Tutorial: Deep Learning

Rina Panigrahy Google Corp.

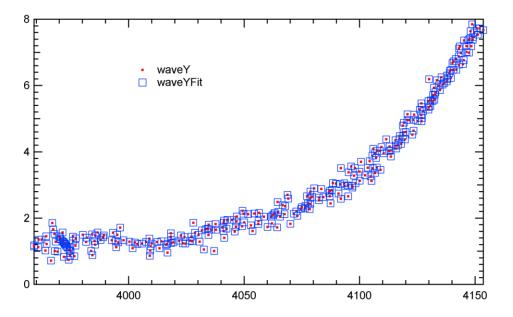
Outline

- Basics
 - Machine Learning problem specification
 - Linear and logistic regression
 - Gradient Descent Optimization
 - Deep Learning
- Applications (will use online lectures/slides from application experts)
 - MNIST
 - Image and speech recognition
 - Language Translation
- Theoretical Understanding?
 - Local vs Global Minima
 - Learning synthetic function classes.

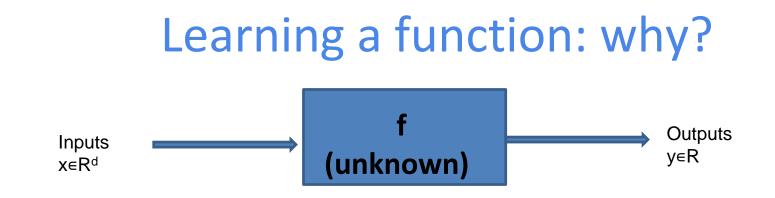
Learning an unknown function Outputs Inputs (unknown) y∈R x∈R^d

Learn f from training pairs (x,y) so that you can predict its output on new inputs Like learning a manifold.

Learning an unknown function: like curve fitting



Learn f from training pairs (x,y) so that you can predict its output on new inputs Like curve/manifold fitting.



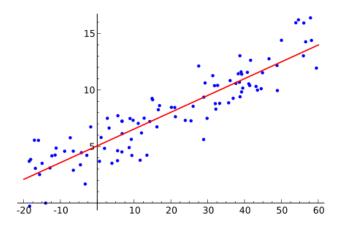
- Want to make predictions in real life situations.
- Will a user click on an ad? (Directly affects profitability)
- User features encoded by a vector x (e.g. earlier queries)
- Predict y probability of clicking on an ad.
- Given training pairs (x, y) learn a function f so that

- f(x)=y

Learning a function: How

- Find f from a certain function class: Modelling f
- A simple model for f: linear regression
- Logistic regression
- Deep learning
 - Useful in many engineering applications such as image/speech recognition, ad-matching

Linear Regression: Line fitting



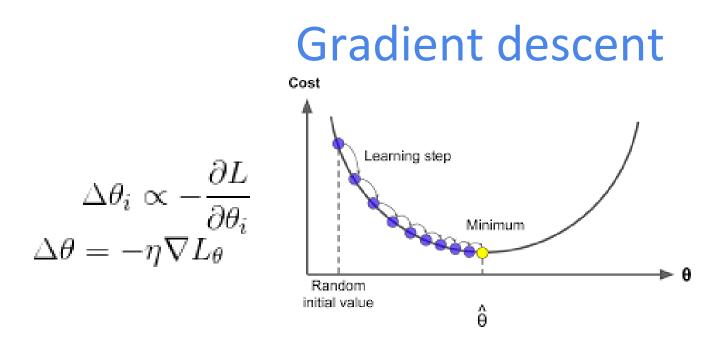
- For input x: $f_w(x) = w_1 \cdot x + w_0$
- Find w so that predicted output $f(x_i) \approx y_i$

Minimize error(loss) in prediction

- Square Error = L(w; x,y) = (f_w(x) y)²
 Other possibilities l₁ loss = |f_w(x) y|₁
- For many examples x_i,y_i
- $L(w) = \sum_{i} L(w; x_{i}, y_{i}) = \sum_{i} (f_{w}(x_{i}) y_{i})^{2}$
- Find best fit w by min_w L(w)

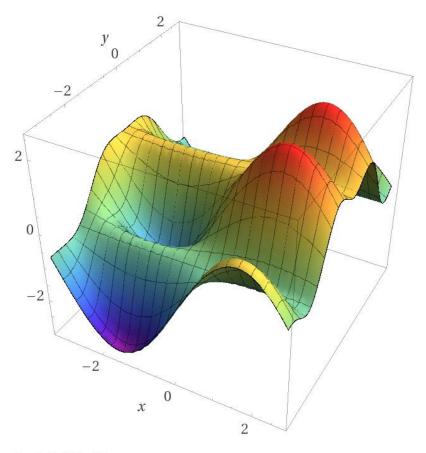
Loss measures error in prediction

- For Linear regression with I₂ squared loss
- $\min_{w} \sum_{i} (w_1 \cdot x + w_0 y_i)^2$
- Can be solved analytically
- For other loss functions use Gradient Descent



To minimize L(θ) change each parameter θ_i in the direction that decreases L





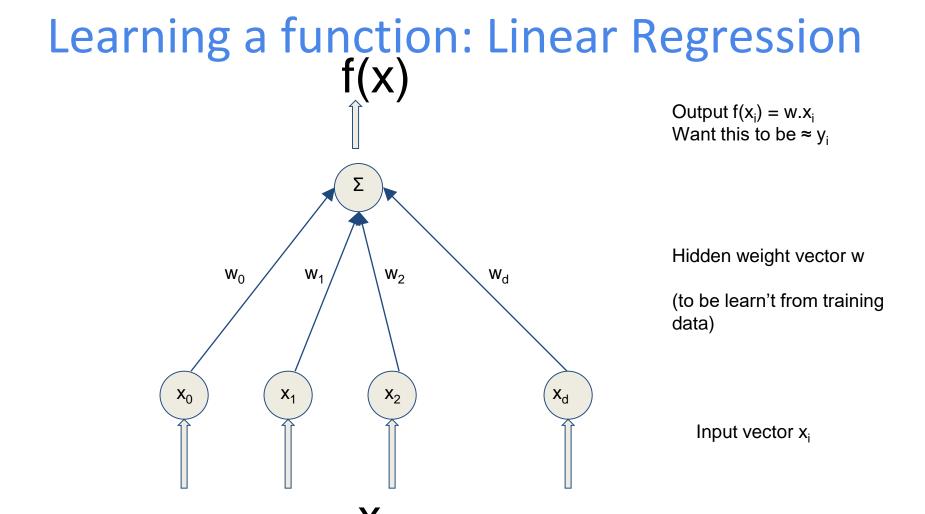
Computed by Wolfram Alpha

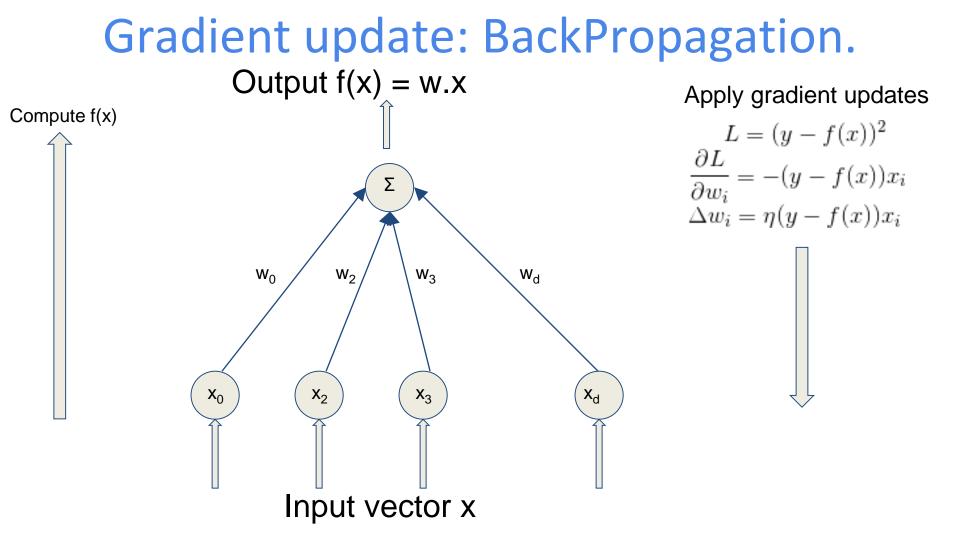
0

•

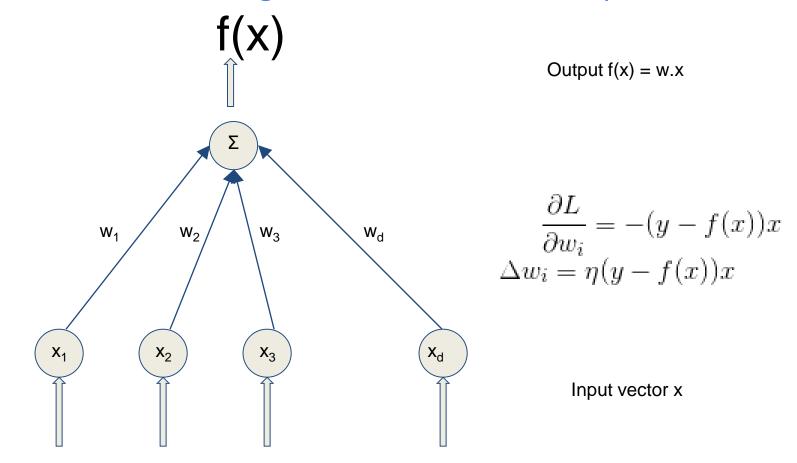
•

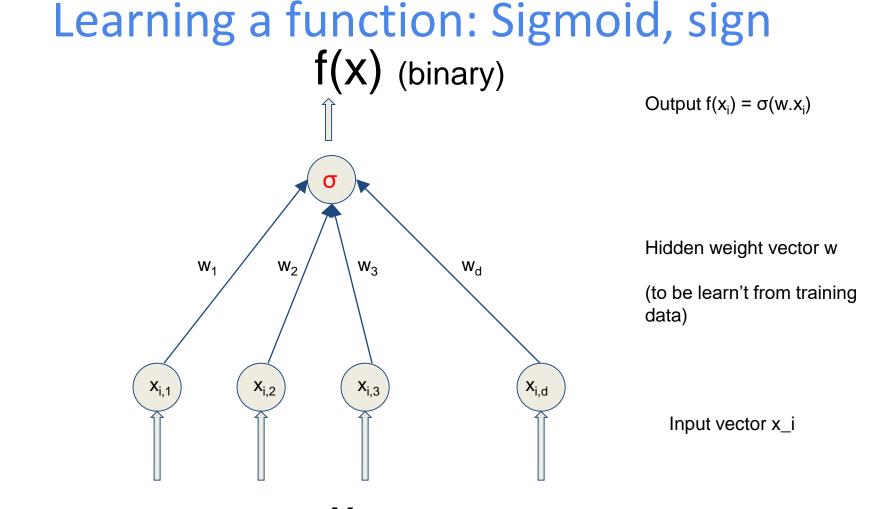
Computed by Wolfram Alpha



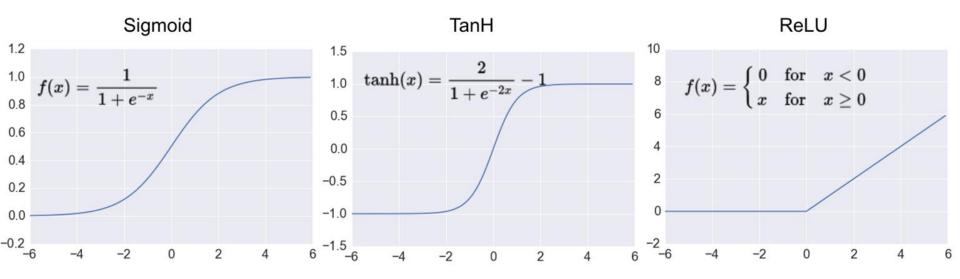


Stochastic Gradient Descent: gradients over a few examples at a time.





Sigmoid, RELU

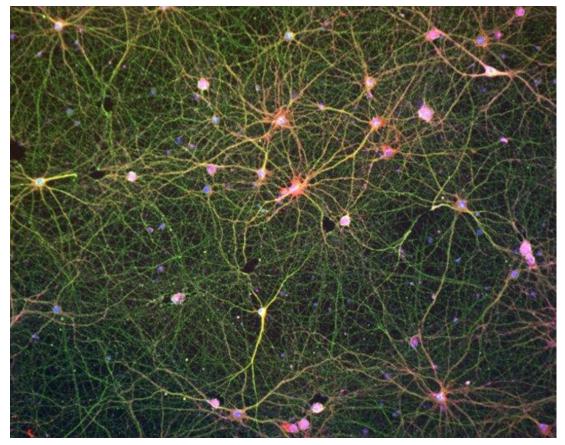


Logistic regression uses logloss

- Maximize predicted probability of observed data
- Or sum of log probabilities
- Probability = f if y=1, 1-f if y=0.
- Log loss = L(w; x,y) = y.log $f_w(x) + (1-y) \log (1-f_w(x))$
- Cross entropy (similarity) between observed and predicted probability

Neurons

Network of Neurons



Deep Network. Allows rich representation Can express any function/circuit

 $NN_{w}(x)$ Output Output layer Hidde W Input layer Input #1 Input #2 Input #3 Input #4

Х

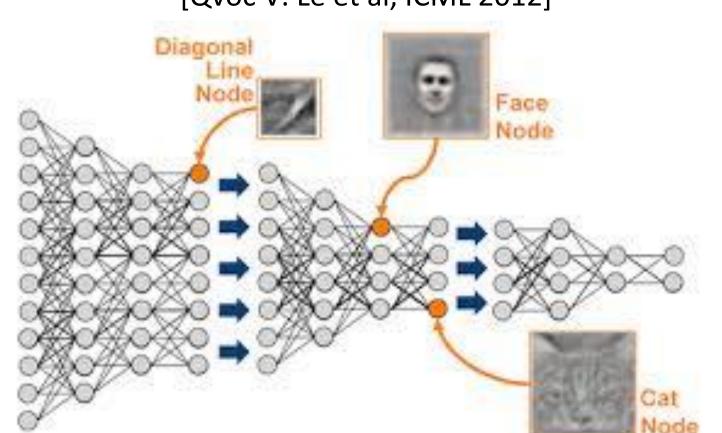
Output $f(x) = NN_w(x)$

Hidden edge weight matrix w

(to be learn't from training data)

Input vector x

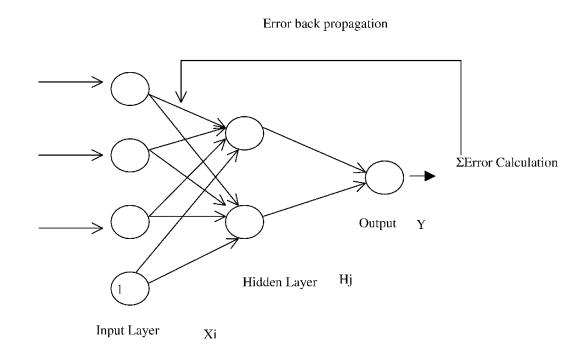
Hierarchical representation of Objects [Qvoc V. Le et al, ICML 2012]



Training w: SGD to Minimize loss

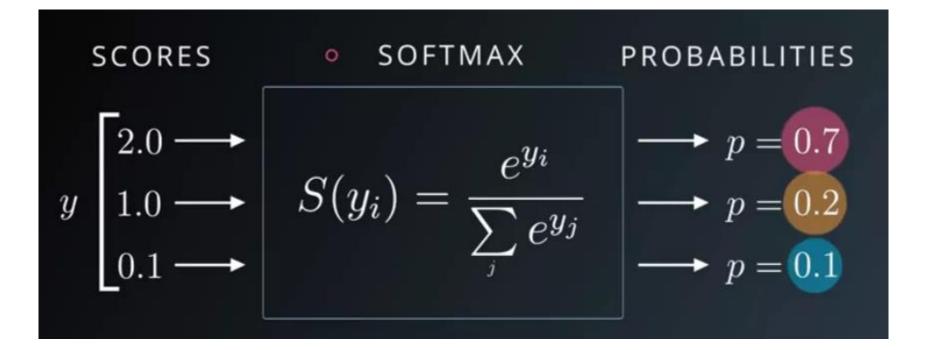
- Square Error = $L(w; x,y) = (f_w(x) y)^2$ - Other possibilities I_1 loss = $|f_w(x) - y|_1$
- For many examples x_i,y_i
- $L(w) = \sum_{i} L(w; x_{i}, y_{i}) = \sum_{i} (f_{w}(x_{i}) y_{i})^{2}$
- Find best fit w by min_w L(w)
- Solve by GD
- SGD: Sample a few inputs.

Backpropagation: Gradient Descent for one example



Notes: The weight connecting node i in the input layer to node j in the hidden layer is denoted by W_{ji} , and the weight connecting node j to the output node is represented by V_j

Softmax for multiclass output



Convergence of Gradient Descent for Model training

- Minimize Loss function over training data
- Loss function $L = E_x [(y f_w(x))^2]$
- Minimize Loss function : $\min_{w} E_{x} [(y f_{w}(x))^{2}]$
- Gradient over parameter space w
- Hope it converges to optimal parameters w
- This happens for linear/logistic regression
- What about deep learning?

Applications

Applications

- MNIST
- Image Recognition: Imagenet
- Speech Recognition
- Language Translation.

Many many others

- Ads matching
- Web search and ranking

MNIST

95 6 2 В 50 6 63 63 8 6 8 5

Training data: 60,000 examples 32x32 pixels Test data 10,000 examples

http://yann.lecun.com/exdb/mnist/ http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

Convolution and Pooling

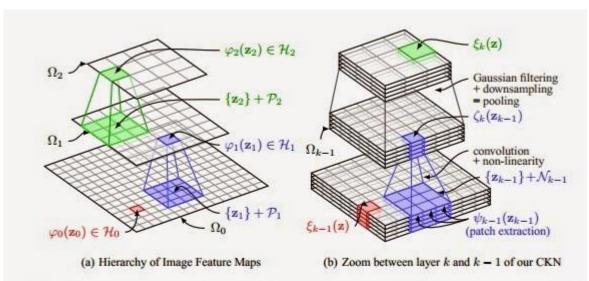


Figure 1: Left: concrete representation of the successive layers for the multilayer convolutional kernel. Right: one layer of the convolutional neural network that approximates the kernel.

Imagenet

Alexnet paper:

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Presentation:

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf

ImageNet

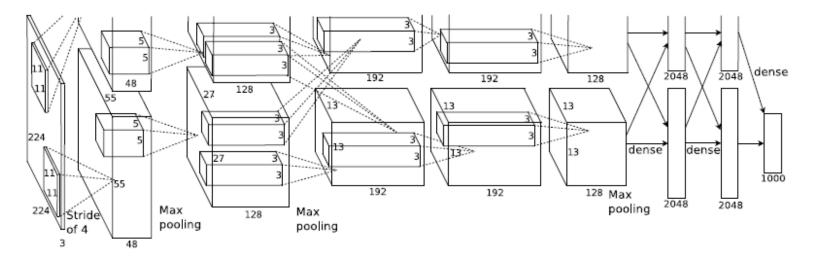


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

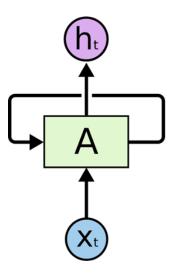
Speech Recognition

Hintons Slides:

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pdf

Machine Translation

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf



Videos/tutorials on Deep learning applications

Lectures by Geoff Hinton: search "hinton deep learning tutorial"

Lectures by Ruslan Salakhudinov: search "Salakhudinov deep learning tutorial simons workshop"

Lan Yeccuns slides/talk: <u>https://cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf</u>

Language translation: <u>http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-</u> <u>summerschool/slides/Ilya_LSTMs_for_Translation.pdf</u>

http://www.cs.toronto.edu/~guerzhoy/321/lec/W09/rnn_translate.pdf

Alexnet:

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyun ghee.pdf

For imagenet results.

Here is another good source:

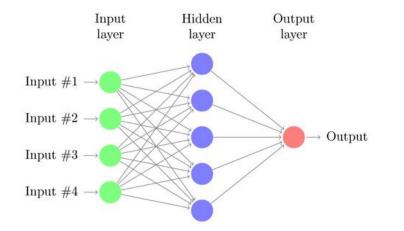
http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec7.pdf

Theoretical Understanding?

Deep Learning

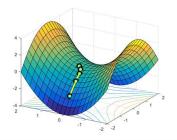
- SGD works well in practice but does it reach optimum?
- Does deep learning work provably?

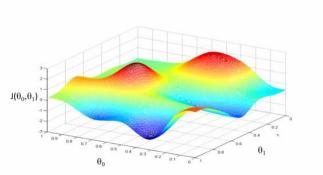


Main Question: Why does SGD solve $\min_{\theta} E_X[(f(X) - NN_{\theta}(X))^2]$

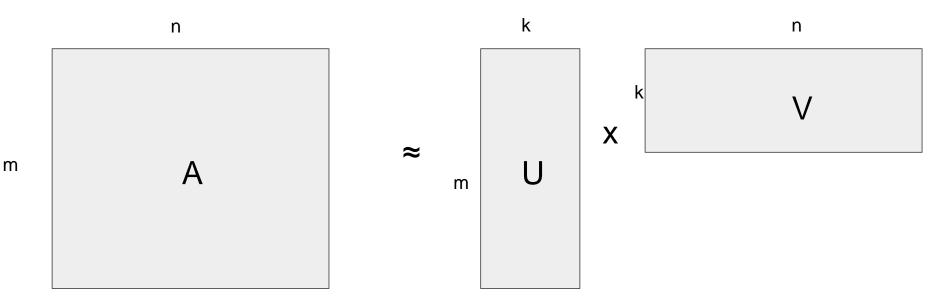
Nonconvex Optimization

- Deep learning involves minimizing non-convex loss functions, which makes analysis difficult
- Recent work shows that SGD escapes saddle points (GeHJY15)
- But even a simple network admit many local minimas
- Best "explanation": "Random" loss landscapes admit mostly saddle points when error is high.
- Statistical Physics approcahes by Ganguly et al, Choromanska et al

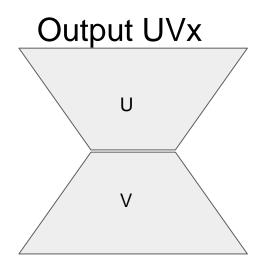




Low rank Approximation



Write matrix A as a product of two thin matrices U and V (say Netflix matrix) Rows U_i = latent representation (embedding) of user, Columns V_i = latent representation of movie No local minima in linear networks [Kawaguchi, NIPS 16, Ge et al, ICML 17]



Input vector x

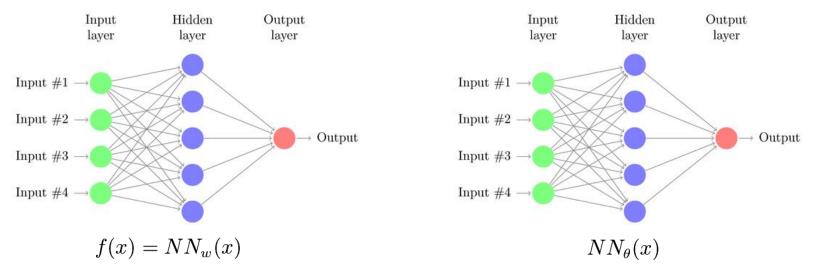
- Low rank approximation is same as:
- Train 2 layer network with examples (x,Ax)

Deep Learning

- **Theoretical Question**: What "mathematical" function classes can learned with deep learning (SGD/backprop)?
 - Using "mathematical" function classes instead of real-world functions allows for analysis
- Important "mathematical" function classes:
 - Polynomials? [A,P,V,Z ICML14]
 - Decision Trees?
 - Arithmetic Circuits?
 - Neural Circuits/Networks?

Deep Learning

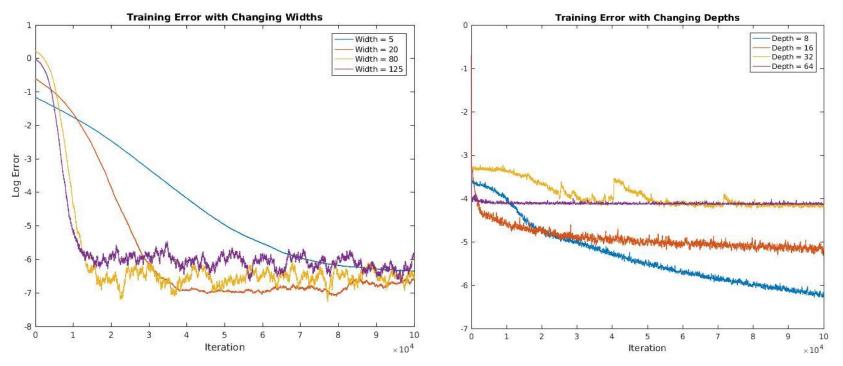
In this work, we will focus on learning f(x) = neural networks (using neural networks).



Main Question: Does SGD cause $\theta \rightarrow w$ (if same network structure)?

Does well experimentally

Results of training on samples from random neural networks

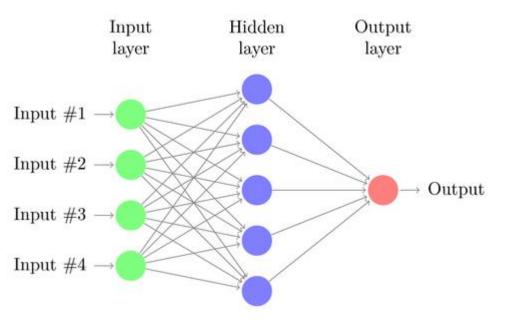


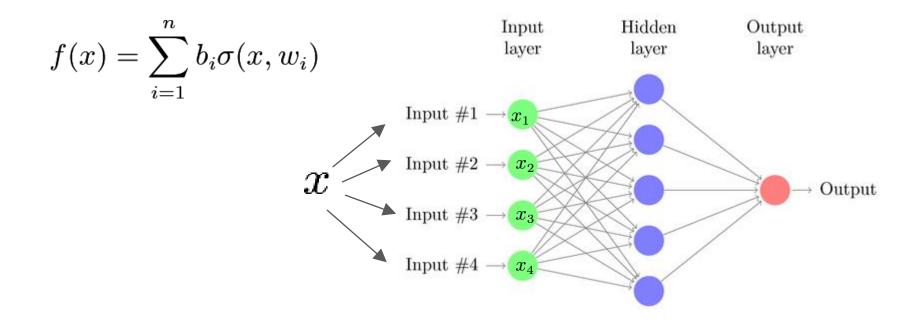
Theoretical Proof of Observed Behavior?

- Derive theoretical justifications under simplifying assumptions:
 - 1 hidden layer
 - Data is generated from a network of known shape, but random unknown weights
 - Infinite data, so it becomes GD
 - Infinitesimal step sizes

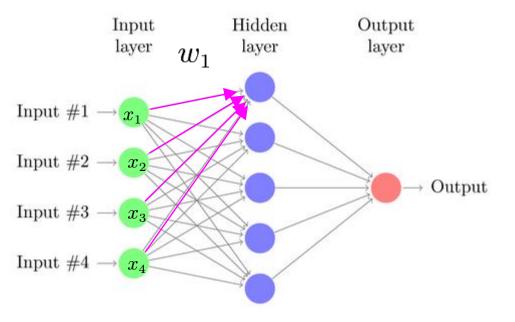
Neural networks with 1 hidden layer

$$f(x) = \sum_{i=1}^{n} b_i \sigma(x, w_i)$$



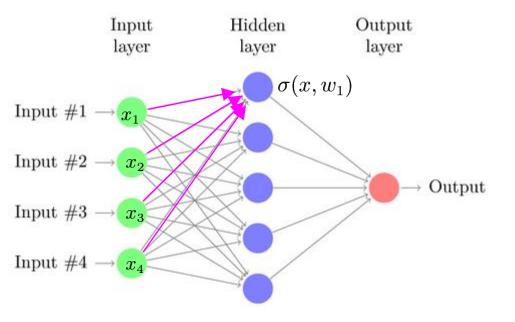


$$f(x) = \sum_{i=1}^{n} b_i \sigma(x, w_i)$$



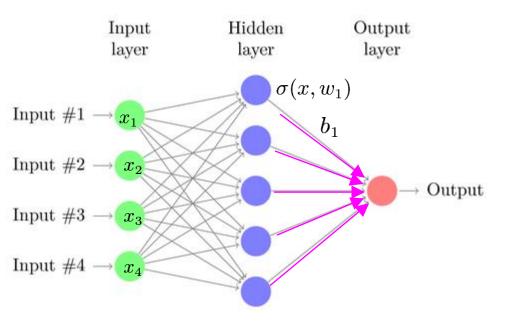
 $\sigma(x, w_1)$ is called the **transfer** function

$$f(x) = \sum_{i=1}^{n} b_i \sigma(x, w_i)$$



Linear output

$$f(x) = \sum_{i=1}^{n} b_i \sigma(x, w_i)$$



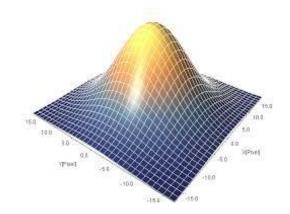
Loss function

Given our current guess of the weights a_i, θ_i and an input x, we measure loss with the squared difference



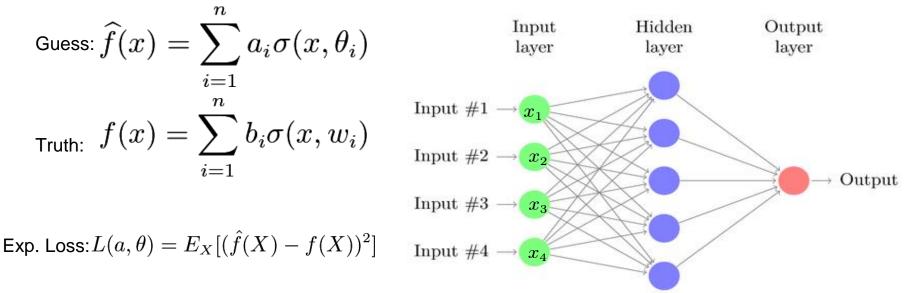
Training Data: Random, not Adversarial

- Adversarial training data: Makes learning NP-hard (also not realistic)
- Assume training data distribution standard Gaussian

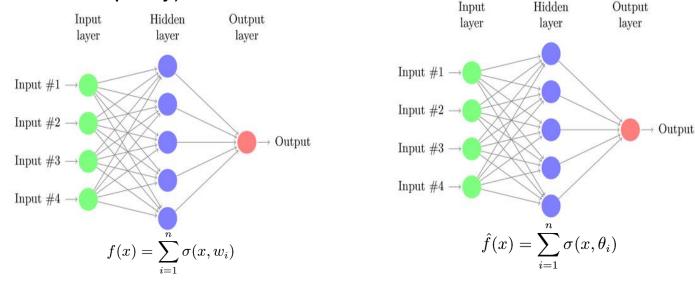


Expected Loss function

Given our current guess of the weights a_i , θ_i , we analyze SGD as GD on the expected loss under infinite data/training time,



 GD dynamics equivalent to variant of electron-proton dynamics (assume a_i, b_i = 1 for simplicity)



Running GD on $L(\theta) = E_X[(f(X) - \hat{f}(X))^2]$ is...

1) GD dynamics equivalent to variant of electron-proton dynamics (assume a_i, b_i = 1 for simplicity) $E_X[(f(X) - \hat{f}(X))^2] = E_X[(\sum_i \sigma(X, \theta_i) - \sum_i \sigma(X, w_i))^2]$

 $=\sum_{ij} E_X[\sigma(X,\theta_i)\sigma(X,\theta_j)] + \sum_{ij} E_X[\sigma(X,w_i)\sigma(X,w_j)] - 2\sum_{ij} E_X[\sigma(X,\theta_i)\sigma(X,w_j)]$

$$= \sum_{ij} \Phi(\theta_i, \theta_j) + \sum_{ij} \Phi(w_i, w_j) - 2 \sum_{ij} \Phi(\theta_i, w_j)$$

Where $\Phi(\theta, w) = E_X[\sigma(X, \theta)\sigma(X, w)]$ is the **potential** function, and

can be interpreted as a similarity measure

Electron-Proton dynamics under some potential! (depends on transfer function)

2) Electron-proton dynamics matches up electrons with protons under natural electric potential (=1/r)

2) Electron-proton dynamics matches up electrons with protons under natural electric potential (=1/r)

But natural electric potential has no corresponding transfer function!

3) For many transfers/potentials, electron-proton interactions matches up electrons with protons under varying assumptions

Main Takeaways:

- Analyze GD by equivalently studying electron proton dynamics.
- If electrons match up with protons for some potential, then SGD learns neural networks with the corresponding transfer function.
- We study the electron proton dynamics for different potentials

Common Transfer to Potentials

Name	Transfer $(\sigma(x,\theta))$	Potential $(\Phi(\theta, w))$	Res.
Sign	$\operatorname{sgn}(x^T \theta)$	$1-2\cos^{-1}(\theta^T w)/\pi$	Y
ReLU	$\max(x^T \theta, 0)$	$\begin{vmatrix} \sqrt{1 - (\theta^T w)^2} & + \\ \theta^T w (\pi - \cos^{-1}(\theta^T w)) \end{vmatrix}$	N
		$\theta^T w(\pi - \cos^{-1}(\theta^T w))$	
Hermite	$H_m(x^T\theta)$	$(\theta^T w)^m$	Y
Exponential	$\exp(x^T \theta)$	$\exp(\theta^T w)$	Y
Gaussian	$\exp((2x^T\theta - \theta^T\theta)/\sigma)$	$\exp(-\ \theta - w\ _2^2/\sigma)$	Y
Bessel	$\exp(x^T x) \prod_i \frac{\sqrt{2}}{\pi} K_0(x_i - \theta_i /\sigma)$	$\exp(-\ \theta - w\ _1/\sigma)$	Y

Transfer:
$$\sigma(x,\theta) = sgn(x^T\theta), \|\theta\| = \|w\| = 1$$

Potential:
$$\Phi(\theta, w) = 1 - 2\cos^{-1}(\theta^T w)/\pi$$

Assumptions:

- Small input or hidden layer size
- Coordinate Gradient Descent (initialize and move electrons one by one)

Transfer: $\sigma(x,\theta) = e^{(2x^T\theta - \theta^T\theta)}$

Potential: $\Phi(\theta, w) = e^{-\|\theta - w\|^2}$

Assumptions:

- All output weights are 1
- Coordinate Gradient Descent

Transfer: Sum of Hermite Polynomials $\|\theta\| = \|w\| = 1$

Potential: Truncation of Legendre Function

Assumptions:

1) GD dynamics equivalent to electron-proton dynamics under some potential function

1) Electron-proton interactions matches up electrons with protons under natural electric potential

1) For many transfers/potentials, electron-proton interactions matches up electrons with protons under varying assumptions

$$L(a,\theta) = E[(\widehat{f}(X) - f(X))^2]$$

 $L(a,\theta) = E[(\widehat{f}(X) + f(X))^2]$

$$\begin{split} L(a,\theta) &= E[(\widehat{f}(X) + f(X))^2] \\ &= E[\widehat{f}(X)^2 + 2f(X)\widehat{f}(X) + f(X)^2] \end{split}$$

$$\begin{split} L(a,\theta) &= E[(\widehat{f}(X) + f(X))^2] \\ &= E[\widehat{f}(X)^2 + 2f(X)\widehat{f}(X) + f(X)^2] \\ &= E[\widehat{f}(X)^2] + 2E[f(X)\widehat{f}(X)] + E[f(X)^2] \end{split}$$

$$\begin{split} L(a,\theta) &= E[(\widehat{f}(X) + f(X))^2] \\ &= E[\widehat{f}(X)^2 + 2f(X)\widehat{f}(X) + f(X)^2] \\ &= E[\widehat{f}(X)^2] + 2E[f(X)\widehat{f}(X)] + E[\widehat{f}(X)^2] \end{split}$$

 $E[\hat{f}(X)^2] = E[(\sum_i a_i \sigma(X, \theta_i))^2]$

$$E[\hat{f}(X)^2] = E[(\sum_i a_i \sigma(X, \theta_i))^2]$$
$$= \sum_i a_i^2 E[\sigma(X, \theta_i)^2] + 2\sum_{i < j} a_i a_j E[\sigma(X, \theta_i) \sigma(X, \theta_j)]$$

$$E[\hat{f}(X)^2] = E[(\sum_i a_i \sigma(X, \theta_i))^2]$$

= $\sum_i a_i^2 E[\sigma(X, \theta_i)^2] + 2 \sum_{i < j} a_i a_j E[\sigma(X, \theta_i) \sigma(X, \theta_j)]$
= $\sum_i a_i^2 \Phi(\theta_i, \theta_i) + 2 \sum_{i < j} a_i a_j \Phi(\theta_i, \theta_j)$

Where $\Phi(\theta, w) = E_X[\sigma(X, \theta)\sigma(X, w)]$ is the **potential** function, and can be interpreted as a similarity measure

$$\begin{split} E[\hat{f}(X)^2] &= E[(\sum_i a_i \sigma(X, \theta_i))^2] \\ &= \sum_i a_i^2 E[\sigma(X, \theta_i)^2] + 2 \sum_{i \neq j} a_i a_j E[\sigma(X, \theta_i) \sigma(X, \theta_j)] \\ &= \sum_i a_i^2 \Phi(\theta_i, \theta_i) + 2 \sum_{i \neq j} a_i a_j \Phi(\theta_i, \theta_j) \end{split}$$

$$E[\hat{f}(X)f(X)] = E[(\sum_{i} a_{i}\sigma(X,\theta_{i}))(\sum_{j} b_{j}\sigma(X,w_{j}))]$$
$$= \sum_{ij} a_{i}b_{j}\Phi(\theta_{i},w_{j})$$

Formula for Expected Loss

Putting it all together:

$$L(a,\theta) = \sum_{i=1}^n a_i^2 \Phi(\theta_i,\theta_i) + 2\sum_{i< j} a_i a_j \Phi(\theta_i,\theta_j) + 2\sum_{i=1}^n \sum_{j=1}^n a_i b_j \Phi(\theta_i,w_j)$$

Formula for Expected Loss

Putting it all together:

$$L(a,\theta) = \sum_{i=1}^n a_i^2 \Phi(\theta_i,\theta_i) + 2\sum_{i< j} a_i a_j \Phi(\theta_i,\theta_j) + 2\sum_{i=1}^n \sum_{j=1}^n a_i b_j \Phi(\theta_i,w_j)$$

Further simplify by fixing $b_i = 1$ and $a_i = -1$ (can be interpreted as charges)

$$L(a,\theta) = \sum_{i} \Phi(\theta_i,\theta_i) + 2\sum_{i< j} \Phi(\theta_i,\theta_j) - 2\sum_{i=1}^{n} \sum_{j=1}^{n} \Phi(\theta_i,w_j)$$

Formula for Expected Loss

Putting it all together:

$$L(a,\theta) = \sum_{i=1}^{n} a_i^2 \Phi(\theta_i,\theta_i) + 2\sum_{i< j} a_i a_j \Phi(\theta_i,\theta_j) + 2\sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \Phi(\theta_i,w_j)$$

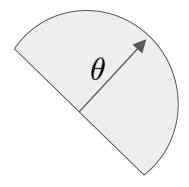
Further simplify by fixing $b_i = 1$ and $a_i = -1$ (can be interpreted as charges)

$$L(a,\theta) = \sum_{i} \Phi(\theta_i,\theta_i) + 2\sum_{i< j} \Phi(\theta_i,\theta_j) - 2\sum_{i=1}^{n} \sum_{j=1}^{n} \Phi(\theta_i,w_j)$$

Minimize pairwise similarity between theta's and maximize pairwise similarity between theta's and w's

Transfer function to Potential function

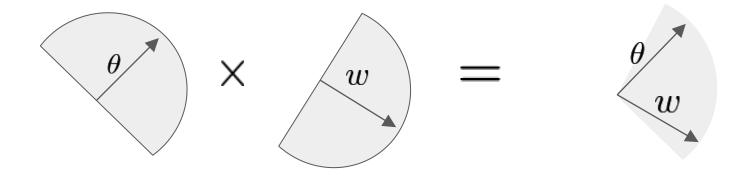
Consider the 0-1 sign transfer $\sigma(x^T\theta) = \mathbf{1}_{\mathbf{x}^T\theta \ge \mathbf{0}}$ and $\|\theta\| = 1$



Transfer function to Potential function

Consider the 0-1 sign transfer $\sigma(x^T\theta) = \mathbf{1}_{\mathbf{x}^T\theta \ge \mathbf{0}}$ and $\|\theta\| = 1$

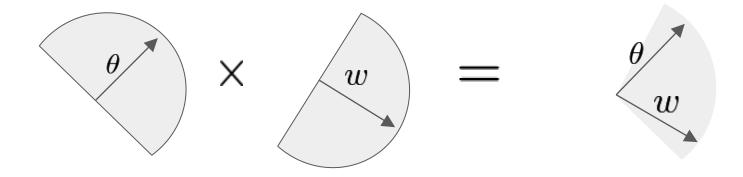
Consider the product $\sigma(w^T x)\sigma(\theta^T x)$



Transfer function to Potential function

Consider the 0-1 sign transfer $\sigma(x^T\theta) = \mathbf{1}_{\mathbf{x}^T\theta \ge \mathbf{0}}$ and $\|\theta\| = 1$

Therefore,
$$\Phi(\theta, w) = E_X[\sigma(X^T \theta)\sigma(X^T w)] = \frac{1}{2} - \frac{\cos^{-1}(\theta^T w)}{2\pi}$$

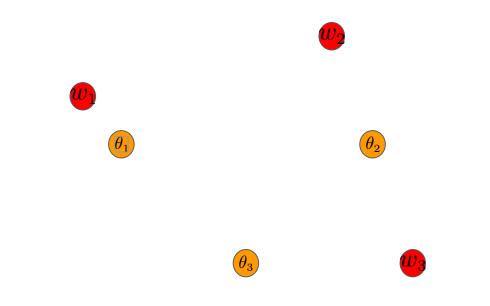


Consider the pairwise potential between θ_i and w_j

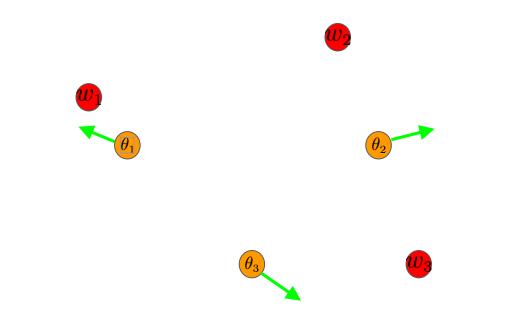
Consider the pairwise potential between θ_i and w_j

GD will induce a force that moves theta_i in the direction of maximum increase to the similarity (note w_j is fixed)

In the case of the electric potential, this exactly to corresponds to electrodynamics with fixed protons at $w_1, ..., w_n$ and moving electrons at $\theta_1, ..., \theta_n$



In the case of the electric potential, this exactly to corresponds to electrodynamics with fixed protons at $w_1, ..., w_n$ and moving electrons at $\theta_1, ..., \theta_n$



1) GD dynamics equivalent to electron-proton dynamics under some potential function

1) Electron-proton interactions matches up electrons with protons under natural electric potential

1) For many transfers/potentials, electron-proton interactions matches up electrons with protons under varying assumptions

Earnshaw's Theorem

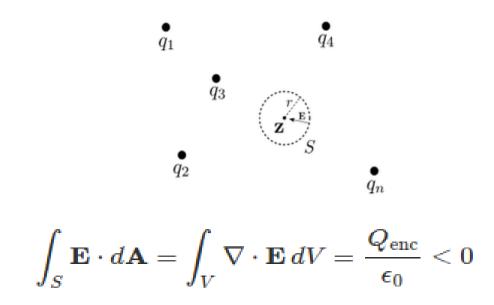
Under the electric potential in 3D, $\Phi(\theta, w) = 1/\|\theta - w\|$

Earnshaw's Theorem guarantees convergence

Theorem 1 (Earnshaw) A collection of distinct point charges cannot be in stable equilibrium under electrostatic forces.

Earnshaw's Theorem

Proof: Consider charges at $q_1, ..., q_n$ and equilibrium at point z



Earnshaw's Theorem

۰.

Proof (Alternate): By the divergenceless property of the electrical potential,

$$\nabla \cdot (-\nabla \Phi) = -\Delta \Phi = -tr(\nabla^2 \Phi) = 0$$

A local minima must have a Hessian with positive eigenvalues, which implies a positive trace. Therefore, there is no local minima anywhere!

Can we get electric potential?

Are there transfer functions that give rise to electric potential? NO, not realizable

Why? They are discontinuous and unbounded.

Can we get electric potential?

Are there transfer functions that give rise to electric potential? NO, not realizable

Why? They are discontinuous and unbounded.

Main Question(s):

- Are there other potential properties also give good convergence? YES
 Are there realizable potentials with such properties? YES
- 2) Are there realizable potentials with such properties? **YES**

1) GD dynamics equivalent to electron-proton dynamics under some potential function

1) Electron-proton interactions matches up electrons with protons under natural electric potential

1) For many transfers/potentials, electron-proton interactions matches up electrons with protons under varying assumptions

•
$$\Phi(\theta, w) = e^{-\|\theta - w\|_2^2}$$

- Nice property: Laplacian is positive outside a 2-radius circle of w
- Claim: At local minimum, an electron is within a 2-radius circle of a proton

•
$$\Phi(\theta, w) = e^{-\|\theta - w\|_2^2}$$

- Nice property: Laplacian is positive outside a 2-radius circle of w
- Claim: At local minimum, an electron is within a 2-radius circle of a proton

Proof Outline:

- Consider a clumped perturbation of the electrons in a single direction
- Change in the objective function is strictly electron-proton interactions
- If all electrons are far away from protons, then the perturbation creates second-order decrease, so not local minimum

• We use coordinate gradient descent and assume that each iteration will run until convergence to a local minima

Algorithm 1 (Coordinate Gradient Descent)

Iterate over thetas: For i = 1 through k: start with a new θ_i randomly initialized and perform gradient descent on this θ_i .

Theorem 2: If w_i are initialized according to a Gaussian with mean 0 and variance $\Omega(\log n)$, then with high probability, coordinate gradient descent converges to the global minimum.

Proof Outline:

- First electron must be within a 2-neighborhood of some proton
- By the gradient, the electron is within a 1/poly(n)-neighborhood
- The electron-proton pair largely cancels and it reduces to n-1 protons
- Then, the next electron will pair with one of the remaining protons and so on

More Realistic Results

Main Question: For non-fixed output layer weights, does there exist potentials that have convergence results?

(*Rephrase*) Does convergence results apply to electrodynamics with varying charges?

Positive Laplacian Eigenfunctions

Answer: Yes!

Definition: A potential Φ is a positive eigenfunction of the Laplacian operator if there exists $\lambda > 0$ such that

 $\Delta_{\theta} \Phi(\theta, w) = \lambda \Phi(\theta, w)$

Convergence Results

Theorem 3: Let Φ be a positive Laplacian eigenfunction and $L(a, \theta)$ is differentiable with respect to θ_i at θ_i^* , then θ_i^* is not a robust local minimum.

Corollary 2: Let Φ be a positive Laplacian eigenfunction and $\Phi(\theta_i, w_j)$ is non-differentiable with respect to θ_i only at w_j , then at convergence, either $\theta_i = \theta_j$ for some $j \neq i$ or $\theta_i = w_j$ for some j.

Summary

- Analyzed correspondence between transfer and potentials
- GD can be interpreted as the physical model of electrodynamics
- Discovered classes of realizable potentials with good convergence properties under the fixed and non-fixed output weight regime
- Have partial results for the sign and polynomial transfer functions

Summary

- Analyzed correspondence between transfer and potentials
- GD can be interpreted as the physical model of electrodynamics
- Discovered classes of realizable potentials with good convergence properties under the fixed and non-fixed output weight regime
- Have partial results for the sign and polynomial transfer functions

Can convergence results be extended to:

- Widely used transfers? (sigmoid, ReLU, etc.)
- Higher depth neural networks?
- Less assumptions?

Learning a unknown function

• Given (X_i, y_i) input output pairs

- learn polynomial f so that $f(X_i) = y_i$

Learn f so that you can predict its output on new inputs

Learning a function

- Given (X_i, y_i) input output pairs
 - learn polynomial f so that $f(X_i) = y_i$

- - Can be learnt in time $O(d^{d})$ poly(m, d, n)
- Vant to make predictions in real life situations?
- User features encoded by a vector X is Earlier queries.
 Predict y_i probability of clicking on anⁱad.
- Given (X i, y i) learn a function f so that
- f(X i)=v i

Learning a function

- What function it lasses to the foods a simple \overline{m} of the function of the food of the function of the fun
- Logistic regression
- Deep learning
 - Useful in many engineering applications

Learning a function

- What function it lasses to the foods a simple \overline{m} of the function of the food of the function of the fun
- Logistic regression
- Deep learning
 - Useful in many engineering applications