PHYSICS-INSPIRED ALGORITHMS

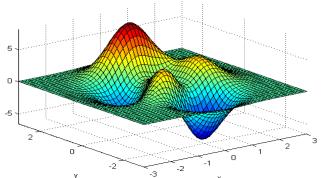
Nisheeth Vishnoi

Optimization and Sampling in ML

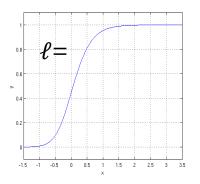
Given access to $f: \mathbb{R}^d \to \mathbb{R}$ Optimize $\min_{\theta} f(\theta)$

Sample θ with prob. $\propto e^{-f(\theta)}$

Typically, harder than optimization – but *robust*

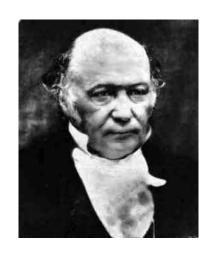


Availability of large, real-world datasets has given rise to complex objective functions in high dimensions



Two facets:

- 1. Develop methods
 (associate a physical meaning and search for the right equations of motion)
- 2. Prove guarantees, tune parameters $\theta^{t+1} = \theta^t + \eta^t G_f(\theta^t)$ (search for potential functions, "beyond worst case" assumptions on data)



HAMILTONIAN DYNAMICS & SAMPLING from CONTINUOUS DISTRIBUTIONS

Sampling from Continuous Distributions

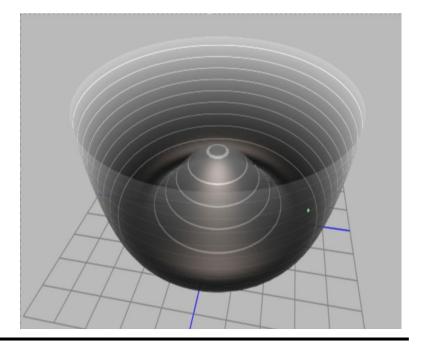
Given access to $f: \mathbb{R}^d \to \mathbb{R}$ Sample θ with prob. $\pi(\theta) \propto e^{-f(\theta)}$

Statistics, TCS, Optimization (vis annealing), Bayesian inference, Molecular dynamics ..

Iterative methods: MCMC+Metropolis

Propose: $\theta^{k+1} = \theta^k + G_f(\theta^k)$

Accept/Reject



Number of gradient (or function) evaluations to sample from smooth, strongly logconcave π (for smoothness/convexity = $\Theta(1)$):

- Random Walk Metropolis: d^2 [Gelman et al. '97]
- Unadjusted Langevin: d [Durmus, Moulines, '16]
- Underdamped Langevin: $d^{1/2}$ [Cheng et al. '17]

Hamiltonian Monte Carlo

[Duane et al. '87] No Accept/Reject step!

Define: $H(\theta, v) = f(\theta) + \frac{1}{2} ||v||^2$

In step i, sample $V_i \sim N(0, I_d)$

Obtain Θ_{i+1} by simulating Hamiltonian

Dynamics starting at (Θ_i, V_i) for time T

Fact: Invariant distribution $\propto e^{-f(\theta)}e^{-\frac{1}{2}||v||^2}$

$$\frac{d\theta(t)}{dt} = v(t)$$

$$\frac{dv(t)}{dt} = -\nabla f(\theta(t))$$

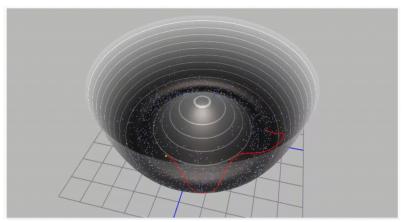
2nd-order Leapfrog integrator

Let
$$(\theta_0, v_0) = (\Theta_i, V_i)$$

For $\mathbf{j} = \mathbf{0}, \dots, \frac{T}{\eta} - 1$, do
$$\theta_{j+1} = \theta_j + \eta v_j - \frac{1}{2} \eta^2 \nabla f(\theta_j)$$

$$v_{j+1} = v_j - \eta \nabla f(\theta_j) - \frac{1}{2} \eta^2 \frac{\nabla f(\theta_{j+1}) - \nabla f(\theta_j)}{\eta}$$

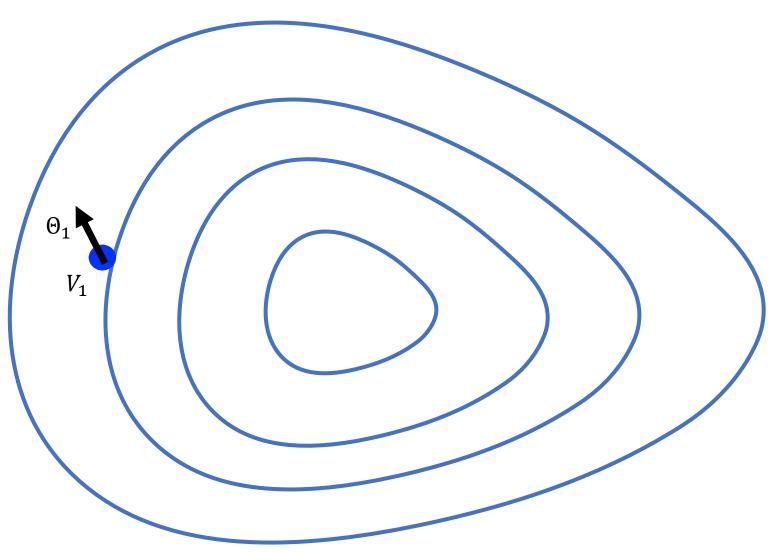
$$\Theta_{i+1} = \theta_{\underline{T}}$$



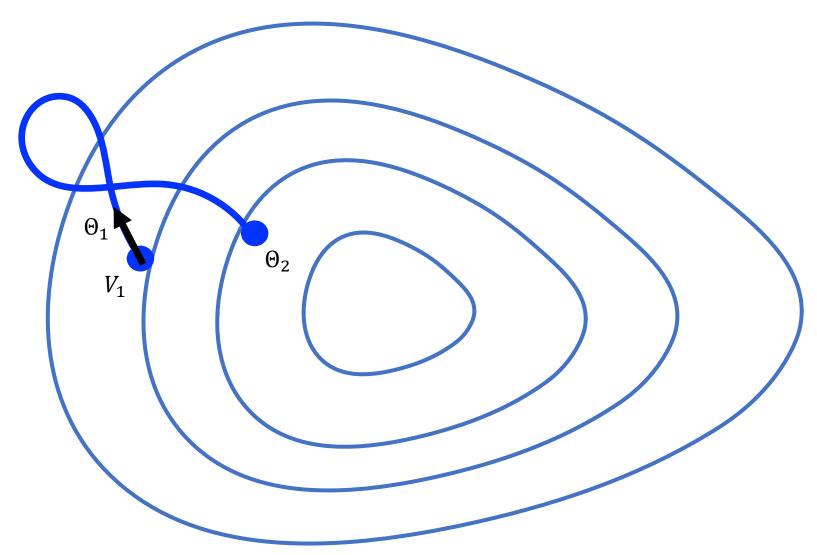
Widely deployed in practice – convergence bounds/tuning parameters?

(Informal) Conjecture: [Creutz, 1988]

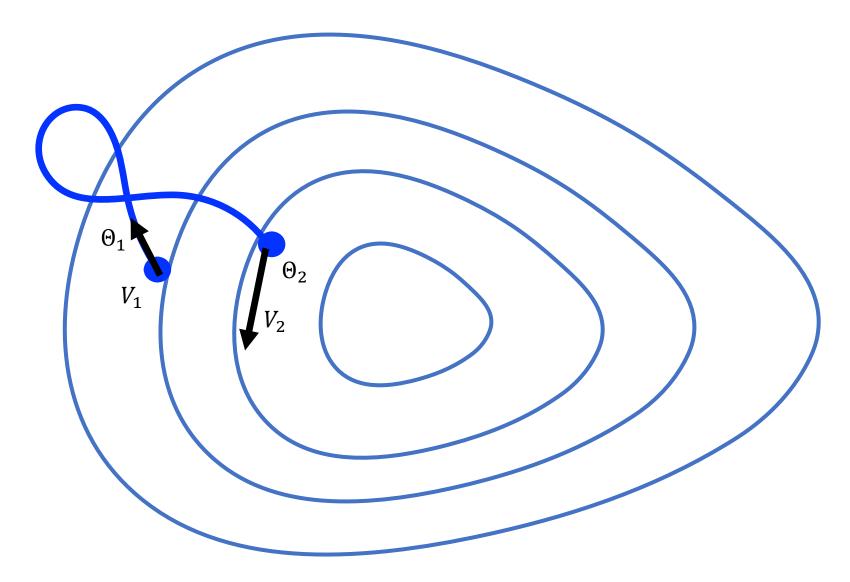
 $d^{1/4}$ gradient evaluations are sufficient for $2^{\rm nd}$ -order HMC to sample from O(1)-smooth, O(1)-strongly convex π with bounded higher-order derivatives



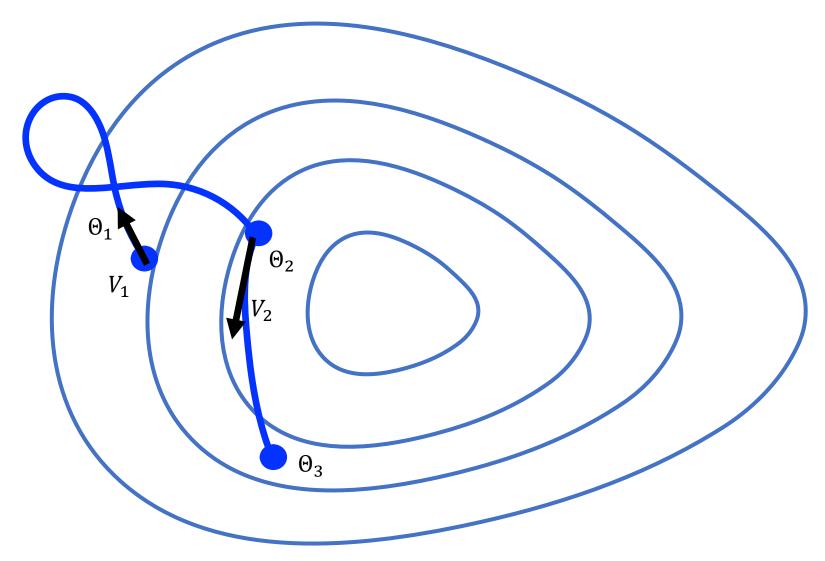
Step 1: sample $V_1 \sim N(O, I_d)$



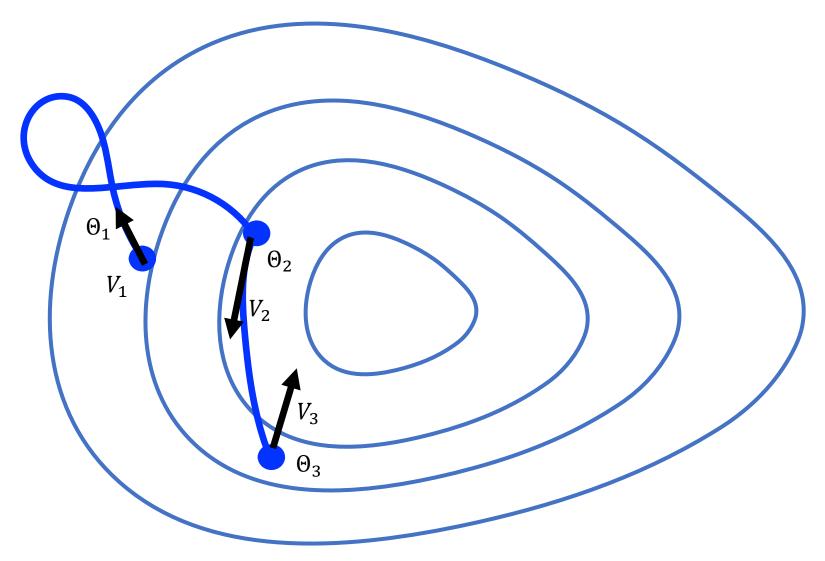
Step 2: Compute Hamiltonian trajectory for fixed time ${\cal T}$



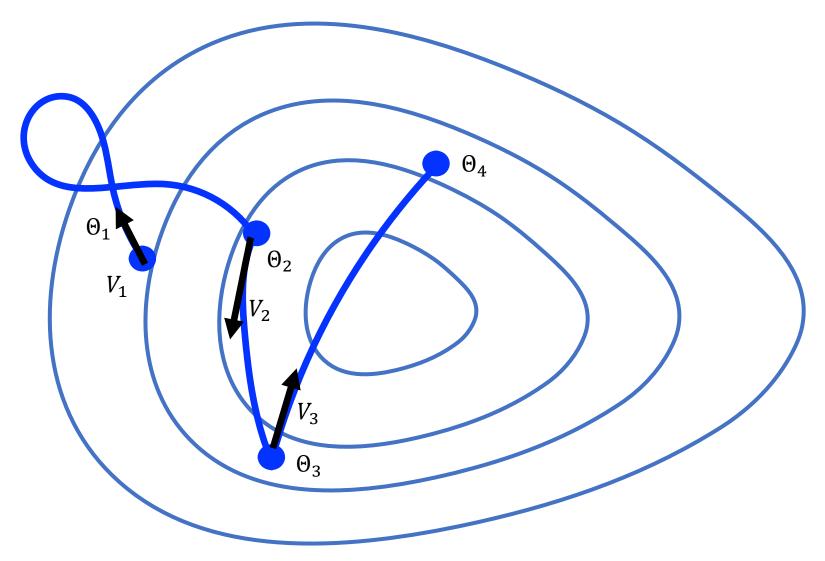
Step 3: Throw out old momentum and sample new independent momentum



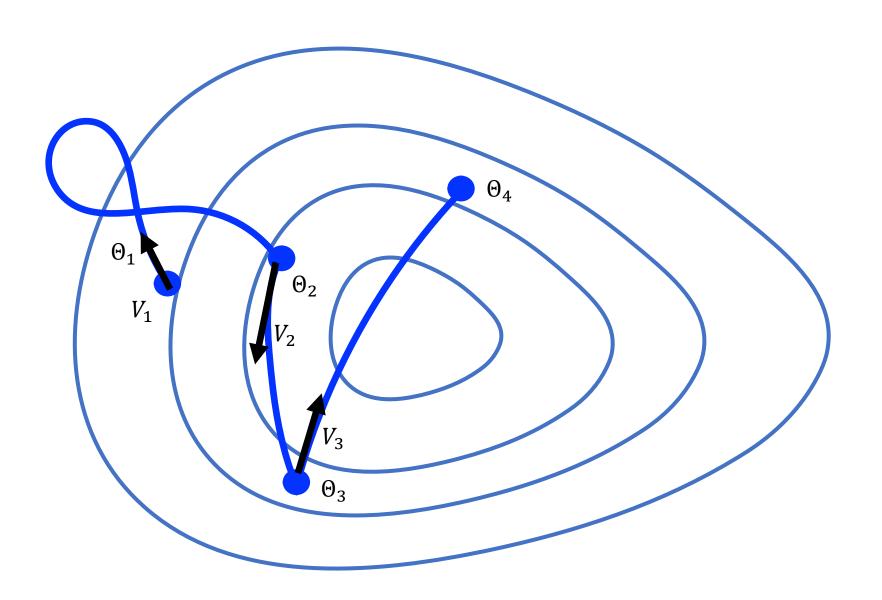
steps 4,5,...: iteratively repeat steps 1 and 2



Steps 4,5,...: iteratively repeat steps 1 and 2



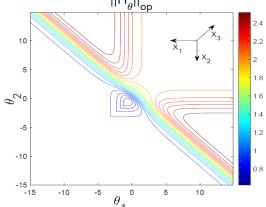
Steps 4,5,...: iteratively repeat steps 1 and 2



Confirming Creutz's Conjecture

[Mangoubi-V. NeurIPS '18] Strongly convex f + regularity conditions

HMC with Leapfrog Integrator requires (roughly) $d^{1/4}$ gradient evaluations



Bit more formally: Suppose that

1.
$$\frac{1}{10}I \leq \nabla^2 f(\theta) \leq 10I$$

2. $\nabla^2 f$ satisfies a Lipschitz condition for L_{∞} , r>0 and $x_1,\ldots,x_r\in\mathbb{S}^d$:

$$\left\| \left(\nabla^2 f(\theta_1) - \nabla^2 f(\theta_2) \right) v \right\|_2 \le L_{\infty} \left\| \mathsf{X}^\mathsf{T} (\theta_1 - \theta_2) \right\|_{\infty} \times \left\| \mathsf{X}^\mathsf{T} v \right\|_{\infty},$$

where $X \coloneqq [x_1, \dots, x_r]$

Then Leapfrog HMC requires $\tilde{O}(\max\left(d^{\frac{1}{4}},\sqrt{L_{\infty}}\right)\varepsilon^{-1/2})$ gradient calls to obtain a sample ε -close (in Wasserstein-2 metric) to π

Application of our result: Fast sampling from logistic "ridge" regression

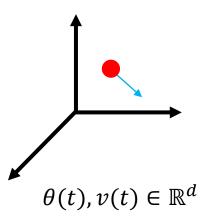
$$f(\theta) = \|\theta\|^2 - \sum_i y_i \, \log \ell(\theta^\top x_i) + (1 - y_i) \log \ell(-\theta^\top x_i)$$

$$L_\infty = \sqrt{C}, \, \text{where coherence } C \coloneqq \max_{i \in [r]} \sum_{j=1}^r \left| x_i^\top x_j \right|$$

Hamiltonian Dynamics

Setting:

- Particle with position $\theta(t)$ and momentum/velocity v(t)
- ullet Moves according to classical physics laws in a potential well f



Hamiltonian: $H(\theta, v) = f(\theta) + \frac{1}{2} ||v||^2$

Properties:

Time Reversible

Hamilton's Equations:

• Momentum:
$$\frac{d\theta(t)}{dt} = \frac{\partial H}{\partial v} = v(t)$$

• Preserves Hamiltonian (Energy):

$$\frac{dH}{dt} = \sum_{i} \frac{d\theta_{i}}{dt} \frac{\partial H}{\partial \theta_{i}} + \frac{dv_{i}}{dt} \frac{\partial H}{\partial v_{i}} = 0$$

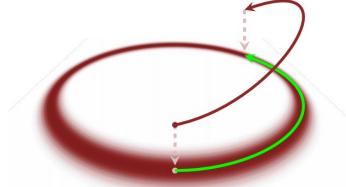
• Force: $\frac{dv(t)}{dt} = -\frac{\partial H}{\partial \theta} = -\nabla f(\theta(t))$ • Preserves Volume:

Vector field
$$F$$
 in $\mathbb{R}^d \times \mathbb{R}^d$ at (θ, v)
$$\frac{d\theta}{dt}, \frac{dv}{dt}$$

Check:
$$div F = \sum_{i} \frac{\partial}{\partial \theta_{i}} \frac{d\theta_{i}}{dt} + \frac{\partial}{\partial v_{i}} \frac{dv_{i}}{dt} = 0$$

Correctness of continuous-time HMC

Correct: Time reversible, energy-preserving, volume preserving (in "phase space")



Proof: Two steps in the HMC chain. Sufficient to that $e^{-H(\cdot,\cdot)}$ is invariant

Refresh Velocity: Only v is changing, independent of θ and sampled from the right marginal. Hence, $e^{-H(\theta,v)}=e^{-f(\theta)}e^{-\frac{1}{2}\|v\|^2}$ is invariant

Simulate Hamiltonian dynamics:

Partition the phase space into infinitesimal cubes and let C be one cube and (θ, v) be a point in C. The probability of being in C is proportional to $e^{-H(\theta, v)} \times \operatorname{vol}(C)$

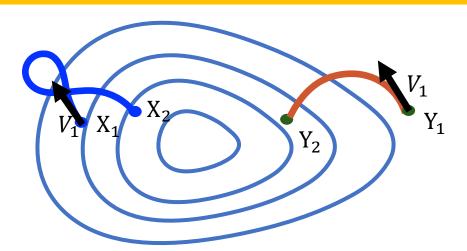
Since the Hamiltonian flow conserves the Hamiltonian (energy) and the volume, the probability of being in the image of C is also conserved (uses *time-reversibility* of Hamiltonian dynamics)

Coupling Bounds for Idealized HMC

- Two chains X_1, X_2, \dots and Y_1, Y_2, \dots with same transition kernel
- Choose a coupling so that $\|X_{i+1} Y_{i+1}\| \le c \|X_i Y_i\|$ for c < 1

Momentum (velocity) allows HMC to take long steps ...

Can we couple the momentum of the two (ideal) HMC chains in a way that leads to large (dimension independent) contractions over these long steps?



Hamiltonian trajectories contract for strongly convex potentials; \emph{c} independent of \emph{d}

Exercise:
$$f(\theta) = \sum_i c_i \theta_i^2$$
, $\frac{1}{10} \le c_i \le 10$

Example: Coupled Pendulums

- pendulums kicked with the same initial velocity
- distance between pendulums contracts for a long time
- difference between velocities increases during this time

Leapfrog Integrator

2nd-order Leapfrog integrator

For
$$\mathbf{j} = \mathbf{0}, \dots, \frac{T}{\eta} - 1$$
, do
$$\theta_{j+1} = \theta_j + \eta v_j - \frac{1}{2} \eta^2 \nabla f(\theta_j)$$

$$v_{j+1} = v_j - \eta \nabla f(\theta_j) - \left(\frac{1}{2} \eta^2 \frac{\nabla f(\theta_{j+1}) - \nabla f(\theta_j)}{\eta}\right) \approx \eta^2 \nabla^2 f(\theta_j) v_j = \eta^2 H(\theta_j) v_j$$

- Symplectic integrator: Approximately conserves target measure
 - volume is conserved in phase space
 - a perturbed Hamiltonian is conserved
- Only one gradient call per iteration

Bound numerical error for a given discretization η ?

Our Lipschitz Hessian Condition

Suppose "Euclidean Lipschitz" Hessian

$$\|(H(\theta_1) - H(\theta_2))v\|_2 \le L_2 \cdot \|\theta_1 - \theta_2\|_2 \cdot \|v\|_2$$

Turns out that numerical error: $\|\eta\big(H(\theta+\eta v)-H(\theta)\big)v\|_2 \leq L_2\cdot\eta^2\cdot\|v\|_2^2$

Here $v \sim N(0, I_d)$, so $||v||_2 \approx \sqrt{d}$, so $\eta \approx 1/\sqrt{d}$ leading to no better than \sqrt{d} bound!

Idea: Use a different norm ...

Infinity Lipschitz Hessian

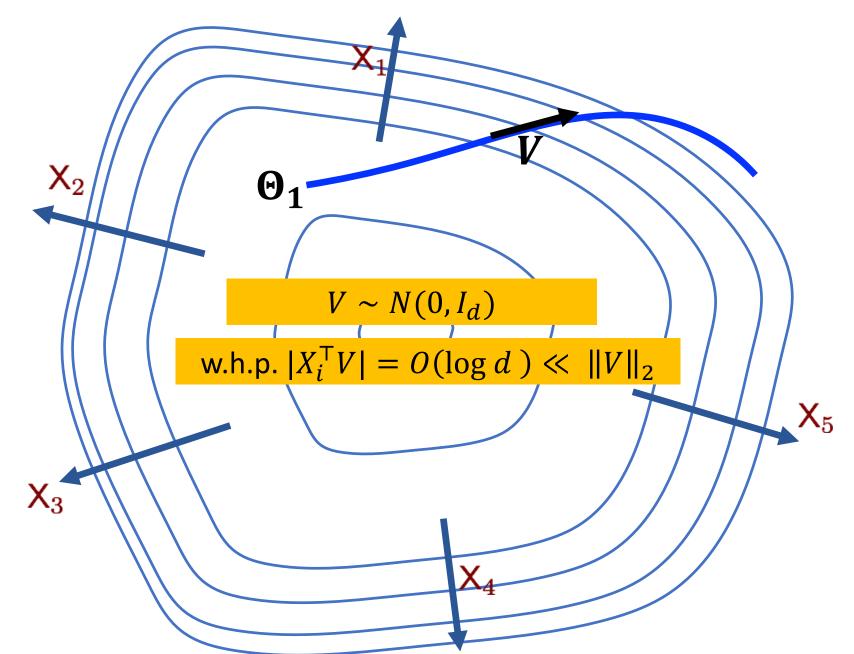
$$\|(H(\theta_1) - H(\theta_2))v\|_2 \le L_{\infty} \cdot \|\theta_1 - \theta_2\|_{\infty} \cdot \|v\|_{\infty}$$

Positive: $\|v\|_{\infty} pprox \sqrt{\log d}$, **Negative:** L_{∞} is large unless f is separable

Idea: transform the norm to align with the "data vectors"

We use: $\|X^T v\|_{\infty}$ where $X := [x_1, ..., x_r]$

Intuition



Concluding the Proof (for d = r)

We bound (inductively on j) the errors $\|\theta_j - \theta(\eta j)\|_2$ and $\|v_j - v(\eta j)\|_2$ by $O(\eta j \varepsilon)$, where $(\theta(t), v(t))$ is the continuous solution to Hamilton's equations with initial conditions in that phase. Since $\eta j \leq T = O(1), \ O(\eta j \varepsilon) = O(\varepsilon)$

- The error in the quadratic term of the velocity update is roughly $\left\| (\eta^2 H(\theta + \eta v_j) \eta^2 H(\theta)) v_j \right\|_2 \leq \eta^3 L_\infty \sqrt{d} \left\| \mathbf{X}^\mathsf{T} v_j \right\|_\infty^2$
- The invariance property of Hamiltonian mechanics implies v_j is roughly $N(0,I_d)$ at every point on the exact trajectory if HMC has a warm start
- Thus, $\|\mathbf{X}^{\mathsf{T}}v_j\|_{\infty} = O(\log(d))$ w.h.p., since by inductive assumption $\|v_j v(\eta j)\|_2 = O(\eta j \varepsilon) = O(1)$
- After T/η iterations, the errors sum to $\tilde{O}(\eta^2 L_\infty \sqrt{d})$. Choosing η to have error ε , # of gradients is $T/\eta = \widetilde{\Theta}(\varepsilon^{-1/2} d^{1/4} L_\infty^{1/2})$

LANGEVIN DYNAMICS, SIMULATED ANNEALING AND NOISY CONVEX OPTIMIZATION

Optimizing using Noisy Oracles

Input: Noisy approximation \widehat{F} to a convex function $F: \mathbb{R}^d \to \mathbb{R}$ with global minimum θ^*

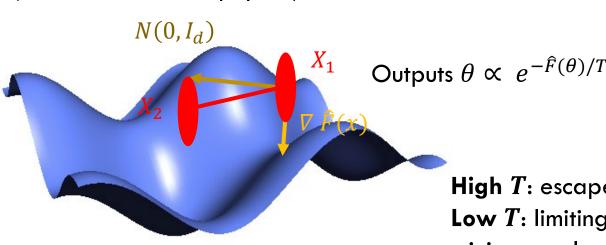
Goal: Find \hat{x} , s.t. $F(\hat{\theta}) - F(\theta^*) < \varepsilon$ for given $\varepsilon > 0$

Applications:

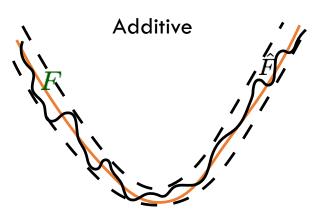
- Optimizing F when an accurate value of F is expensive to compute
- Optimizing non-convex functions which are close to a convex function

Algorithm: Langevin Dynamics

(Arises in statistical physics)

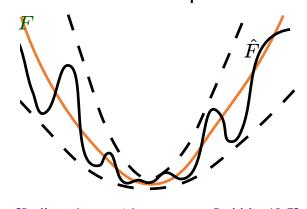


 $X_{i+1} = X_i - \eta \, \nabla \hat{F} (X_i) + \sqrt{2\eta T} \, N(0, I_d)$



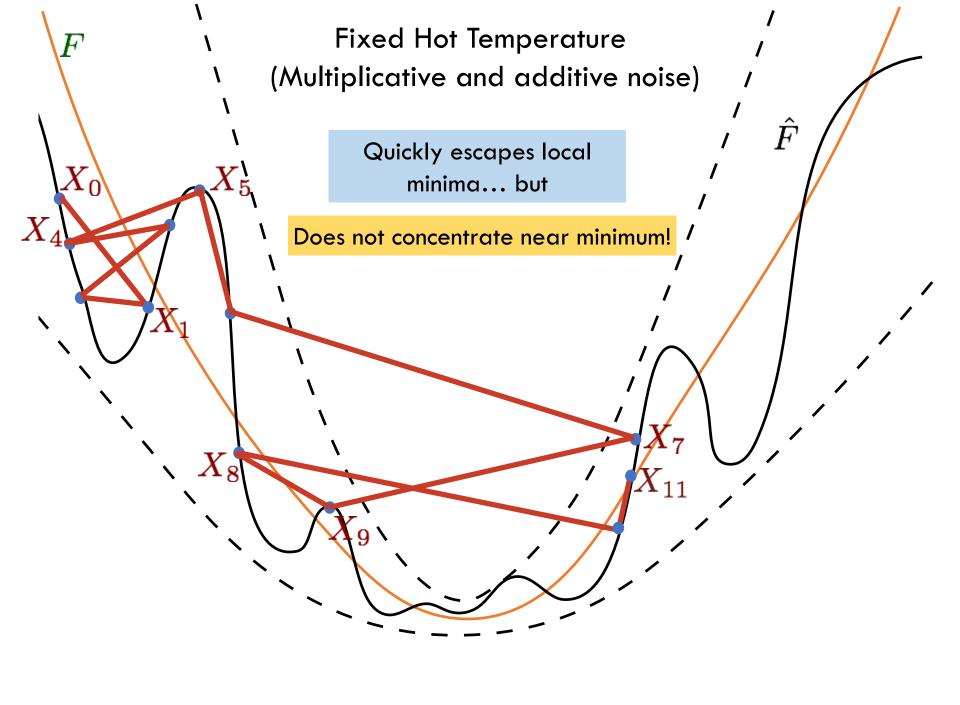
[Applegate-Kannan '91, Zhang et al. '17]

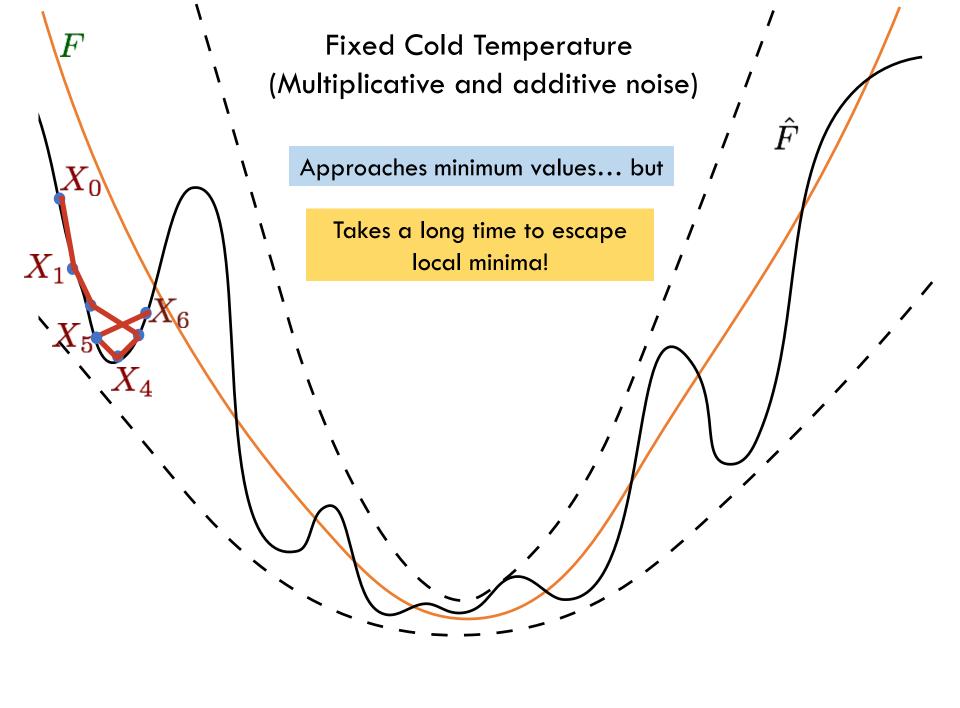
Additive & Multiplicative

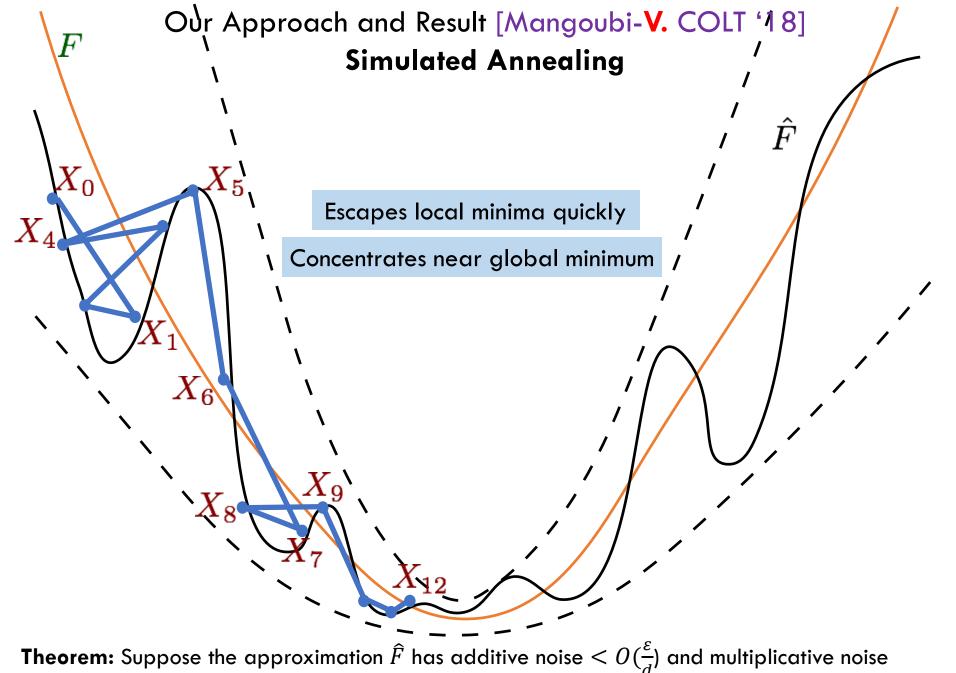


[Belloni-Liang-Narayanan-Rakhlin '15]

High T: escape local minima quickly **Low** T: limiting distribution concentrates near minimum value



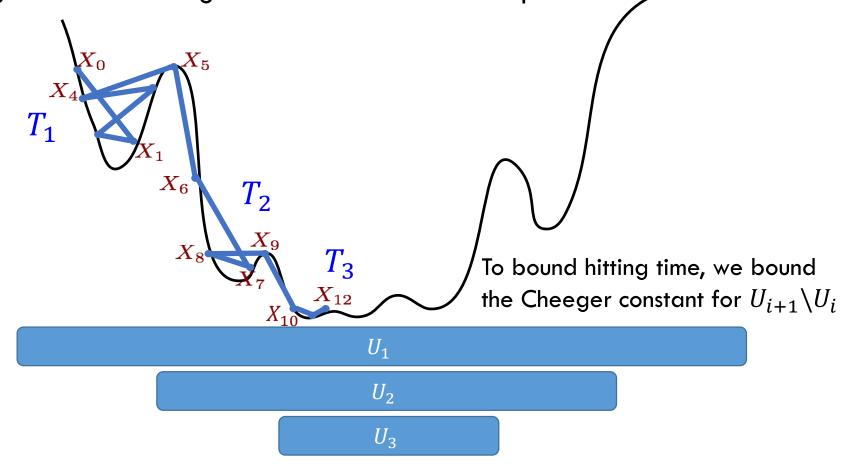




< $O(\frac{1}{d})$. Then, our algorithm can minimize F to accuracy ε in time that is polynomial in d

Proof Strategy

- 1. At epoch i+1: show that our algorithm remains inside U_i w.h.p.
- 2. Noise is lower than at previous i, since multiplicative noise decreases
- 3. A lower noise implies shallower local minima and therefore a fast hitting time even though we decreased the temperature! —



Conclusion

- Physics and physical systems (have been) and can be a great source of ideas and insights for
 - rigorous algorithm design
 - tuning parameters
 - identifying the right potential functions
 - obtaining "beyond worst case" assumptions on functions/data

- Other recent physics-inspired optimization and sampling algo.
 - Online sampling with O(1) update time [H.Lee-Mangoubi-V. NeurlPS '19]
 - Langevin dynamics for non-convex potentials [Mangoubi-V. COLT '19]
 - Sampling from polytopes [Mangoubi-V. FOCS '19]