks (using neural

networks).

Main Question: Does SGD cause (if same network structure)?

Does well experimentally

Results of training on samples from random neural networks

Generative Model:

● Generate random

● Generate random

● Output

Theoretical Proof of Observed Behavior?

● Derive theoretical justifications under simplifying

assumptions:

○ 1 hidden layer

○ Data is generated from a network of known shape, but

random unknown weights

○ Infinite data, so it becomes GD

○ Infinitesimal step sizes

With simplifications, our target functions f are...

Neural networks with 1 hidden layer

With simplifications, our target functions f are...

With simplifications, our target functions f are...

With simplifications, our target functions f are...

is called the transfer function

With simplifications, our target functions f are...

Linear output

Given our current guess of the weights and an input , we measure loss

with the squared difference

Guess:

Truth:

Loss:

Loss function

Training Data: Random, not Adversarial

● Adversarial training data: Makes learning NP-hard (also not realistic)

● Assume training data distribution standard Gaussian

Given our current guess of the weights , we analyze SGD as GD on the

expected loss under infinite data/training time,

Guess:

Truth:

Exp. Loss:

Expected Loss function

Overview of Results

1) GD dynamics equivalent to variant of electron-proton dynamics (assume a_i,

b_i = 1 for simplicity)

Running GD on is...

Overview of Results

1) GD dynamics equivalent to variant of electron-proton dynamics (assume a_i,

b_i = 1 for simplicity)

Electron-Proton dynamics under some potential! (depends on transfer function)

Where is the potential function, and

can be interpreted as a similarity measure

Overview of Results

2) Electron-proton dynamics matches up electrons with protons under natural

electric potential (=1/r)

Overview of Results

2) Electron-proton dynamics matches up electrons with protons under natural

electric potential (=1/r)

But natural electric potential has no corresponding transfer function!

Overview of Results

3) For many transfers/potentials, electron-proton interactions matches up

electrons with protons under varying assumptions

Main Takeaways:

● Analyze GD by equivalently studying electron proton dynamics.

● If electrons match up with protons for some potential, then SGD learns neural

networks with the corresponding transfer function.

● We study the electron proton dynamics for different potentials

Common Transfer to Potentials

Overview of Results

Transfer: ,

Potential:

Assumptions:

● Small input or hidden layer size

● Coordinate Gradient Descent (initialize and move electrons one by one)

Overview of Results

Transfer:

Potential:

Assumptions:

● All output weights are 1

● Coordinate Gradient Descent

Overview of Results

Transfer: Sum of Hermite Polynomials

Potential: Truncation of Legendre Function

Assumptions:

1) GD dynamics equivalent to electron-proton dynamics under some

potential function

1) Electron-proton interactions matches up electrons with protons under natural

electric potential

1) For many transfers/potentials, electron-proton interactions matches up

electrons with protons under varying assumptions

Formula for Expected Loss

Formula for Expected Loss

Formula for Expected Loss

Formula for Expected Loss

Formula for Expected Loss

Formula for Expected Loss

Formula for Expected Loss

Formula for Expected Loss

Where is the potential function, and can be

interpreted as a similarity measure

Formula for Expected Loss

Formula for Expected Loss

Putting it all together:

Formula for Expected Loss

Putting it all together:

Further simplify by fixing (can be interpreted as charges)

Formula for Expected Loss

Putting it all together:

Further simplify by fixing (can be interpreted as charges)

Minimize pairwise similarity between theta’s and maximize pairwise similarity

between theta’s and w’s

Transfer function to Potential function

Consider the 0-1 sign transfer and

Transfer function to Potential function

Consider the 0-1 sign transfer and

Consider the product

Transfer function to Potential function

Consider the 0-1 sign transfer and

Therefore,

GD Dynamics

Consider the pairwise potential between and

GD Dynamics

Consider the pairwise potential between and

GD will induce a force that moves theta_i in the direction of maximum increase to

the similarity (note w_j is fixed)

GD Dynamics

In the case of the electric potential, this exactly to corresponds to electrodynamics

with fixed protons at and moving electrons at

GD Dynamics

In the case of the electric potential, this exactly to corresponds to electrodynamics

with fixed protons at and moving electrons at

1) GD dynamics equivalent to electron-proton dynamics under some potential

function

1) Electron-proton interactions matches up electrons with protons under

natural electric potential

1) For many transfers/potentials, electron-proton interactions matches up

electrons with protons under varying assumptions

Earnshaw’s Theorem

Under the electric potential in 3D,

Earnshaw’s Theorem guarantees convergence

Earnshaw’s Theorem

Proof: Consider charges at and equilibrium at point z

Earnshaw’s Theorem

Proof (Alternate): By the divergenceless property of the electrical potential,

A local minima must have a Hessian with positive eigenvalues, which implies a

positive trace. Therefore, there is no local minima anywhere!

Can we get electric potential?

Are there transfer functions that give rise to electric potential? NO, not realizable

Why? They are discontinuous and unbounded.

Can we get electric potential?

Are there transfer functions that give rise to electric potential? NO, not realizable

Why? They are discontinuous and unbounded.

Main Question(s):

1) Are there other potential properties also give good convergence? YES

2) Are there realizable potentials with such properties? YES

1) GD dynamics equivalent to electron-proton dynamics under some potential

function

1) Electron-proton interactions matches up electrons with protons under natural

electric potential

1) For many transfers/potentials, electron-proton interactions matches up

electrons with protons under varying assumptions

Example: Learning Sums of Gaussian Kernels

●

● Nice property: Laplacian is positive outside a 2-radius circle of w

● Claim: At local minimum, an electron is within a 2-radius circle of a proton

Example: Learning Sums of Gaussian Kernels

●

● Nice property: Laplacian is positive outside a 2-radius circle of w

● Claim: At local minimum, an electron is within a 2-radius circle of a proton

Proof Outline:

● Consider a clumped perturbation of the electrons in a single direction

● Change in the objective function is strictly electron-proton interactions

● If all electrons are far away from protons, then the perturbation creates

second-order decrease, so not local minimum

Example: Learning Sums of Gaussian Kernels

● We use coordinate gradient descent and assume that each iteration will run

until convergence to a local minima

Example: Learning Sums of Gaussian Kernels

Proof Outline:

● First electron must be within a 2-neighborhood of some proton

● By the gradient, the electron is within a 1/poly(n)-neighborhood

● The electron-proton pair largely cancels and it reduces to n-1 protons

● Then, the next electron will pair with one of the remaining protons and so on

More Realistic Results

Main Question: For non-fixed output layer weights, does there exist potentials

that have convergence results?

(Rephrase) Does convergence results apply to electrodynamics with varying

charges?

Positive Laplacian Eigenfunctions

Answer: Yes!

Convergence Results

Summary

● Analyzed correspondence between transfer and potentials

● GD can be interpreted as the physical model of electrodynamics

● Discovered classes of realizable potentials with good convergence properties

under the fixed and non-fixed output weight regime

● Have partial results for the sign and polynomial transfer functions

Summary

● Analyzed correspondence between transfer and potentials

● GD can be interpreted as the physical model of electrodynamics

● Discovered classes of realizable potentials with good convergence properties

under the fixed and non-fixed output weight regime

● Have partial results for the sign and polynomial transfer functions

Can convergence results be extended to:

● Widely used transfers? (sigmoid, ReLU, etc.)

● Higher depth neural networks?

● Less assumptions?

Learning a unknown function

f
(unknown)

Inputs

X_i \in

R^d

Outputs

y_i \in R

Learn f so that you can predict its output on new inputs

Learning a function

• Want to make predictions in real life situations?
• Will a user click on an ad?
• User features encoded by a vector X_i: Earlier queries.
• Predict y_i probability of clicking on an ad.
• Given (X_i, y_i) learn a function f so that
• f(X_i)=y_i

f
(unknown
)

Inputs

X_i \in

R^d

Outputs

y_i \in R

Learn f so that you can predict its output on new inputs

Learning a function

• What function classes to choose:A simple
model for f: linear regression

• Logistic regression
• Deep learning

– Useful in many engineering applications

Learning a function

• What function classes to choose:A simple
model for f: linear regression

• Logistic regression
• Deep learning

– Useful in many engineering applications

