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Introduction

Outline for section 1

@ Introduction
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Introduction

Why multiprecision?

Paraphrasing [Higham, 2017]:

@ Variable precision is becoming more and more accessible in hardware
and software.

@ Using lower precision can drastically reduce computational running
time (e.g. IEEE single up to 14 times faster than IEEE double).

@ Our challenge is to better understand the accuracy of algorithms in
low precision.
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Introduction

Why multiprecision?

Paraphrasing [Higham, 2017]:

@ Variable precision is becoming more and more accessible in hardware
and software.

@ Using lower precision can drastically reduce computational running
time (e.g. IEEE single up to 14 times faster than IEEE double).

@ Our challenge is to better understand the accuracy of algorithms in
low precision.

How does multiprecision arithmetic affect the convergence rate
and final accuracy of minimization algorithms?
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Introduction

The (simple?) problem

We consider the unconstrained quadratic optimization (QO) problem:
minimize q(x) = ixTAx — b7 x

for x,b € R" and A an n x n symmetric positive-definite matrix.

A truly “core” problem in optimization (and linear algebra)‘

@ the simplest nonlinear optimization problem

@ subproblem in many methods for general nonlinear unconstrained
optimization

@ central in linear algebra (including solving elliptic PDEs)

Serge Gratton (INP-IRIT, Toulouse, France) ICTS, Bangalore 5 /48



Introduction
Working assumptions

For what follows, we assume that

@ the problem size n is large enough and A is dense enough to make
factorization of A unavailable

@ a Krylov iterative method (Conjugate Gradients, FOM ) is used

@ the cost of running this iterative method is dominated by the
products Av

Focus on an ’optimization point of view ‘: look at decrease in g rather
than at decrease in the associated system’s residual

ex: ensuring increase in the likelihood in statistics

Our aim, for x, solution of QO,

Find x, such that |q(xc) — q(x.)| < e|g(x0) — q(x.)]. |
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Introduction

A first motivating example: weather forecasting (1)

The ‘weakly-constrained 4D-Var ‘ formulation (See [Y. Tremolet 2006,
2007,..])

N
1 1
i plbo—slfo-r+5 3 1 sl +3 Z I = M)l
a q;
x = (x0,-..,xn)" is the state control variable (with x; = x(t;))

Xp is the background given at the initial time (tp).

€ R™i is the observation vector over a given time interval
H; maps the state vector x; from model space to observation space
M is an integration of the numerical model from time t;_; to t;

e 6 6 6 ¢ o

B, R; and Q; are the covariance matrices of background, observation
and model error. B and Q; impractical to "invert”
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Introduction

A first motivating example: weather forecasting (2)

Solve by a Gauss-Newton method whose subproblem (at iteration k) is

N N
.1 K 1 K K K K
min 3/3xo — b >\|é-1+5j§_0 |H®6x; — df )H }_:naxJ-—M} 251~
5qj

@ Ox is the increment in x.
@ The vectors b(k), cj(k) and dj(k) are defined by

b = 3, — x4, M = q(k)7 dj(k) = ’Hj(Xj(k)) ed

and are calculated at the outer loop.
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Introduction

A first motivating example: weather forecasting (3)

Can be rewritten as

: 1 1
min Gs, = = ||Lox — b||3-1 + = ||Hox — d||%-:
ox 2 2

where
/
— M /
o L= My I
—My
o d:(do,d1,...,dN)T and b:(b,Cl,...,CN)T

H= diag(Ho, Hl, ceey HN)
D= diag(B, Ql, ey QN) and R = diag(Ro, Rl, ey RN)
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Introduction

A first motivating example: weather forecasting (3)

: 1 1
min gst = EHL(SX — b3 + EHH(SX —d|%

This is a standard QO, but | HUGE! | Note that
V2qy=L"D 'L +HTRH

In addition | D~* = diag(B~1, @, ', ..., Qy") is unavailable!

Thus V2gs:v (a Hessian times vector product) must be computed by

o w=Ly,

@ solve Dz = w using some (preconditioned) Krylov
method

ov=LTz+HTR Hy
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Introduction

A second motivating example: variable precision arithmetic

‘ Next barrier in hyper computing: energy dissipation! ‘

Heat production is proportional to chip surface, hence

energy output = ( number of digits used )2

Architectural trend: use multiprecision arithmetic |

e graphical processing units (GPUs)
@ hierarchy of specialized CPUs (double, single, half, ...)

How to use this hierarchy optimally for fully accurate results? |
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Quadratic case

Outline for section 2

© Quadratic case
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Quadratic case
Inaccuracy frameworks

Our proposal;

Make the Krylov methods for QO more efficient by allowing
error on the matrix-vector product (the dominant computation)

Two frameworks of interest:
@ Continuous accuracy levels
ex: WC-4D-VAR, where accuracy in the inversion Dz = w can be
continuously chosen
@ Discrete accuracy levels
ex: double-single-half precision arithmetic
Considered here:

e Full orthonormalisation method (FOM)
e Conjugate Gradients (CG)

with (wlog) xo = 0 and g(xp) = 0.
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Quadratic case ~ Theoretical results and resulting algorithms

A central equality

Define r(x) % Ax — b = Vq(x) and Ax, = b.

q(x) = q(x) = 3lIr() 5~

(Ax — b)TA71(Ax — b)
(x — x) TA(x — xy)
(xTAx — 2xT Ax, + x,] Ax)
(x) = a(x)

HIr GO

Q NI= D= D=

Hence

Decrease in g can be monitored by considering the A~* norm
of its gradient
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Quadratic case ~ Theoretical results and resulting algorithms

The primal-dual norm

= natural to consider the inaccuracy on the product Av by measuring the

backward error

def | Ex[[ a1 _ HA—1/2EA—1/2||2

HEHA*l,A = sup
x20  |1x]la

(primal-dual norm)

Let A be a symmetric and positive definite matrix and E be any
symmetric perturbation. Then, if |[E[4-1 o < 1, the matrix
A+ E is symmetric positive definite.
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Quadratic case ~ Theoretical results and resulting algorithms

The main idea

Krylov methods reduce the (internally recurred) residual r, on successive
nested Krylov spaces

= can expect ry to converge to zero

= keep r(xx) — rx small in the appropriate norm

From q(x) — q(x) = 4[|r(x)||3-1. g(x) = —3||b||3-1. and triangular
inequality,

For FOM and CG, if

€
mas [l = r(llacs, Drdlaa] < 20l

then lg(xk) — g(x:)] < €]q(x)]
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Quadratic case ~ Theoretical results and resulting algorithms

The inexact FOM algorithm

Theoretical inexact FOM algorithm

1 Set 8 = ||b||2, and vy = [b/ﬁ],
2. Fork=1,2, ..., do

3 Wy = (A + Ek)Vk

4 Fori=1,...,k do

5. h,'7k == V’-TWk

6 Wi = Wk — h,‘7kV,'

7 EndFor

8. higik = [[wil2

9.y =H ' (Be)
10. if |hky1.4€/] yk| is small enough then go to 13
11. Vi1 = Wi/ Pisa i
12.  EndFor
13. Xk = Vk)/k
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Quadratic case ~ Theoretical results and resulting algorithms

Results for the inexact FOM

Let e > 0 and let ¢ € R% such that 3 ; ¢! < 1. Suppose
also that, for all j € {1,..., k},

€r HbHA_l (21)

def
1Ejlla-1,4 < wFOM = min 4.
’ " illvillallH 2l -1 l2

Then 1r(xk) = rilla= < ex [[]la-r.

Let € > 0 and suppose that, at iteration k > 0 of the FOM
algonthm. Irllas < $VE lblla-s
and the product error matrices E; satisfy (2.1) with e = 1\/e
for some ¢ € R¥ (as above). Then

la() — a(x)] < ela(x.)|
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Quadratic case ~ Theoretical results and resulting algorithms

The inexact Conjugate Gradients algorithm

Theoretical inexact CG algorithm
1. Setxo=0, Bo=|b]3, ro=—band py = g
2. Fork=0,1, ..., do

3 Cx = (A + Ek)pk

4 ak = Bk/p{ ck

5. Xk+1 = Xk + Qpx

6. M1 = i+ oc
7

8

9

0

if res1 is small enough then stop
Bt = M1k
Prt1 = —rkr1 + (Brs1/Br) Pk

10. EndFor
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Quadratic case ~ Theoretical results and resulting algorithms

Results for the inexact CG

Let e > 0 and let ¢ € R% such that 3 ; ¢; ' < 1. Suppose

also that, for all j € {0,..., k — 1},

def €7r2||bHA—1||pj||A (22)
Gj+1llrll3 + €x [|bll a2l pjll 4

1Ejlla1.a < ijG

Then 1r(xk) = rilla= < ex [[]la-r.

Let ¢ > 0 and suppose that, at iteration k > 0 of the CG
algonthm. Irllas < $VE lblla-s
and the product error matrices E; satisfy (2.2) with e = 1\/e
for some ¢ € R¥ (as above). Then

la() — q(x)] < ela(x.)|
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Quadratic case ~ Theoretical results and resulting algorithms

Using the true quantities (1)

Would this work at all if using the true ||b||4-1, ||vj||a and ||pj|la ?

Consider 6 algorithms:
FOM: the standard full-accuracy FOM
iFOM: the inexact FOM (with exact bounds, for now)
CG: the standard full-accuracy CG
CGR: the full-accuracy ‘ CG with reorthogona/ization‘
iCG: the inexact CG (with exact bounds, for now)
iCGR: the inexact CGR (with exact bounds, for now)
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Quadratic case Theoretical results and resulting algorithms

Continuous accuracy levels (1)

Comparing equivalent numbers of full accuracy products:

@ Assume obtaining full accuracy is a linearly convergent process
of rate p
(realistic for our weather prediction data assimilation example)

@ Cost of an e-accurate solution:

log(¢)
log(p)

= sum these values during computing and compare them.
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Quadratic case ~ Theoretical results and resulting algorithms

Continuous accuracy levels (2)

Compare on:

@ synthetic matrices of size 1000 x 1000 with varying conditioning
(from 10* to 108) and log-linearly spaced eigenvalues

@ ‘“real” matrices from the NIST Matrix Market

@ use different levels of final accuracy
(e =103, 1079)
Note that

Continuous accuracy levels = no room for inaccuracy budget
management!
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Quadratic case Theoretical results and resulting algorithms

Continuous accuracy levels (3)

—
—

1

FOM

CG CGR FOM CG CGR

Figure: Exact bounds, x(A) = 10!, e = 1073 (left), x(A) = 10%, € = 107> (right);
continuous case

Want green (gap) and blue (stopping criterion error on the quadratic) close
to epsilon, and yellow (approximate error on the quadratic) close to green
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Quadratic case ~ Theoretical results and resulting algorithms

Multiprecision (1)

Focus on | multiprecision arithmetic ‘ Assume

@ 3 levels of accuracy (double, single, half)
@ a when moving from one level to the next

Use the sames matrices and final accuracies as above.
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Quadratic case Theoretical results and resulting algorithms

Multiprecision (2)

I ves gp
[ ol ent
vl

FOM CG CGR FOM CG CGR
Figure: Exact bounds, x(A) = 10!, e = 1073 (left), x(A) = 10°, € = 107> (right);

discontinuous case
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Quadratic case Practical algorithms

An beyond : inexact scalar products

relative residual
— — relative residual in IEEE double
——Iloss of orthogonality
-------- tolerance for inexact products

Just relax |
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Quadratic case Practical algorithms

Perfect in theory but...

@ The primal-dual norm ||E||s-1 4 is sometimes difficult to evaluate

@ The error bounds remain unfortunately hard to estimate
(they involve ||b||a-1, ||vj||a or ||pjl|a, which cannot be computed
readily in the course of the FOM or CG algorithm).

@ The termination test ||rk||a-1 < 14/€||b|| -1 also involves the
unavailable ||rk|| 4-1

Give up? Not quite. .. ‘

o the FOM error bound allows a growth of the error in ||rj||~! while CG
allows a growth of the order of ||r;||=2||p;||a instead.
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Quadratic case Practical algorithms

Adhoc approximations

Abandon theoretical but unavailable quantities — approximate them:

° |Ellata > Amin(A)7YE|2

o [Iplla~ /5 Te(A)pl2
(ok for p with random independent components)

o [Iblla-1 = v2[q(x)] = v/2lak] = v/]bTx]

¢ ||H;1|| = )\min](Hk) S Ami:-(A) (FOM Only)

. def v/ Amax/Amin—1
(] kmax ~ I|0g((e§ th é 73/ i
oglp Amax/)\min‘i’l

Termination test :

Qk—d — Gk < Le|qg]

for some stabilization delay d (e.g. 10)
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Quadratic case Practical algorithms

Does it still work (continuous accuracy levels)?

1

FOM

cwn Hleln

Figure: Exact bounds, k(A) = 10!, e = 1073 (left), x(A) = 10°, € = 107> (right);
continuous case
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Quadratic case Practical algorithms

Does it still work (multiprecision)?

ew LR
FOM CG CGR FOM CG CGR

Figure: Approximate bounds, k(A) = 101, ¢ = 1073 (left), k(A) = 105, ¢ = 107°
(right); multiprecision
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Smooth non-convex case

Outline for section 3

© Smooth non-convex case
@ Convergence analysis
@ Numerical experiments
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Smooth non-convex case

Consider

min,cgrn f(x).

The dynamic accuracy setting of trust-region methods [CGT 2000], it is
assumed that

@ The value of the objective can be approximated with a prespecified
level of accuracy wr :

|f(x,wr) — F(x,0)] <ws and f(x,0) = f(x)

e Following [Carter 1993; G., L.N Vicente and Z. Zhang 2018], the case
where the gradient is inexact can be handled:

Ig(x, wg) — 8(x, 0)|| < wellg(x,wg)ll and g(x,0) = Vif(x)

We recall that the convergence at step k

IV f (i)l < 118, we i)l + 18 (xk; we k) — B(x, 0)|| < e.

is gained provided, for some constant kg, wg x < kg and

80 wg )l < 5
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TR with dynamic accuracy on f and g (algo TR1DA) (Step computation) ‘

Step 1 Check for termination. If k =0 or xx # xx_1, choose
wg k € (0, kg| and compute g, = g(x«, wg k) such that
18 (Xt we k) — 8(xk, 0)I| < wg k[ (x, we k)| Terminate if
0 ws )l < 15

Step 2 Step calculation. Sufficiently reduce the model
m(x,s) = fx + &l s+ 1sT Hys in the Trust-Region
{sk, ||sk|| < Ak} in the sense that

LA™

m(xc, 0) = m(xk, 5¢) > 3l1g | min [1E£7
A

Step 3 Evaluate the objective function. Select
w?k € <O no[m(xk, 0) — m(xk, sk)]] and compute

fi = FOx% + sk, wi ). If wi < wp ., recompute fi = F(xi,wf ) -



TR with dynamic accuracy on f and g (TR1DA) (Step acceptance) ‘

Step 4 Acceptance of the trial point. Define the ratio

f— f;F

m(xk, O) — m(xk, Sk) '

Pk =

If px > 1, then define X\ 1 = Xi + S and set wr jy1 = w;rk
Otherwise set Xy {1 = Xk, Wf k41 = Wf k and Wg k11 = Wg k-

Step 5 Standard trust-radius update.

Set
[Ak,0) if px > 2, S
Api1 €9 [0k Ak) if pk € [n1,m2), \
1Bk, A i pe<m.

Increment k by 1 and go to Step 2.



Smooth non-convex case Convergence analysis

Assumptions

AS.1: The objective function f is twice continuously differentiable
in R” and there exist a constant ky > 0 such that
|V2f(x)|| < ky for all x € R".

AS.2: There exists a constant ry > 0 such that ||Hk|| < Ky for all
k > 0.

AS.3 There exists a constant Koy such that (x) > ki for all
x € R".

We can bound the accuracy on the model w.r.t the exact function:

Suppose AS.1 and AS.2 hold. Then, for each k > 0,
|F Ok + i) = m(x, i)l < [ = F(xi)] + g8 0k, wg i) [| Ak + kv AR

for kyy = 1+ max[ky, kv).
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Smooth non-convex case Convergence analysis

The observed p can be interpreted as a true function versus model
reduction

We have that, for all kK > 0,

max [|fi — f(xi)], | — F(xk + si)|] < mo [m(x, 0) — m(xic, s)]
and

f(Xk) — f(Xk a4F Sk)
m(xk, 0) — m(x, sk

pk > m1  implies that ) >n1 —2n > 0.

Proof. This follows from the accuracy management and from
fi — fif () = FO + s)
m(xk,0) — m(xk,sk)  m(xk,0) — m(x, sk)
[ — F(xk)] + [|kar — f(xk + sk)]
m(xk, 0) — m(xx, sk)

Pk =

0
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Smooth non-convex case Convergence analysis

Suppose AS.1 and AS.2 hold, and that g(xk,wg k) # 0. Then

Ag < M ;(1—771)—770—@] implies that Axi g > Ay
RHV
Proof.
‘ _ 1| < |fk+ — f(Xk + Sk)’ + ’f(Xk + Sk) — m(xk,sk)|
Pk = m(xk, 0) — m(x, sk)
kg8 (xk, we k)| Ak + KHv A
= < g (xk, we k)| Ak
< 2no+2/ﬁg+2/@Hv7”§(Xk’:}g Il
< 1—m
where we used 19 + kg < (1 —12). O
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Smooth non-convex case Convergence analysis

Suppose Ay > fe. The TR1DA algorithm produces an iterate x

1 . def 2(f(x0)—Kiow)(1+~, 1
such that ”VXf_(xk)|] < ¢ in at most 75 & 2 0()771_12770))(9 5) . =
successful iterations, and at most

def log 3 1 Ay
= 1-— I — 3.3
Tlot = 75 ( log 72) T Tlogral 8 ( fe (33)

iterations in total.

Proof.
f(XO) — Rlow > Z [f(XJ) - f(XJ-H-)]
JESK
_ . g(Xj,wg j
> 40m— 2m) Y 0.5, min | £
- 1+ [|Hj]|
JESk
— € inl——€ i
> 3[Skl(m 2770)1% min |:/<JHV(1 +Kg),m|n {AO,QG}

_ (m —2m0) . 1 2
= |Sk| 2(1+Hg) min HHv(l—l-/-ig)’g €

[ ]
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Smooth non-convex case Numerical experiments

Practical setting

In our numerical experiments with TR1DA
@ We perfom 20 runs on 86 Cuter problems

@ We assume that the objective function’s value f(x,wx) and the
gradient g(xx,wk) can be computed with corresponding accuracy
level equal to machine precision, half machine precision or quarter
machine precision

@ The computational cost of an operation is devided by 4 when passing
from one level to the immediate next one: half precision corresponds
to double-precision costs divided by 16

@ Hessian approximation are obtained with a limited-memory symmetric
rank-one (SR1) quasi-Newton update
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Smooth non-convex case Numerical experiments

Practical setting

To set the stage, our first experiment starts by comparing three variants of
the TR1DA algorithm:
e LMQN: a version using ws = wg = 0 for all k (i.e. using the full
double precision arithmetic throughout),
o LMQN-s: a version using single precision evaluation of the objective
function and gradient for all k,
o LMQN-h: a version using half precision evaluation of the objective
function and gradient for all k.

Simple minded approach: expensive parts of the optimization
calculation conducted in reduced precision no further adaptive

accuracy management.
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Smooth non-convex case Numerical experiments

Simple approach

relative to LMQN

€ Variant nsucc its. costf costg | its. costf  costg
1le-03 LMQN 82 41.05 42.04 4204
LMQN-s 78 4140 42.60 4260 | 1.03 1.04 1.04
LMQN-h 22 1695 112 1.12 | 097 0.06 0.06

le-05 LMQN 80 46.34 47.38 47.38
LMQN-s 48 47.79 48.96 48.96 | 1.08 1.08 1.08
LMQN-h 10 1780 1.18 1.18 | 1.38 0.08 0.08

le-07 LMQN 67 62.76 63.85 63.85
LMQN-s 26 2828 2896 2896 | 0.82 0.81 0.81
LMQN-h 6 1583 1.05 1.05| 097 0.06 0.06

Table: Results for LMQN-s and LMQN-h compared to LMQN

@ Quickly decreasing robustness when a tight accuracy is demanded

@ In most cases, | no improvement |, in costf and costg

@ When LMQN-h happens to succeed its cost is very low
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Smooth non-convex case Numerical experiments

Two variant of TR1DA

o LMQN: as above,
@ iLMQN-a: a variant of the TR1DA algorithm where

wr e =min[L, En1(me(0) — mi(se))] and wg e = 3r,.
o iLMQN-b: a variant of the TR1DA algorithm where,

wr e =min[L, &n(m(0) — mi(se))] and wg o = min[r,, wr k]
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Smooth non-convex case Numerical experiments

Variable precision approach

relative to LMQN

€ Variant nsucc its. costf costg its. costf  costg
1le-03 LMQN 82 41.05 42.04 4204
iLMQN-a 80 50.05 9.88 6.11 1.23 0.24 0.15
iLMQN-b 76 5267 1385 334 136 0.35 0.08
le-05 LMQN 80 46.34 47.38 47.38
iLMQN-a 75 7592 36.21 2477 140 0.63 0.42
iLMQN-b 63 7257 3985 460 1.78 0.95 0.11
le-07 LMQN 67 62.76 63.85 63.85
iLMQN-a 47 65.83 58.97 3750 1.18 1.03 0.65
iLMQN-b 40 8735 95.09 552 139 145 0.09

Table: Results for the variable-precision variants
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Smooth non-convex case Numerical experiments

Summary of the experiments

For e = 1073 or 107, inexact variants iLMQN-a and iLMQN-b

perform well in cost for gradient and function

@ iLMQN-a appears to dominate iLMQN-b in the evaluation of the
objective function

@ iLMQN-b shows significantly larger savings in the gradient evaluation

costs

@ When the final |accuracy is tigther‘ inexact methods appear to loose
their edge in robustness. Gains in function evaluation costs disappear

@ Comparison of iLMQN-a and even iLMQN-b with LMQN-s and
LMQN-h clearly ’favours the new methods ‘
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Conclusions and perspectives

Outline for section 4

@ Conclusions and perspectives
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Conclusions and perspectives
Conclusions and perspectives

Summary:

e Optimization-focused theory for with inexact functon/gradient
evaluation
@ Theoretical gains substantial

@ Translates well to practice after approximations
Perspectives:

@ More general (controlable)
@ Probabilistic error specification

Thank your for your attention!
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