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Nonconvex optimization

Problem: mxinf(x) f(+): nonconvex function

Applications: Deep learning, compressed sensing,
matrix completion, dictionary learning,
nonnegative matrix factorization, ...



Gradient descent (GD) [Cauchy 1847]
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Answer

Converges to first order

9 stationary points
Definition
e-First order stationary point (e-FOSP) : ||[Vf(x)|| < €
4 Concretely )
e-FOSP in O (Eiz) iterations
L [Folklore] Y
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FOSPs in popular problems

e Very well studied
* Neural networks [Dauphin et al. 2014]
e Matrix sensing [Bhojanapalli et al. 2016]
e Matrix completion [Ge et al. 2016]
Robust PCA [Ge et al. 2017]
e Tensor factorization [Ge et al. 2015, Ge & Ma 2017]

* Smooth semidefinite programs [Boumal et al. 2016]

e Synchronization & community detection [Bandeira et al. 2016, Mei et al. 2017]



Two major observations

* FOSPs: proliferation (exponential #) of saddle points
e Recall FOSP £ Vf(x) =0
e Gradient descent can get stuck near them

e SOSPs: not just local minima; as good as global minima
e Recall SOSP £ Vf(x) = 0 & VZf(x) = 0

4 Upshot )
1. FOSP not good enough
2. Finding SOSP sufficient,
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Does perturbed GD converge to SOSP efficiently?
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g Our result A

. = (polylog(d
Almost yes, in 0 (po 4 Zg( )
€

) iterations!




Accelerated gradient descent (AGD) [Nesterov 1983]

e Optimal algorithm in the convex setting
e Practice: Sutskever et al. 2013 observed AGD to be much faster than GD
e Widely used in training neural networks since then

e Theory: Finds an e-FOSP in O (Eiz) iterations [Ghadimi & Lan 2013]

* No improvement over GD



Question 2: Does essentially pure AGD find
SOSPs faster than GD?

* Our result: Yes, in O (pOlylog(d)) steps compared to O (pOlylog(d)) for GD

el.75 €2

* Perturbation + negative curvature exploitation (NCE) on top of AGD
 NCE inspired by Carmon et al. 2017

e Carmon et al. 2016 and Agarwal et al. 2017 show this improved rate for a
more complicated algorithm
e Solve sequence of regularized problems using AGD



€-SOSP [Nesterov & Polyak 2006]
IV ()l < € & Amin(V2f (%)) X —Ve

Ssummary

* Convergence to SOSPs very important in practice

e Pure GD and AGD can get stuck near FOSPs (saddle points)

Ge et al. 2015 d
Levy 2016 0 (poly (E)) Single loop
Perturbed gradient
descent Jin, Ge, N., Kakade, Jordan polylog(d)
2017 0 ( > Single loop
Sequence of regularized Carmon et al. 2016 ~ (polylog(d)
subproblems with AGD Agarwal et al. 2017 0 ( c1.75 ) Nested loop

(=l

Perturbed AGD + NCE Jin, N., Jordan 2017 €175

polylog(d)
Single loop
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Main Ideas of the Proof of
Gradient Descent




Setting

e Gradient Lipschitg|Vf(x) — V()| < llx — vyl
» Hessian Lipschitd|72f (x) — V2 f )| < llx — vl

e Lower boundedmin f(x) > —oo
X



How does GD behave?

|

GD step
Xep1 < Xe — NV (x)

]

-

FOSP: Vf(x) smal

Recall

SOSP: Vf(x) small &

-

Amin(vzf(x)) Z 0

J
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Perturbed gradient descent
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Perturbed gradient descent

4 )
1. Vf(x;)is small
2. No perturbation in last

several iterations
Fort = 0,1,---do “—__ /

If perturbation_condition_holds then
x; < x; + & where & ~ Unif (By(€))

Xer1 < Xe — NV (xe)

PwoN e

(@

Between two perturbations,
just run GD!




How can

perturbation
help?




Key question

* § ¥ set of points around saddle point from where gradient descent
does not escape quickly

e Escape = function value decreases significantly

 How much is Vol(S)?

* Vol(S) small = perturbed GD escapes saddle points efficiently



Two dimensional quadratic case

YRRE 0]

* Anin(H) = —1<0
* (0,0) is a saddle point

1-— 0
1 ]xt

e GD: Xt+1= O 1+T]

e Sis a thin strip, Vol(S) is small

B(0,0)

(0,0)



Three dimensional quadratic case

) 1 0 0]
e f(x) =5xT 0 1 0 |x
0 0 -1

* (0,0,0) is a saddle point

1—n 0 0
 GD: xt+1 — 0 1_77 0 xt
0 0 147

e Sis a thin disc, Vol(S) is small



General case

Key technical results

S ~ thin deformed disc

Vol(S) is small




Two key ingredients of the proof

Improve or localize

F(ern) < fx0) — 2ITF G2

2
2
_ N Xt X+
= f(x¢) 5 7

e — xe4111? < 2n(f (xp) — f(xt41))

t—1
oo = xell2 < € ) llxi = e ll? < 2ne(f(xo0) = £x0))
=0



Two key ingredients of the proof

Improve or localize

4 Upshot A
Either function value
decreases significantly
\Or iterates do not move much/

t—1
oo = xell2 < € ) llxi = e ll? < 2ne(f(xo0) = £x0))
=0



Proof idea

e If GD from either u or w goes outside a
small ball, it escapes (function valuel)

e |f GD from both u and w lie in a small
ball, use local quadratic approximation

of /()

e Show the claim for exact quadratic, and
bound approximation error using
Hessian Lipschitz property

Coupling

Either GD from u escapes

Or GD from w escapes



Putting everything together
GD step W :( .
[le —x; —nVf(x;) J ||\7f(xt)|| large f( ) decreafes ] V

.

177 Ge)lsmel Moves away
{caddl ) (Perturbation from SOSP
|Saddle point| | +6D
f ) [Perturbation
\ Soi ) | +GD

\/ Stays at SOSP
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Main Ideas of the Proof of
Accelerated Gradient Descent




Nesterov’s AGD

(

\2- Vt+1 = Xe+1 — Xt )

lterate x; & Velocity v, )
1 x4 =+ A =0)v) —nVf(x, + (1 —0)v,)

4 )

[ Gradient descent at x; + (1 — ) v, ]

Challenge

\_

Known potential functions depend on optimum x~ Y




Differential equation view of AGD

 AGD is a discretization of the following ODE [Su et al. 2015]
¥+0x+Vf(x)=0

 Multiplying by x and integrating from t; to t, gives us

1 1 -
f(xtz) +§H5€t2H2 — f(th) +E HXQHZ o Hj ||Xt||2dt

]

L 1. .
e Hamiltonian f(x;) + . ||, ||* decreases monotonically



After discretization

lterate: x and velocity: vy == xr — X+_
t t t t—1

e Hamiltonian f(x;) + ||v,:||2 decreases monotonically if f(-) & y 2 (
022 V2 )/bélﬁ’/e)é'lﬁctSaEdact + v,

e {00 nonconvex negatlve curvature
e Canincreaseif f()isa 122 Y2y 02y DSE:¢§

e If the functionis & (1 2 2V 2 ,yetePvglddity &r tnove in
nonconvex direction — negative curvature exploitation



Hamiltonian decrease

[f(-) between x; and x; + v; ]

Not too honconvex Too nonconvex

|

| AGDstep | v, ]| large [v]| small

[ Vitq = 0 ] [Move in i"vt direction]

(f(xt) -+ % AR decreases]

1




Negative curvature exploitation — ||v,|| small

One of +v; directions decreases f (x;)



Hamiltonian decrease

[f(-) between x; and x; + v, ]

Not too honconvex

|

[ AGD step ]
Need to do
amortized Q
analysis

Too nonconvex

(Negative curvature exploitation)

lvell large

[ Vi1 = 0

|

(

1

1
flx,) + = |v:||* decreases

]

lve|| small

[Move in +v, direction]

v/

F

Enough decrease
in a single step



Improve or localize

1 2 1 , 0 2
f(xep1) + % Nlvesill® < fx) + % vl — % Al

T—-1

2
D ltes = el < 5 (Fro) = £Gxr)
t=0

e Approximate locally by a quadratic and perform computations
e Precise computations are technically challenging



Ssummary

 Simple variations to GD/AGD ensure efficient escape from saddle
points

* Fine understanding of geometric structure around saddle points
* Novel techniques of independent interest

 Some extensions to stochastic setting



Open questions

U Is NCE really necessary?

U Lower bounds — recent work by Carmon et al. 2017, but gaps
between upper and lower bounds

U Extensions to stochastic setting

U Nonconvex optimization for faster algorithms



Thank you!

Questions?



