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Introduction

Why multiprecision?

Paraphrasing [ Higham, 2017 ]:

Variable precision is becoming more and more accessible in hardware
and software.

Using lower precision can drastically reduce computational running
time (e.g. IEEE single up to 14 times faster than IEEE double).

Our challenge is to better understand the accuracy of algorithms in
low precision.

How does multiprecision arithmetic affect the convergence rate
and final accuracy of minimization algorithms?
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Introduction

The (simple?) problem

We consider the unconstrained quadratic optimization (QO) problem:

minimize q(x) = 1
2
xTAx − bT x

for x , b ∈ IRn and A an n × n symmetric positive-definite matrix.

A truly “core” problem in optimization (and linear algebra)

the simplest nonlinear optimization problem

subproblem in many methods for general nonlinear unconstrained
optimization

central in linear algebra (including solving elliptic PDEs)
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Introduction

Working assumptions

For what follows, we assume that

the problem size n is large enough and A is dense enough to make
factorization of A unavailable

a Krylov iterative method (Conjugate Gradients, FOM ) is used

the cost of running this iterative method is dominated by the
products Av

Focus on an optimization point of view : look at decrease in q rather
than at decrease in the associated system’s residual

ex: ensuring increase in the likelihood in statistics

Our aim, for x∗ solution of QO,

Find xk such that |q(xk)− q(x∗)| ≤ ε|q(x0)− q(x∗)|.
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Introduction

A first motivating example: weather forecasting (1)

The weakly-constrained 4D-Var formulation (See [ Y. Tremolet 2006,

2007,.. ])

min
x∈IRn

1

2
‖x0− xb‖2B−1 +

1

2

N∑
j=0

∥∥Hj

(
xj
)
− yj

∥∥2
R−1
j

+
1

2

N∑
j=1

‖xj −Mj(xj−1)︸ ︷︷ ︸
qj

‖2
Q−1

j

x = (x0, . . . , xN)T is the state control variable (with xj = x(tj))

xb is the background given at the initial time (t0).

yj ∈ IRmj is the observation vector over a given time interval

Hj maps the state vector xj from model space to observation space

Mj is an integration of the numerical model from time tj−1 to tj
B, Rj and Qj are the covariance matrices of background, observation
and model error. B and Qj impractical to ”invert”
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Introduction

A first motivating example: weather forecasting (2)

Solve by a Gauss-Newton method whose subproblem (at iteration k) is

min
δx

1

2
‖δx0 − b(k)‖2B−1 +

1

2

N∑
j=0

∥∥∥H(k)
j δx j − d

(k)
j

∥∥∥2
R−1
j

+
1

2

N∑
j=1

‖δx j −M
(k)
j δx j−1︸ ︷︷ ︸

δqj

−c (k)j ‖
2

Q−1
j

δx is the increment in x .

The vectors b(k), c
(k)
j and d

(k)
j are defined by

b(k) = xb − x0
(k), c

(k)
j = q

(k)
j , d

(k)
j = Hj(xj

(k))− yj

and are calculated at the outer loop.
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Introduction

A first motivating example: weather forecasting (3)

Can be rewritten as

min
δx

qst =
1

2
‖Lδx − b‖2D−1 +

1

2
‖Hδx − d‖2R−1

where

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I


d = (d0, d1, . . . , dN)T and b = (b, c1, . . . , cN)T

H = diag(H0,H1, . . . ,HN)

D = diag(B,Q1, . . . ,QN) and R = diag(R0,R1, . . . ,RN)
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Introduction

A first motivating example: weather forecasting (3)

min
δx

qst =
1

2
‖Lδx − b‖2D−1 +

1

2
‖Hδx − d‖2R−1

This is a standard QO, but HUGE! Note that

∇2qst = LTD−1L + HTR−1H

In addition D−1 = diag(B−1,Q−11 , . . . ,Q−1N ) is unavailable!

Thus ∇2qstv (a Hessian times vector product) must be computed by

w = Lv ,

solve Dz = w using some (preconditioned) Krylov
method

v = LT z + HTR−1Hv
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Introduction

A second motivating example: variable precision arithmetic

Next barrier in hyper computing: energy dissipation!

Heat production is proportional to chip surface, hence

energy output ≈
(

number of digits used
)2

Architectural trend: use multiprecision arithmetic

graphical processing units (GPUs)

hierarchy of specialized CPUs (double, single, half, . . . )

How to use this hierarchy optimally for fully accurate results?
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Quadratic case
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Quadratic case

Inaccuracy frameworks

Our proposal;

Make the Krylov methods for QO more efficient by allowing
error on the matrix-vector product (the dominant computation)

Two frameworks of interest:

Continuous accuracy levels
ex: WC-4D-VAR, where accuracy in the inversion Dz = w can be
continuously chosen

Discrete accuracy levels
ex: double-single-half precision arithmetic

Considered here:

Full orthonormalisation method (FOM)

Conjugate Gradients (CG)

with (wlog) x0 = 0 and q(x0) = 0.
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Quadratic case Theoretical results and resulting algorithms

A central equality

Define r(x)
def
= Ax − b = ∇q(x) and Ax∗ = b.

q(x)− q(x∗) = 1
2
‖r(x)‖2A−1

1
2
‖r(x)‖2A−1 = 1

2
(Ax − b)TA−1(Ax − b)

= 1
2
(x − x∗)

TA(x − x∗)
= 1

2
(xTAx − 2xTAx∗ + xT∗ Ax∗)

= q(x)− q(x∗)

Hence

Decrease in q can be monitored by considering the A−1 norm
of its gradient
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Quadratic case Theoretical results and resulting algorithms

The primal-dual norm

⇒ natural to consider the inaccuracy on the product Av by measuring the
backward error

‖E‖A−1,A
def
= sup

x 6=0

‖Ex‖A−1

‖x‖A
= ‖A−1/2EA−1/2‖2

(primal-dual norm)

Let A be a symmetric and positive definite matrix and E be any
symmetric perturbation. Then, if ‖E‖A−1,A < 1, the matrix
A + E is symmetric positive definite.
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Quadratic case Theoretical results and resulting algorithms

The main idea

Krylov methods reduce the (internally recurred) residual rk on successive
nested Krylov spaces
⇒ can expect rk to converge to zero
⇒ keep r(xk)− rk small in the appropriate norm

From q(x)− q(x∗) = 1
2
‖r(x)‖2A−1 , q(x∗) = − 1

2
‖b‖2A−1 , and triangular

inequality,

For FOM and CG, if

max
[
‖rk − r(xk)‖A−1 , ‖rk‖A−1

]
≤
√
ε

2
‖b‖A−1

then |q(xk)− q(x∗)| ≤ ε|q(x∗)|
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Quadratic case Theoretical results and resulting algorithms

The inexact FOM algorithm

Theoretical inexact FOM algorithm
1. Set β = ‖b‖2, and v1 = [b/β],
2. For k=1, 2, . . . , do
3. wk = (A + Ek)vk
4. For i = 1, . . . , k do
5. hi,k = vT

i wk

6. wk = wk − hi,kvi
7. EndFor
8. hk+1,k = ‖wk‖2
9. yk = H−1k (βe1)

10. if |hk+1,ke
T
k yk | is small enough then go to 13

11. vk+1 = wk/hk+1,k

12. EndFor
13. xk = Vkyk
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Quadratic case Theoretical results and resulting algorithms

Results for the inexact FOM

Let επ > 0 and let φ ∈ IRk
+ such that

∑k
j=1 φ

−1
j ≤ 1. Suppose

also that, for all j ∈ {1, . . . , k},

‖Ej‖A−1,A ≤ ωFOM
j

def
= min

[
1,

επ ‖b‖A−1

φj‖vj‖A‖H−1k ‖2‖rj−1‖2

]
(2.1)

Then ‖r(xk)− rk‖A−1 ≤ επ ‖b‖A−1 .

Let ε > 0 and suppose that, at iteration k > 0 of the FOM
algorithm, ‖rk‖A−1 ≤ 1

2

√
ε ‖b‖A−1

and the product error matrices Ej satisfy (2.1) with επ = 1
2

√
ε

for some φ ∈ IRk (as above). Then

|q(xk)− q(x∗)| ≤ ε|q(x∗)|
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Quadratic case Theoretical results and resulting algorithms

The inexact Conjugate Gradients algorithm

Theoretical inexact CG algorithm
1. Set x0 = 0, β0 = ‖b‖22, r0 = −b and p0 = r0
2. For k=0, 1, . . . , do
3. ck = (A + Ek)pk
4. αk = βk/p

T
k ck

5. xk+1 = xk + αkpk
6. rk+1 = rk + αkck
7. if rk+1 is small enough then stop
8. βk+1 = rTk+1rk+1

9. pk+1 = −rk+1 + (βk+1/βk)pk
10. EndFor
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Quadratic case Theoretical results and resulting algorithms

Results for the inexact CG

Let επ > 0 and let φ ∈ IRk
+ such that

∑k
j=1 φ

−1
j ≤ 1. Suppose

also that, for all j ∈ {0, . . . , k − 1},

‖Ej‖A−1,A ≤ ωCG
j

def
=

επ ‖b‖A−1‖pj‖A
φj+1‖rj‖22 + επ ‖b‖A−1‖pj‖A

(2.2)

Then ‖r(xk)− rk‖A−1 ≤ επ ‖b‖A−1 .

Let ε > 0 and suppose that, at iteration k > 0 of the CG
algorithm, ‖rk‖A−1 ≤ 1

2

√
ε ‖b‖A−1

and the product error matrices Ej satisfy (2.2) with επ = 1
2

√
ε

for some φ ∈ IRk (as above). Then

|q(xk)− q(x∗)| ≤ ε|q(x∗)|
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Quadratic case Theoretical results and resulting algorithms

Using the true quantities (1)

Would this work at all if using the true ‖b‖A−1 , ‖vj‖A and ‖pj‖A ?

Consider 6 algorithms:

FOM: the standard full-accuracy FOM

iFOM: the inexact FOM (with exact bounds, for now)

CG: the standard full-accuracy CG

CGR: the full-accuracy CG with reorthogonalization

iCG: the inexact CG (with exact bounds, for now)

iCGR: the inexact CGR (with exact bounds, for now)
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Quadratic case Theoretical results and resulting algorithms

Continuous accuracy levels (1)

Comparing equivalent numbers of full accuracy products:

Assume obtaining full accuracy is a linearly convergent process
of rate ρ
(realistic for our weather prediction data assimilation example)

Cost of an ε-accurate solution:

log(ε)

log(ρ)

⇒ sum these values during computing and compare them.
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Quadratic case Theoretical results and resulting algorithms

Continuous accuracy levels (2)

Compare on:

synthetic matrices of size 1000× 1000 with varying conditioning
(from 101 to 108) and log-linearly spaced eigenvalues

“real” matrices from the NIST Matrix Market

use different levels of final accuracy
(ε = 10−3, 10−5)

Note that

Continuous accuracy levels ⇒ no room for inaccuracy budget
management!
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Quadratic case Theoretical results and resulting algorithms

Continuous accuracy levels (3)

1 2 3
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FOM CG CGR FOM CG CGR

Figure: Exact bounds, κ(A) = 101, ε = 10−3 (left), κ(A) = 105, ε = 10−5 (right);
continuous case

Want green (gap) and blue (stopping criterion error on the quadratic) close
to epsilon, and yellow (approximate error on the quadratic) close to green
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Quadratic case Theoretical results and resulting algorithms

Multiprecision (1)

Focus on multiprecision arithmetic . Assume

3 levels of accuracy (double, single, half)

a ratio of 4 in efficiency when moving from one level to the next

Use the sames matrices and final accuracies as above.
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Quadratic case Theoretical results and resulting algorithms

Multiprecision (2)

FOM CG CGR FOM CG CGR

Figure: Exact bounds, κ(A) = 101, ε = 10−3 (left), κ(A) = 105, ε = 10−5 (right);
discontinuous case
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Quadratic case Practical algorithms

An beyond : inexact scalar products

Just relax !
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Quadratic case Practical algorithms

Perfect in theory but...

The primal-dual norm ‖Ej‖A−1,A is sometimes difficult to evaluate

The error bounds remain unfortunately hard to estimate
(they involve ‖b‖A−1 , ‖vj‖A or ‖pj‖A, which cannot be computed
readily in the course of the FOM or CG algorithm).

The termination test ‖rk‖A−1 ≤ 1
2

√
ε ‖b‖A−1 also involves the

unavailable ‖rk‖A−1

Give up? Not quite. . .

the FOM error bound allows a growth of the error in ‖rj‖−1 while CG
allows a growth of the order of ‖rj‖−2‖pj‖A instead.
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Quadratic case Practical algorithms

Adhoc approximations

Abandon theoretical but unavailable quantities → approximate them:

‖E‖A−1,A ≥ λmin(A)−1‖E‖2

‖p‖A ≈
√

1
nTr(A)‖p‖2

(ok for p with random independent components)

‖b‖A−1 =
√

2|q(x∗)| ≈
√

2|qk | ≈
√
|bT xk |

‖H−1k ‖ = 1
λmin(Hk )

≤ 1
λmin(A)

(FOM only)

kmax ≈ log(ε)
log(ρ) with ρ

def
=

√
λmax/λmin−1√
λmax/λmin+1

Termination test (Arioli & Gratton):

qk−d − qk ≤ 1
4
ε|qk |

for some stabilization delay d (e.g. 10)
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Quadratic case Practical algorithms

Does it still work (continuous accuracy levels)?
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Figure: Exact bounds, κ(A) = 101, ε = 10−3 (left), κ(A) = 105, ε = 10−5 (right);
continuous case

Serge Gratton (INP-IRIT, Toulouse, France) ICTS, Bangalore 30 / 48



Quadratic case Practical algorithms

Does it still work (multiprecision)?

FOM CG CGR FOM CG CGR

Figure: Approximate bounds, κ(A) = 101, ε = 10−3 (left), κ(A) = 105, ε = 10−5

(right); multiprecision
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Smooth non-convex case
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Smooth non-convex case

Consider

minx∈IRn f (x).

The dynamic accuracy setting of trust-region methods [CGT 2000], it is
assumed that

The value of the objective can be approximated with a prespecified
level of accuracy ωf :

|f (x , ωf )− f (x , 0)| ≤ ωf and f (x , 0) = f (x)

Following [Carter 1993; G., L.N Vicente and Z. Zhang 2018], the case
where the gradient is inexact can be handled:

‖g(x , ωg )− g(x , 0)‖ ≤ ωg‖g(x , ωg )‖ and g(x , 0) = ∇1
x f (x)

We recall that the convergence at step k

‖∇1
x f (xk)‖ ≤ ‖g(xk , ωg ,k)‖+ ‖g(xk , ωg ,k)− g(x , 0)‖ ≤ ε.

is gained provided, for some constant κg , ωg ,k ≤ κg and
‖g(xk , ωg ,k)‖ ≤ ε

1+κg
.
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TR with dynamic accuracy on f and g (algo TR1DA) (Step computation)

Step 1 Check for termination. If k = 0 or xk 6= xk−1, choose
ωg ,k ∈ (0, κg ] and compute gk = g(xk , ωg ,k) such that
‖g(xk , ωg ,k)− g(xk , 0)‖ ≤ ωg ,k‖g(x , ωg ,k)‖. Terminate if
‖g(xk , ωg ,k)‖ ≤ ε

1+κg
.

Step 2 Step calculation. Sufficiently reduce the model
m(xk , s) = fk + gT

k s + 1
2 s

THks in the Trust-Region
{sk , ‖sk‖ ≤ ∆k} in the sense that

m(xk , 0)−m(xk , sk) ≥ 1
2‖gk‖min

[ ‖gk‖
‖Hk‖

,∆k

]
Step 3 Evaluate the objective function. Select

ω+
f ,k ∈

(
0, η0[m(xk , 0)−m(xk , sk)]

]
and compute

f +k = f (xk + sk , ω
+
f ,k). If ω+

f ,k < ωf ,k , recompute fk = f (xk , ω
+
f ,k) .



TR with dynamic accuracy on f and g (TR1DA) (Step acceptance)

Step 4 Acceptance of the trial point. Define the ratio

ρk =
fk − f +k

m(xk , 0)−m(xk , sk)
.

If ρk ≥ η1, then define xk+1 = xk + sk and set ωf ,k+1 = ω+
f ,k .

Otherwise set xk+1 = xk , ωf ,k+1 = ωf ,k and ωg ,k+1 = ωg ,k .

Step 5 Standard trust-radius update.

Set

∆k+1 ∈

 [∆k ,∞) if ρk ≥ η2, ↗
[γ2∆k ,∆k) if ρk ∈ [η1, η2),↘
[γ1∆k , γ2∆k ] if ρk < η1. ↓

Increment k by 1 and go to Step 2.



Smooth non-convex case Convergence analysis

Assumptions

AS.1: The objective function f is twice continuously differentiable
in IRn and there exist a constant κ∇ ≥ 0 such that
‖∇2

x f (x)‖ ≤ κ∇ for all x ∈ IRn.

AS.2: There exists a constant κH ≥ 0 such that ‖Hk‖ ≤ κH for all
k ≥ 0.

AS.3 There exists a constant κlow such that f (x) ≥ κlow for all
x ∈ IRn.

We can bound the accuracy on the model w.r.t the exact function:

Suppose AS.1 and AS.2 hold. Then, for each k ≥ 0,

|f (xk + sk)−m(xk , sk)| ≤ |fk − f (xk)|+ κg‖g(xk , ωg ,k)‖∆k + κH∇∆2
k

for κH∇ = 1 + max[κH , κ∇].
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Smooth non-convex case Convergence analysis

The observed ρ can be interpreted as a true function versus model
reduction

We have that, for all k ≥ 0,

max
[
|fk − f (xk)|, |f +k − f (xk + sk)|

]
≤ η0 [m(xk , 0)−m(xk , sk)]

and

ρk ≥ η1 implies that
f (xk)− f (xk + sk)

m(xk , 0)−m(xk , sk)
≥ η1 − 2η0 > 0.

Proof. This follows from the accuracy management and from

ρk =
fk − f +k

m(xk , 0)−m(xk , sk)
=

f (xk)− f (xk + sk)

m(xk , 0)−m(xk , sk)
+

[fk − f (xk)] +
[
|f +k − f (xk + sk)

]
m(xk , 0)−m(xk , sk)

�
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Smooth non-convex case Convergence analysis

Suppose AS.1 and AS.2 hold, and that g(xk , ωg ,k) 6= 0. Then

∆k ≤
‖g(xk , ωg ,k)‖

2κH∇

[
1
2
(1−η1)−η0−κg

]
implies that ∆k+1 ≥ ∆k .

Proof.

|ρk − 1| ≤ |f +k − f (xk + sk)|+ |f (xk + sk)−m(xk , sk)|
m(xk , 0)−m(xk , sk)

≤ 2η0 +
κg‖g(xk , ωg ,k)‖∆k + κH∇∆2

k
1
2
‖g(xk , ωg ,k)‖∆k

≤ 2η0 + 2κg + 2κH∇
∆k

‖g(xk , ωg ,k)‖
≤ 1− η2

where we used η0 + κg < 1
2
(1− η2). �
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Smooth non-convex case Convergence analysis

Suppose ∆0 ≥ θε. The TR1DA algorithm produces an iterate xk

such that ‖∇1
x f (xk)‖ ≤ ε in at most τS

def
=

2(f (x0)−κlow)(1+κg )
(η1−2η0)θ · 1

ε2

successful iterations, and at most

τtot
def
= τS

(
1− log γ3

log γ2

)
+

1

| log γ2|
log

(
∆0

θε

)
(3.3)

iterations in total.

Proof.

f (x0)− κlow ≥
∑
j∈Sk

[f (xj)− f (xj+1)]

≥ 1
2
(η1 − 2η0)

∑
j∈Sk

‖g(xj , ωg ,j)‖min

[
‖g(xj , ωg ,j)‖

1 + ‖Hj‖
,∆j

]
≥ 1

2
|Sk |(η1 − 2η0) ε

1 + κg
min

[
ε

κH∇(1 + κg )
,min

[
∆0, θε

]]
= |Sk |

(η1 − 2η0)
2(1 + κg )

min

[
1

κH∇(1 + κg )
, θ

]
ε2

�Serge Gratton (INP-IRIT, Toulouse, France) ICTS, Bangalore 39 / 48



Smooth non-convex case Numerical experiments

Practical setting

In our numerical experiments with TR1DA

We perfom 20 runs on 86 Cuter problems

We assume that the objective function’s value f (xk , ωk) and the
gradient g(xk , ωk) can be computed with corresponding accuracy
level equal to machine precision, half machine precision or quarter
machine precision

The computational cost of an operation is devided by 4 when passing
from one level to the immediate next one: half precision corresponds
to double-precision costs divided by 16

Hessian approximation are obtained with a limited-memory symmetric
rank-one (SR1) quasi-Newton update
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Smooth non-convex case Numerical experiments

Practical setting

To set the stage, our first experiment starts by comparing three variants of
the TR1DA algorithm:

LMQN: a version using ωf = ωg = 0 for all k (i.e. using the full
double precision arithmetic throughout),

LMQN-s: a version using single precision evaluation of the objective
function and gradient for all k ,

LMQN-h: a version using half precision evaluation of the objective
function and gradient for all k .

Simple minded approach: expensive parts of the optimization
calculation conducted in reduced precision no further adaptive
accuracy management.
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Smooth non-convex case Numerical experiments

Simple approach
relative to LMQN︷ ︸︸ ︷

ε Variant nsucc its. costf costg its. costf costg
1e-03 LMQN 82 41.05 42.04 42.04

LMQN-s 78 41.40 42.60 42.60 1.03 1.04 1.04
LMQN-h 22 16.95 1.12 1.12 0.97 0.06 0.06

1e-05 LMQN 80 46.34 47.38 47.38
LMQN-s 48 47.79 48.96 48.96 1.08 1.08 1.08
LMQN-h 10 17.80 1.18 1.18 1.38 0.08 0.08

1e-07 LMQN 67 62.76 63.85 63.85
LMQN-s 25 28.28 28.96 28.96 0.82 0.81 0.81
LMQN-h 6 15.83 1.05 1.05 0.97 0.06 0.06

Table: Results for LMQN-s and LMQN-h compared to LMQN

Quickly decreasing robustness when a tight accuracy is demanded

In most cases, no improvement , in costf and costg

When LMQN-h happens to succeed its cost is very low
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Smooth non-convex case Numerical experiments

Two variant of TR1DA

LMQN: as above,

iLMQN-a: a variant of the TR1DA algorithm where

ωf ,k = min[ 1
10
, 4

100
η1
(
mk(0)−mk(sk)

)
] and ωg ,k = 1

2
κg .

iLMQN-b: a variant of the TR1DA algorithm where,

ωf ,k = min[ 1
10
, 4

100
η1
(
mk(0)−mk(sk)

)
] and ωg ,k = min[κg , ωf ,k ].
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Smooth non-convex case Numerical experiments

Variable precision approach

relative to LMQN︷ ︸︸ ︷
ε Variant nsucc its. costf costg its. costf costg

1e-03 LMQN 82 41.05 42.04 42.04
iLMQN-a 80 50.05 9.88 6.11 1.23 0.24 0.15
iLMQN-b 76 52.67 13.85 3.34 1.36 0.35 0.08

1e-05 LMQN 80 46.34 47.38 47.38
iLMQN-a 75 75.92 36.21 24.77 1.40 0.63 0.42
iLMQN-b 63 72.57 39.85 4.60 1.78 0.95 0.11

1e-07 LMQN 67 62.76 63.85 63.85
iLMQN-a 47 65.83 58.97 37.50 1.18 1.03 0.65
iLMQN-b 40 87.35 95.09 5.52 1.39 1.45 0.09

Table: Results for the variable-precision variants
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Smooth non-convex case Numerical experiments

Summary of the experiments

For ε = 10−3 or 10−5, inexact variants iLMQN-a and iLMQN-b
perform well in cost for gradient and function

iLMQN-a appears to dominate iLMQN-b in the evaluation of the
objective function

iLMQN-b shows significantly larger savings in the gradient evaluation
costs

When the final accuracy is tigther inexact methods appear to loose
their edge in robustness. Gains in function evaluation costs disappear

Comparison of iLMQN-a and even iLMQN-b with LMQN-s and
LMQN-h clearly favours the new methods
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Conclusions and perspectives

Outline for section 4

1 Introduction

2 Quadratic case

3 Smooth non-convex case
Convergence analysis
Numerical experiments

4 Conclusions and perspectives
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Conclusions and perspectives

Conclusions and perspectives

Summary:

Optimization-focused theory for with inexact functon/gradient
evaluation

Theoretical gains substantial

Translates well to practice after approximations

Perspectives:

More general (controlable) inexactness in constrained optimization

Probabilistic error specification

Thank your for your attention!
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