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Loss/Risk/Likelihood landscapes in statistical inference

I A common path to solve a statistical task, say parameter
estimation (a.k.a learning), is through minimizing of a
risk/loss (or maximizing a likelihood)

I One typically would want to minimize the true risk/loss (or
population risk/loss), which is given by

R(θ) = E [L(X , θ)] (1)

I Here θ is a parameter in RN , to be estimated, by minimizing
R(θ)

I L is a loss function (for instance the negative of a
log-likelihood), and X is the data, in RD .
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Loss/Risk/Likelihood landscapes in statistical inference

I Obviously the population risk in unknown.

I But say an i.i.d sample of the distribution (xi )1≤i≤M , is given.

I So one tries to minimize the empirical risk, rather than the
population risk

R̂M(θ) =
1

M

M∑
i=1

L(xi , θ) (2)

I Note: Here N is the dimension of the parameter, D the
dimension of the data, and M the size of the sample.
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Loss/Risk/Likelihood landscapes in statistical inference

Thus the natural questions are

I The Information Theory question (a la Shannon) : Is there
any statistical procedure that can work? or is there an
information theoretical threshold?

I The statistical (or architecture) question: Is the minimization
of our R(θ) a good strategy to estimate (learn) θ?

I i.e. Is our statistical procedure well chosen, what is its
performance?, if we are ambitious: how to chose a
near-optimal statistical procedure?

I In ML terms, this is the ”architecture” question.
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Loss/Risk/Likelihood landscapes in statistical inference

I Once the choice of the statistical procedure is done: Can the
minimization of R̂M(θ) be a good substitute for the
minimization of R(θ), in what regime for N,D and M?

I in ML terms, this is the ”generalization” question

I The algorithmic (or optimization) question: How can one find
the minimum of R̂M(θ)? Choice of the optimization
algorithm? Guarantee of its performance?

I In ML terms this is the ”training” question
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Loss/Risk/Likelihood landscapes in statistical inference

I The function R̂M is a smooth random function of many
variables.

I It is most often non-convex so its optimization might be
difficult.

I A first question is then to understand the complexity of the
topology/geometry of the random landscape defined by R̂M(u)

I Is there a glass phase? What is the topology of its level sets?
How many critical points? How many minima? Are the deep
minima close the true value of the parameter we need to
estimate?
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I The next question is to understand the performance of natural
algorithms to explore this landscape and minimize R̂M(u)

I For instance: Stochastic Gradient Descent, Gradient Descent,
Langevin dynamics ?

I Role of algorithm, role of initialization, role of SNR (size of
data)?



Loss/Risk/Likelihood landscapes in statistics

I The next question is to understand the performance of natural
algorithms to explore this landscape and minimize R̂M(u)

I For instance: Stochastic Gradient Descent, Gradient Descent,
Langevin dynamics ?

I Role of algorithm, role of initialization, role of SNR (size of
data)?



Loss/Risk/Likelihood landscapes in statistics

I The next question is to understand the performance of natural
algorithms to explore this landscape and minimize R̂M(u)

I For instance: Stochastic Gradient Descent, Gradient Descent,
Langevin dynamics ?

I Role of algorithm, role of initialization, role of SNR (size of
data)?



Topology of smooth functions: Morse Theory

I Consider a smooth real-valued function f on the N
dimensional compact manifold M
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Topology of smooth functions: Morse Theory

I Can one then understand the topology of its sub-level sets:

A(u) = {x ∈ M, f (x) ≤ u} (3)

I For instance, can one compute the Euler characteristic of the
sub-level sets: χ(A(u)) ?

I Can one compute the number of critical points of f , say
Crit fN,k(B) the number of critical points of f on the manifold
M, of index k and with value in a subset B of the real line?

I Morse inequalities give constraints on these numbers in terms
of basic topological invariants (the Betti numbers), under the
assumption that f is ”generic”, i.e. that the Hessian of f is
non-denegerate at every critical point. (f is a Morse function).
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Simple functions are not that simple

I Consider the following (seemingly trivial) situation: the
manifold M has a trivial topology, say M is the unit sphere
SN−1 in N dimensions.

I Also assume that the function f is the simplest possible
function, say a homogeneous polynomial of degree p.

I How topologically complex can f be, if N diverges (and p is
fixed)?

I Obviously not very complex if p = 1 or p = 2 !
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Simple functions are not that simple

I But if p ≥ 3, all hell breaks loose! Cubics can be terrible.

I The maximal (finite) number of critical points for a
homogeneous polynomial of degree p is
2[(p − 1)N−1 + ...+ (p − 1) + 1]

I There exists such a ”worst-case” polynomial ! (Khozasov,
2018). So the worst homogeneous polynomials of degree
p ≥ 3 are exponentially complex! (the worst complexity is
thus roughly log(p − 1))
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Sure, but this is only a worst-case!

I This is only a worst case scenario: let’s be reasonable and pick
the polynomial f to be more generic, say random! Assume the
coefficients of f to be i.i.d Gaussian N(0, 1)

I Then f is also exponentially complex when N diverges!

I The (annealed) complexity is roughly half of the worst case.

I How do we know? Two ingredients: the Kac-Rice formula
plus Random Matrix Theory.

I For Kac-Rice formula, see the books by Azais and Wschebor,
and by Adler and Taylor.
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The Kac-Rice formula

I Consider a smooth random Gaussian function f on the N
dimensional compact manifold M

I The version of the Kac-Rice formula we will need reads

E [Crit fN,k(B)] =

∫
B

∫
M
ak(x , u)φx(u, 0)dxdu (4)

I where

ak(x , u) = E
[
| det∇2(f )(x)|1i(x)=k ,

∣∣f (x) = u,∇f (x) = 0
]
(5)

I where i(x) is the index of the Hessian of f at x , and φx(u, v)
is the density of the law of the gaussian vector (f (x),∇f (x))

I In fact Kac-Rice formulae also give higher moments of the
number of critical points, and the Euler characteristic of level
sets.
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The link with Random Matrix Theory

I The important message: Kac-Rice (in high dimension) is a
powerful link between questions of random geometry and
Random Matrix Theory (RMT).

I The link with RMT is that this formula reduces the study of
the moments of the number of critical points to the
understanding of the distribution of the absolute value of the
determinant of the Hessian of f at x conditionally on x being
a critical point, and on f (x) = u

I This is the law of a NxN Gaussian random real symmetric
matrix.

I Its covariance structure defines a 4-tensor, which is
computable by differentiating the Covariance function C (plus
some linear algebra to take the conditioning into account).
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The link with Random Matrix Theory

I So the covariance function C defines a Random Matrix model
of Gaussian matrices, with dependent entries in general

I This class of random matrix models is hard in general. See
the recent work by Laszlo Erdos and his collaborators.

I But for important classes of examples, the RMT model is
tractable

I We will cover three classes of examples: Spherical
Spin-Glasses, Tensor PCA, and Generalized Linear Models
(one node networks).

I Hoping to understand more complex Machine Learning
networks in the near future
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tractable

I We will cover three classes of examples: Spherical
Spin-Glasses, Tensor PCA, and Generalized Linear Models
(one node networks).

I Hoping to understand more complex Machine Learning
networks in the near future



Example 1: Spherical Spin Glasses energy landscapes

I The Hamiltonian of the pure p-spherical spin glass is given,
for x ∈ SN−1(

√
N), by

H(x) =
1

N(p−1)/2

∑
i1,i2,...,ip

Ji1...ipxi1xi2 ...xip (6)

where the coupling constants J are i.i.d N(0,1).

I This Hamiltonian is (up to trivial normalizations) the random
homogeneous polynomial of degree p mentioned above!

I We understand the (annealed) complexity of critical points of
fixed index below a given level, the topology of the level sets,
the quenched complexity at very low energy levels, the
absolute minimum (the ground state), the lowest local
minima... See Auffinger-BA-Cerny (2013), Subag(2015),
Subag-Zeitouni (2017)
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Example 1: Spherical Spin Glasses Gibbs measures at low
temperature

I Understanding precisely the bottom of this energy landscape
gives very sharp information on the Gibbs measure at low
temperature. (See Subag 2017).

I It gives a precise detailed geometric picture of the 1 RSB
phase (1 step Replica Symmetry Breaking)

I This description is much more precise than the one given by
the Parisi description of the order parameter, i.e. the overlap
distribution. For instance, it implies that there is no chaos in
temperature.
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Example 1: Spherical Spin Glasses Gibbs measures at low
temperature

I This question can also be studied for certain general (i.e.
mixed) spherical spin glass models. This corresponds to non
homogeneous polynomials. See Auffinger-BA(2013), Subag
(2018), BA-Subag-Zeitouni (2019)

I But in the mixed case, a lot more needs to be done.

I For instance, to understand the quenched complexity in
general cases, and to cover Full RSB cases.

I The problem here is that the Kac-Rice formula is ”annealed”,
it deals only with moments.

I If you want to jump in: try a mixture of degree 3 and degree
16.
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Example 2: One important ”hard” statistical example:
Tensor PCA

I One observes an M-sample of a ”noisy” p-tensor in N
variables Ti = λv⊗p + Zi

I Here v is a fixed unknown vector on the unit sphere SN−1,
and the Zi ’s are random i.i.d centered p-tensors.

I λ is a signal-to-noise ratio.

I The objective is to detect and recover (i.e. estimate) v .

I The same question could be asked if the signal were a low
rank tensor (rather than a rank one tensor as here).



Example 2: One important ”hard” example: Tensor PCA

I We assume that the noise Z is Gaussian, and that its entries
are i.i.d N(0,1).

I We assume no prior information on the spike v ∈ SN−1, i.e.
our prior is the uniform measure on SN−1

I The problem is well studied, for instance by
Montanari-Reichman-Zeitouni 2015, Ge-Ma 2016,
Montanari-Richard 2016, T. Lesieur, L. Miolane, M. Lelarge,
F. Krzakala, L. Zdeborova, 2017, and Perry-Wein-Bandeira
2017
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Example 2: The three thresholds for Tensor PCA

I Question 1: Detection, and the IT threshold.

I Is it possible to detect the signal? i.e the TV distance
between the distribution with a SNR λ > 0 and the
distribution with no signal λ = 0, going to 0 or not?

I Question 2: Recovery, and the statistical threshold.

I Pick a statistical method (say MLE). Above what threshold
for the SNR λ is the estimator of the signal v better than
random? When is it converging to the true v (strong or full
recovery)

I Question 3: Computation. The algorithmic or computational
threshold.

I Pick a computational algorithm (say GD, or SGD), for what
SNR does it recovers the signal, in short time scales?
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Example 2: The three thresholds for Tensor PCA

I Question 1: the detection threshold.

I With the proper normalization λIT = 1 Below this threshold,
the two distributions (with a signal or without) are
indistinguishable. Above it, their distance remains
(asymptotically) positive.

I Question 2: the statistical threshold for (partial) recovery by
MLE.

I λMLE = λIT = 1

I When it is possible to detect the signal, it is possible to
recover it (partially) by the plain vanilla method, MLE!

I This Question 2 is where the Kac Rice formula is useful.

I See BA-Montanari-Mei-Nica (2019),
Ros-BA-Biroli-Cammarota (2019)
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Example 2: The GAP

I Question 3: the algorithmic or computational threshold and
the computation/statistical GAP.

I The simple optimization algorithms to find the MLE (GD,
Langevin, SGD) work in short time scales only when the SNR
is larger than N(p−2)/2 (see BA-Ghessairi-Jagannath 2019).

I This is the so-called computational/statistical GAP.

I This threshold is also the threshold for many other algorithms
(like Approximate Message Passing, see Lesieur et al 2017))

I But there are other less naive algorithms that work better, i.e.
above a lower threshold N(p−2)/4

I These include: semidefinite relaxations (the SOS hierarchy)
see Bandeira et al 2017, the Kikuchi hierarchy spectral
algorithms (see Wein, Al Alaoui, Moore 2019), the replicated
gradient descent (Ros, Biroli, Cammarota 2019)
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Example 2: MLE for Tensor PCA

I This estimator vMLE is obtained by solving the following
optimization problem

I Find the minimum of R̂M(u) = − 1
M

∑M
i=1 < Ti , u

⊗p > for
u ∈ SN−1

I R̂M is thus the following homogeneous random polynomial of
degree p

R̂M(u) = λ < v , u >p +
∑

i1,i2,...,ip

Zi1,i2,...,ipui1ui2 ...uip (7)

I Obviously here one can assume that M = 1 by changing the
signal-to-noise ratio λ to λ

√
M

I We can also assume that the unknown signal is v = e1 (by
invariance by rotation of the distribution of the Gaussian
noise, and of the uniform prior). so that

R̂(u) = λup1 +
∑

i1,i2,...,ip

Zi1,i2,...,ipui1ui2 ...uip (8)
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Example 2: MLE for Tensor PCA

I Without a signal, i.e. when λ = 0, the function R̂M(u) is well
known. It is the p-spin spherical Hamiltonian! We know it is
complex!

I Does this likelihood function stay complex when the SNR is
present? when it is large?

I We need to understand if the global minimum of R̂ is close to
the signal v to check partial recovery.

I But we will see that this function is very complex and has
exponentially many local minima!

I Where is the global minimum? Close to the signal? or lost in
the entropy of the equator?



Example 2: MLE for Tensor PCA

I Without a signal, i.e. when λ = 0, the function R̂M(u) is well
known. It is the p-spin spherical Hamiltonian! We know it is
complex!

I Does this likelihood function stay complex when the SNR is
present? when it is large?

I We need to understand if the global minimum of R̂ is close to
the signal v to check partial recovery.

I But we will see that this function is very complex and has
exponentially many local minima!

I Where is the global minimum? Close to the signal? or lost in
the entropy of the equator?



Example 2: MLE for Tensor PCA

I Without a signal, i.e. when λ = 0, the function R̂M(u) is well
known. It is the p-spin spherical Hamiltonian! We know it is
complex!

I Does this likelihood function stay complex when the SNR is
present? when it is large?

I We need to understand if the global minimum of R̂ is close to
the signal v to check partial recovery.

I But we will see that this function is very complex and has
exponentially many local minima!

I Where is the global minimum? Close to the signal? or lost in
the entropy of the equator?



Example 2: MLE for Tensor PCA

I Without a signal, i.e. when λ = 0, the function R̂M(u) is well
known. It is the p-spin spherical Hamiltonian! We know it is
complex!

I Does this likelihood function stay complex when the SNR is
present? when it is large?

I We need to understand if the global minimum of R̂ is close to
the signal v to check partial recovery.

I But we will see that this function is very complex and has
exponentially many local minima!

I Where is the global minimum? Close to the signal? or lost in
the entropy of the equator?



Example 2: MLE for Tensor PCA

I Without a signal, i.e. when λ = 0, the function R̂M(u) is well
known. It is the p-spin spherical Hamiltonian! We know it is
complex!

I Does this likelihood function stay complex when the SNR is
present? when it is large?

I We need to understand if the global minimum of R̂ is close to
the signal v to check partial recovery.

I But we will see that this function is very complex and has
exponentially many local minima!

I Where is the global minimum? Close to the signal? or lost in
the entropy of the equator?



Example 2: MLE for Tensor PCA

I Without a signal, i.e. when λ = 0, the function R̂M(u) is well
known. It is the p-spin spherical Hamiltonian! We know it is
complex!

I Does this likelihood function stay complex when the SNR is
present? when it is large?

I We need to understand if the global minimum of R̂ is close to
the signal v to check partial recovery.

I But we will see that this function is very complex and has
exponentially many local minima!

I Where is the global minimum? Close to the signal? or lost in
the entropy of the equator?



Example 2: Landscape complexity for MLE in Tensor PCA

I Use Kac-Rice again!

I The RMT problem brought up by the Kac-Rice formula is
here the following: understand the spectrum of a rank one
perturbation of the GOE.

I Using Kac-Rice, the question becomes: when does the top
eigenvalue of a spiked GOE get out of the bulk of the
spectrum?

I This is well understood, as the BBP transition.

I There is a long series of works on this type of questions, first
asked by I. Johnstone, and started in 2005 in BA-Baik-Peche,
continued by S. Peche, M. Capitaine, Benaych-Georges, D.
Feral, C. Donati-Martin.

I The important result here is an LDP for the top eigenvalue
proven by M. Maida in 2007.
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Example 2: Landscape complexity for MLE in Tensor PCA

I The total complexity is always exponential in N.

I Indeed, close enough to the equator, the function is close to a
pure spherical spin glass. So it is complex there, whatever the
value of the SNR..

I When λ > 1 a ring of critical points appears at a positive
latitude (closer to the signal than a random point) which
contains the absolute minimum (the MLE estimator). The
number of critical point on this ring is sub-exponential.

I When λ grows, the latitude of this ring of critical points
increases, and the ring converges to the signal (the north
pole). The MLE converges to the signal (asymptotic strong
recovery)
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The complexity of the landscape of Tensor PCA

I For M a subset of [−1, 1] and E a subset of the real line, let
Crit(M,E ) be the number of critical points x ∈ SN−1 such
that x1 ∈ M and R̂M(x) ∈ E

I Theorem (GBA, Mei-Montanari, Nica, 2018):

lim sup
1

N
log E [Crit(M,E )] ≤ − inf(S(m, e),m ∈ M̄, e ∈ Ē )

(9)

lim inf
1

N
log E [Crit(M,E )] ≥ − inf(S(m, e),m ∈ Int(M), e ∈ Int(E ))

(10)



The complexity of the landscape of Tensor PCA

I The function S(m,e) is given by

S(m, e) = U(m) + Φ(e)− pλ2(m2p−2(1−m2)− (e − λmp)2

(11)

I Where, for |e| ≤ 2

Φ(e) =
e2

4
− 1

2
(12)

I and, for |e| ≥ 2

Φ(e) =
e2

4
− 1

2
− |e|

4

√
e2 − 4 + log(

√
e2

4
− 1 +

|e|
2

) (13)

and

U(m) =
1

2
(log(p − 1) + 1) + log(1−m2)) (14)



The complexity of the landscape of Tensor PCA

I An explicit result is also valid for the number of local minima.

I These results show an interesting transition

I When λ < λ1, there is an exponential number of critical
points (and local minima) in a band near the equator x1 = 0,
and nowhere else.

I When λ grows this band grows

I When λ1 < λ < λ2 a sub-exponential number of critical
points appear at a latitude x1 > 0 away from this band, but
the aboslute minimum is still at the equator.

I When λ2 < λ the minimum is achieved at this higher latitude.
Weak recovery is possible.

I In fact λ2 can be checked to be the IT threshold i.e. λ2 = 1.
So when detection is at all possible, the ML estimator can do
it!

I When λ tends to ∞ the latitude tends to 1: asymptotic
strong recovery
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Complexity is not the only hard problem for Tensor PCA

I The optimal threshold N(p−2)/2 results for the Gradient
Descent and Langevin dynamics for Tensor PCA model are
obtained in ”Thresholds for signal recovery via Langevin
dynamics” 2019 with Reza Gheissairi and Aukosh Jagannath,
and an upcoming work which give the same threshold for a
SGD algorithm.

I The performance of these simple optimization algorithms is
hampered by another important problem, different from the
landscape complexity, re initialization: ” Escaping mediocrity”

I Even in the simple phase of the topological transition, the
weakness of the signal in the region of maximal entropy for
the prior makes recovery impossible in polynomial time.

I Indeed if the drift induced by the signal is too weak, the
algorithm will linger too long near the equator, i.e. in an
exponentially complex landscape, close to the spherical spin
glass and will end up trapped by complexity for very long
times.
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Example 3: Landscape Complexity for the perceptron and
Generalized Linear Models

I Consider now the following random loss function

L1(x) =
1

M

M∑
µ=1

φ(ξµ.x) (15)

I where x ∈ SN−1, the data ξµ are i.i.d vectors in RN and φ is a
smooth activation function.

I Define also the ’planted” version

L2(x) =
1

M

M∑
µ=1

[φ(ξµ.x)− φ(ξµ.x
∗)]2 (16)

I where x∗ ∈ SN−1 is a planted signal
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Example 3: The perceptron and Generalized Linear Models

I These two random loss functions cover many well studied
estimation problems, depending an the activation function

I Linear regression (if φ is linear), phase retrieval (when φ is
quadratic), GLM, teacher-student network or one node
network, ...

I Huge literature, see for instance
Barbier-Krzakala-Macris-Miolane-Zdeborova (2018)

I Question 1: What is the complexity of these functions?

I Joint work with G. Biroli and A.Maillard, 2020. Submitted
tomorrow.

I Question 2: How hard is it to find the minimum in short time
scales, with GD or SGD algorithms randomly initialized?

I Current work with R. Ghessairi and A. Jagannath
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Example 3: Landscape complexity for GLMs

I Under natural smoothness assumptions on the activation
function, we can compute the complexity of the functions L1
and L2, in the high dimensional setting, where both N and M
tend to infinity with their ratio converging to α.

I We have to assume that the data is Gaussian. The ξµ are i.i.d
standard Gaussian in RN .

I Method: a simple extension of Kac-Rice to random functions
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natural RMT question?
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perturbations of general Wishart (or Pastur-Marchenko)
matrices
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Example 3: What is the RMT question for GLMs?

I The spectrum of these matrices is well understood when the
empirical measure of the entries of the diagonal D converge,
say to a measure ν.

I It is linked to free probability: it converges to the free
*multiplicative* convolution of the asymptotic spectral
measure ν and the Marchenko-Pastur distribution (with ratio
α).

I Spiking this matrix H by a rank one perturbation is also
understood, in fact the BBP transition started in 2005 with
the simplest version of this type of example, not with the
spiked GOE.

I What is still missing, but not for long, is an LDP for the
spiked eigenvalue. This will allow the understanding of the
complexity of local minima.
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Example 3: Results about annealed complexity

I We compute, for both functions L1 and L2, the limiting
annealed complexity in terms of a complicated variational
principle in the space of probability measures on the real line.

I Let B be a subset of the real line, and, as above, CritN,L1(B)
the number of critical points of the function Li with value in B

lim
N→∞

1

N
log E [CritN,L1(B)] = sup

ν,
∫
φ(t)dν(t)∈B

T1(ν)− αH(ν)

(18)

I Here H(ν) is the relative entropy of ν w.r.t. the standard
Gaussian measure N(0, 1)



Example 3: Results about annealed complexity

I We compute, for both functions L1 and L2, the limiting
annealed complexity in terms of a complicated variational
principle in the space of probability measures on the real line.

I Let B be a subset of the real line, and, as above, CritN,L1(B)
the number of critical points of the function Li with value in B

lim
N→∞

1

N
log E [CritN,L1(B)] = sup

ν,
∫
φ(t)dν(t)∈B

T1(ν)− αH(ν)

(18)

I Here H(ν) is the relative entropy of ν w.r.t. the standard
Gaussian measure N(0, 1)



Example 3: Results about annealed complexity

I We compute, for both functions L1 and L2, the limiting
annealed complexity in terms of a complicated variational
principle in the space of probability measures on the real line.

I Let B be a subset of the real line, and, as above, CritN,L1(B)
the number of critical points of the function Li with value in B

lim
N→∞

1

N
log E [CritN,L1(B)] = sup

ν,
∫
φ(t)dν(t)∈B

T1(ν)− αH(ν)

(18)

I Here H(ν) is the relative entropy of ν w.r.t. the standard
Gaussian measure N(0, 1)



Example 3: Results about annealed complexity

I We compute, for both functions L1 and L2, the limiting
annealed complexity in terms of a complicated variational
principle in the space of probability measures on the real line.

I Let B be a subset of the real line, and, as above, CritN,L1(B)
the number of critical points of the function Li with value in B

lim
N→∞

1

N
log E [CritN,L1(B)] = sup

ν,
∫
φ(t)dν(t)∈B

T1(ν)− αH(ν)

(18)

I Here H(ν) is the relative entropy of ν w.r.t. the standard
Gaussian measure N(0, 1)



Example 3: Results about annealed complexity

I T1 is a rather involved functional on the space of probability
measures on the real line

T1(ν) =
1 + logα

2
− 1

2
log[

∫
φ′(t)2dν(t)] + K (ν) (19)

I K (ν) is defined as a logarithmic potential

K (ν) =

∫
log |x −

∫
tφ′(t)dν(t)|dµν(x) (20)

I Here the measure µν is defined as the free multiplicative
convolution of the α Marchenko-Pastur distribution with the
image of ν by the map φ′′.
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Example 3: Results about annealed complexity

I One can check that this complexity is indeed zero for linear
and quadratic activations! So these models are indeed not
complex. It is known that optimization of L1 is not hard in
these cases.

I For what activations are these model complex? This question
is now reduced to this deep variational problem.

I The paper also computes the annealed complexity of L2 as an
even richer variational problem, including the latitude (i.e. the
correlation with the signal, as in the tensor PCA problem).

I We also compute the quenched complexity L1 and L2 using
the (non-rigorous) replicated Kac-Rice formula introduced in
the work with Biroli, Ros and Cammarota on Tensor PCA. We
will soon be able to compute the complexity of critical points
with fixed index, and thus of local minima.

I What about a Computational-Statistical gap for cases for the
landscape is complex? (ongoing work with
Ghessairi-Jagannath)
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