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Outline
• Basics

– Machine Learning problem specification
– Linear and logistic regression
– Gradient Descent Optimization
– Deep Learning 

• Applications  (will use online lectures/slides from application experts)

– MNIST
– Image and speech recognition
– Language Translation

• Theoretical Understanding?
– Local vs Global Minima
– Learning synthetic function classes.



Learning  an unknown function

f
(unknown)

Inputs

x∊Rd

Outputs

y∊R

Learn f  from training pairs (x,y) so that you can predict its output on new inputs

Like learning a manifold.



Learning  an unknown function:
like curve fitting

Learn f  from training pairs (x,y) so that you can predict its output on new inputs

Like curve/manifold fitting.



Learning a function: why?

• Want to make predictions in real life situations.
• Will a user click on an ad? (Directly affects profitability)
• User features encoded by a vector x (e.g. earlier queries)
• Predict  y   probability of clicking on an ad. 
• Given training pairs (x, y) learn a function f so that 

– f(x)=y

f
(unknown)

Inputs

x∊Rd

Outputs

y∊R



Learning a function: How

• Find f from a certain function class: Modelling f
• A simple model for f: linear regression
• Logistic regression
• Deep learning

– Useful in many engineering applications such as 
image/speech recognition, ad-matching



Linear Regression: Line fitting

• For input x: fw(x)= w1.x + w0

• Find w so that predicted output f(xi) ≈ yi



Minimize error(loss) in prediction

• Square Error = L(w; x,y) = (fw(x) - y)2

– Other possibilities l1 loss = |fw(x) - y|1

• For many examples xi,yi

• L(w) = ∑i L(w; xi, yi) = ∑i (fw(xi) - yi)
2

• Find best fit w by minw L(w)



Loss measures error in prediction

• For Linear regression with l2 squared loss
• minw ∑i (w1.x + w0 - yi)

2

• Can be solved analytically
• For other loss functions use Gradient Descent



Gradient descent

• To minimize L(θ) change each parameter θi in the 
direction that decreases L 



Gradient descent

• Min_{w,b} \sum_i (wx_i + b - y_i)^2
• Can be solved analytically
• For more complicated Loss functions use  gradient 

descent 



Learning a function: Linear Regression

x0 x1 x2 xd

w0 w1 w2 wd

Output f(xi) = w.xi

Want this to be ≈ yi

Hidden weight vector w

(to be learn’t from training 

data)

Input vector xi

Σ

x

f(x)



Gradient update: BackPropagation.

x0 x2 x3 xd

w0 w2 w3 wd

Σ

Input vector x

Output f(x) = w.x 
Compute f(x)

Apply gradient updates



Stochastic Gradient Descent: gradients over a few examples at a time.

x1 x2 x3 xd

w1 w2 w3 wd

Output f(x) = w.x

Input vector x

Σ

x

f(x)



Learning a function: Sigmoid, sign

xi,1 xi,2 xi,3 xi,d

w1 w2 w3 wd

Output f(xi) = σ(w.xi)

Hidden weight vector w

(to be learn’t from training 

data)

Input vector x_i

σ

x

f(x) (binary)



Sigmoid, RELU



Logistic regression uses logloss

• Maximize predicted probability of observed data
• Or sum of log probabilities
• Probability = f if y=1, 1-f if y=0.
• Log loss = L(w; x,y) = y.log fw(x) + (1-y) log (1-fw(x))
• Cross entropy (similarity) between observed and 

predicted probability



Neurons



Network of Neurons



Deep Network. Allows rich representation
Can express any function/circuit

Output f(x) = NNw(x)

Hidden edge weight matrix w

(to be learn’t from training 

data)

Input vector x

x

w

NNw(x)



Hierarchical representation of Objects
[Qvoc V. Le et al, ICML 2012]



Training w: SGD  to Minimize loss

• Square Error = L(w; x,y) = (fw(x) - y)2

– Other possibilities l1 loss = |fw(x) - y|1

• For many examples xi,yi

• L(w) = ∑i L(w; xi, yi) = ∑i (fw(xi) - yi)
2

• Find best fit w by minw L(w)
• Solve by GD
• SGD: Sample a few inputs.



Backpropagation: Gradient 
Descent for one example 



Softmax for multiclass output



Convergence of Gradient Descent for Model training

● Minimize Loss function over training data
● Loss function L = Ex [( y - fw(x) )2 ]
● Minimize Loss function : minw Ex [( y - fw(x) )2 ]
● Gradient over parameter space w
● Hope it converges to optimal parameters w
● This happens for linear/logistic regression
● What about deep learning?



Applications



Applications

● MNIST
● Image Recognition: Imagenet
● Speech Recognition
● Language Translation.

Many many others
● Ads matching
● Web search and ranking



http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

MNIST

Training data:

60,000 examples

32x32 pixels

Test data

10,000 examples

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf


Convolution and Pooling



Imagenet

Alexnet paper:

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Presentation:

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf


ImageNet



Speech Recognition

Hintons Slides:

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf


Machine Translation

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf


RNN



Videos/tutorials on Deep learning applications

Lectures by Geoff Hinton: search “hinton deep learning tutorial”

Lectures by Ruslan Salakhudinov: search “Salakhudinov deep learning tutorial 

simons workshop”

Lan Yeccuns slides/talk: https://cs.nyu.edu/~yann/talks/lecun-ranzato-

icml2013.pdf

Language translation: http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-

summerschool/slides/Ilya_LSTMs_for_Translation.pdf

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf

https://cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ilya_LSTMs_for_Translation.pdf
http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf


Alexnet: 

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyun

ghee.pdf

For imagenet results.

Here is another good source:

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec7.pdf

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf
http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf


Theoretical 

Understanding?



Deep Learning

● SGD works well in practice but does it reach optimum?

● Does deep learning work provably?

Main Question: Why does SGD solve 



Nonconvex Optimization
● Deep learning involves minimizing non-convex loss functions, which makes 

analysis difficult

● Recent work shows that 

SGD escapes saddle points 

(GeHJY15)

● But even a simple network 

admit many local minimas

● Best “explanation”: “Random” loss 

landscapes admit mostly saddle points 

when error is high. 

● Statistical Physics approcahes by Ganguly 

et al, Choromanska et al 



Low rank Approximation

m

n

≈
m

k

x

n

A U

V
k

Write matrix A as a product of two thin matrices U and V (say Netflix matrix)

Rows Ui= latent representation (embedding) of user, Columns Vj = latent representation of movie



No local minima in linear networks [Kawaguchi, NIPS 16, Ge et al, ICML 17]

● Low rank approximation is same as:

● Train 2 layer network with examples (x,Ax)

V

U

Input vector x

Output UVx



Deep Learning

● Theoretical Question: What “mathematical” function classes can learned 

with deep learning (SGD/backprop)?

○ Using “mathematical” function classes instead of real-world functions 

allows for analysis

● Important “mathematical” function classes:

○ Polynomials? [A,P,V,Z   ICML14]

○ Decision Trees?

○ Arithmetic Circuits?

○ Neural Circuits/Networks?



Deep Learning 

● In this work, we will focus on learning f(x) = neural networks (using neural 

networks).

Main Question: Does SGD cause            (if same network structure)? 



Does well experimentally

Results of training on samples from random neural networks

Generative Model:

● Generate random

● Generate random 

● Output   



Theoretical Proof of Observed Behavior?

● Derive theoretical justifications under simplifying 

assumptions:

○ 1 hidden layer

○ Data is generated from a network of known shape, but 

random unknown weights

○ Infinite data, so it becomes GD 

○ Infinitesimal step sizes 



With simplifications, our target functions f are...

Neural networks with 1 hidden layer



With simplifications, our target functions f are...



With simplifications, our target functions f are...



With simplifications, our target functions f are...

is called the transfer function    



With simplifications, our target functions f are...

Linear output 



Given our current guess of the weights          and an input    , we measure loss 

with the squared difference

Guess:

Truth:

Loss:  

Loss function



Training Data: Random, not Adversarial

● Adversarial training data: Makes learning NP-hard (also not realistic)

● Assume training data distribution standard Gaussian



Given our current guess of the weights         , we analyze SGD as GD on the 

expected loss under infinite data/training time, 

Guess:

Truth:

Exp. Loss:  

Expected Loss function



Overview of Results

1) GD dynamics equivalent to variant of electron-proton dynamics (assume a_i, 

b_i = 1 for simplicity) 

Running GD on                                                  is...



Overview of Results

1) GD dynamics equivalent to variant of electron-proton dynamics (assume a_i, 

b_i = 1 for simplicity) 

Electron-Proton dynamics under some potential! (depends on transfer function)

Where                                      is the potential function, and 

can be interpreted as a similarity measure 



Overview of Results

2)    Electron-proton dynamics matches up electrons with protons under natural 

electric potential (=1/r)



Overview of Results

2)    Electron-proton dynamics matches up electrons with protons under natural 

electric potential (=1/r)

But natural electric potential has no corresponding transfer function!



Overview of Results

3)    For many transfers/potentials, electron-proton interactions matches up 

electrons with protons under varying assumptions 

Main Takeaways:

● Analyze GD by equivalently studying electron proton dynamics.

● If electrons match up with protons for some potential, then SGD learns neural 

networks with the corresponding transfer function.

● We study the electron proton dynamics for different potentials



Common Transfer to Potentials



Overview of Results

Transfer:                                 ,  

Potential: 

Assumptions: 

● Small input or hidden layer size

● Coordinate Gradient Descent (initialize and move electrons one by one)



Overview of Results

Transfer: 

Potential: 

Assumptions: 

● All output weights are 1

● Coordinate Gradient Descent



Overview of Results

Transfer: Sum of Hermite Polynomials

Potential: Truncation of Legendre Function

Assumptions: 



1) GD dynamics equivalent to electron-proton dynamics under some 

potential function 

1) Electron-proton interactions matches up electrons with protons under natural 

electric potential 

1) For many transfers/potentials, electron-proton interactions matches up 

electrons with protons under varying assumptions 



Formula for Expected Loss



Formula for Expected Loss



Formula for Expected Loss



Formula for Expected Loss



Formula for Expected Loss



Formula for Expected Loss



Formula for Expected Loss



Formula for Expected Loss

Where                                                 is the potential function, and can be 

interpreted as a similarity measure         



Formula for Expected Loss



Formula for Expected Loss

Putting it all together:



Formula for Expected Loss

Putting it all together:

Further simplify by fixing                                      (can be interpreted as charges)



Formula for Expected Loss

Putting it all together:

Further simplify by fixing                                      (can be interpreted as charges)

Minimize pairwise similarity between theta’s and maximize pairwise similarity 

between theta’s and w’s   



Transfer function to Potential function

Consider the 0-1 sign transfer                                 and



Transfer function to Potential function

Consider the 0-1 sign transfer                                 and

Consider the product                              



Transfer function to Potential function

Consider the 0-1 sign transfer                                 and

Therefore,                               



GD Dynamics

Consider the pairwise potential between     and



GD Dynamics

Consider the pairwise potential between     and

GD will induce a force that moves theta_i in the direction of maximum increase to 

the similarity (note w_j is fixed)



GD Dynamics

In the case of the electric potential, this exactly to corresponds to electrodynamics 

with fixed protons at                   and moving electrons at 



GD Dynamics

In the case of the electric potential, this exactly to corresponds to electrodynamics 

with fixed protons at                   and moving electrons at 



1) GD dynamics equivalent to electron-proton dynamics under some potential 

function 

1) Electron-proton interactions matches up electrons with protons under 

natural electric potential 

1) For many transfers/potentials, electron-proton interactions matches up 

electrons with protons under varying assumptions 



Earnshaw’s Theorem

Under the electric potential in 3D, 

Earnshaw’s Theorem guarantees convergence



Earnshaw’s Theorem

Proof: Consider charges at               and equilibrium at point z  



Earnshaw’s Theorem

Proof (Alternate): By the divergenceless property of the electrical potential,

A local minima must have a Hessian with positive eigenvalues, which implies a 

positive trace. Therefore, there is no local minima anywhere!



Can we get electric potential?

Are there transfer functions that give rise to electric potential? NO, not realizable

Why? They are discontinuous and unbounded. 



Can we get electric potential?

Are there transfer functions that give rise to electric potential? NO, not realizable

Why? They are discontinuous and unbounded. 

Main Question(s):

1) Are there other potential properties also give good convergence? YES

2) Are there realizable potentials with such properties? YES



1) GD dynamics equivalent to electron-proton dynamics under some potential 

function 

1) Electron-proton interactions matches up electrons with protons under natural 

electric potential 

1) For many transfers/potentials, electron-proton interactions matches up 

electrons with protons under varying assumptions 



Example: Learning Sums of Gaussian Kernels

●

● Nice property: Laplacian is positive outside a 2-radius circle of w

● Claim: At local minimum, an electron is within a 2-radius circle of a proton



Example: Learning Sums of Gaussian Kernels

●

● Nice property: Laplacian is positive outside a 2-radius circle of w

● Claim: At local minimum, an electron is within a 2-radius circle of a proton

Proof Outline:

● Consider a clumped perturbation of the electrons in a single direction

● Change in the objective function is strictly electron-proton interactions

● If all electrons are far away from protons, then the perturbation creates 

second-order decrease, so not local minimum



Example: Learning Sums of Gaussian Kernels

● We use coordinate gradient descent and assume that each iteration will run 

until convergence to a local minima



Example: Learning Sums of Gaussian Kernels

Proof Outline:

● First electron must be within a 2-neighborhood of some proton

● By the gradient, the electron is within a 1/poly(n)-neighborhood 

● The electron-proton pair largely cancels and it reduces to n-1 protons

● Then, the next electron will pair with one of the remaining protons and so on



More Realistic Results

Main Question: For non-fixed output layer weights, does there exist potentials 

that have convergence results? 

(Rephrase) Does convergence results apply to electrodynamics with varying 

charges?



Positive Laplacian Eigenfunctions

Answer: Yes! 



Convergence Results



Summary

● Analyzed correspondence between transfer and potentials

● GD can be interpreted as the physical model of electrodynamics 

● Discovered classes of realizable potentials with good convergence properties 

under the fixed and non-fixed output weight regime

● Have partial results for the sign and polynomial transfer functions



Summary

● Analyzed correspondence between transfer and potentials

● GD can be interpreted as the physical model of electrodynamics 

● Discovered classes of realizable potentials with good convergence properties 

under the fixed and non-fixed output weight regime

● Have partial results for the sign and polynomial transfer functions

Can convergence results be extended to:

● Widely used transfers? (sigmoid, ReLU, etc.)

● Higher depth neural networks?

● Less assumptions?



Learning  a unknown function

f
(unknown)

Inputs

X_i \in 

R^d

Outputs

y_i \in R

Learn f so that you can predict its output on new inputs



Learning a function

• Want to make predictions in real life situations?
• Will a user click on an ad?
• User features encoded by a vector X_i: Earlier queries.
• Predict y_i probability of clicking on an ad. 
• Given (X_i, y_i) learn a function f so that 
• f(X_i)=y_i

f
(unknown
)

Inputs

X_i \in 

R^d

Outputs

y_i \in R

Learn f so that you can predict its output on new inputs



Learning a function

• What function classes to choose:A simple 
model for f: linear regression

• Logistic regression
• Deep learning

– Useful in many engineering applications



Learning a function

• What function classes to choose:A simple 
model for f: linear regression

• Logistic regression
• Deep learning

– Useful in many engineering applications


