
How to Escape Saddle Points
Efficiently?

Praneeth Netrapalli

Microsoft Research India

Chi Jin
UC Berkeley

Michael I. Jordan
UC Berkeley

Rong Ge
Duke Univ.

Sham M. Kakade
U Washington

Nonconvex optimization

min
𝑥

𝑓 𝑥Problem: 𝑓 ⋅ : nonconvex function

Applications: Deep learning, compressed sensing,
matrix completion, dictionary learning,
nonnegative matrix factorization, …

Gradient descent (GD) [Cauchy 1847]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Question
How does it perform?

Gradient descent (GD) [Cauchy 1847]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Question
How does it perform?

Answer
Converges to first order

stationary points

Gradient descent (GD) [Cauchy 1847]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Question
How does it perform?

Answer
Converges to first order

stationary points

Definition
ϵ-First order stationary point (ϵ-FOSP) : 𝛻𝑓(𝑥) ≤ ϵ

Gradient descent (GD) [Cauchy 1847]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Question
How does it perform?

Answer
Converges to first order

stationary points

Definition
ϵ-First order stationary point (ϵ-FOSP) : 𝛻𝑓(𝑥) ≤ ϵ

Concretely

ϵ-FOSP in O
1

ϵ2
iterations

[Folklore]

How do FOSPs look like?

How do FOSPs look like?

Hessian PSD
𝛻2𝑓 𝑥 ≽ 0

Second order stationary
points (SOSP)

How do FOSPs look like?

Hessian PSD
𝛻2𝑓 𝑥 ≽ 0

Second order stationary
points (SOSP)

Hessian NSD
𝛻2𝑓 𝑥 ≼ 0

How do FOSPs look like?

Hessian PSD
𝛻2𝑓 𝑥 ≽ 0

Second order stationary
points (SOSP)

Hessian NSD
𝛻2𝑓 𝑥 ≼ 0

Hessian indefinite
𝜆min(𝛻

2𝑓 𝑥) ≤ 0
𝜆max(𝛻

2𝑓 𝑥) ≥ 0

FOSPs in popular problems

• Very well studied

• Neural networks [Dauphin et al. 2014]

• Matrix sensing [Bhojanapalli et al. 2016]

• Matrix completion [Ge et al. 2016]

• Robust PCA [Ge et al. 2017]

• Tensor factorization [Ge et al. 2015, Ge & Ma 2017]

• Smooth semidefinite programs [Boumal et al. 2016]

• Synchronization & community detection [Bandeira et al. 2016, Mei et al. 2017]

Upshot
1. FOSP not good enough
2. Finding SOSP sufficient

Two major observations

• FOSPs: proliferation (exponential #) of saddle points
• Recall FOSP ≜ 𝛻𝑓 𝑥 = 0

• Gradient descent can get stuck near them

• SOSPs: not just local minima; as good as global minima
• Recall SOSP ≜ 𝛻𝑓 𝑥 = 0 & 𝛻2𝑓 𝑥 ≽ 0

Can gradient descent find SOSPs?

• Yes, perturbed GD finds an 𝜖-SOSP in 𝑂 poly
𝑑

𝜖
iterations [Ge et al. 2015]

• GD is a first order method while SOSP captures second order information

Can gradient descent find SOSPs?

• Yes, perturbed GD finds an 𝜖-SOSP in 𝑂 poly
𝑑

𝜖
iterations [Ge et al. 2015]

• GD is a first order method while SOSP captures second order information

Question 1
Does perturbed GD converge to SOSP efficiently?

In particular, independent of 𝒅?

Can gradient descent find SOSPs?

• Yes, perturbed GD finds an 𝜖-SOSP in 𝑂 poly
𝑑

𝜖
iterations [Ge et al. 2015]

• GD is a first order method while SOSP captures second order information

Question 1
Does perturbed GD converge to SOSP efficiently?

In particular, independent of 𝒅?

Our result

Almost yes, in ෨𝑂
polylog(𝑑)

𝜖2
iterations!

Accelerated gradient descent (AGD) [Nesterov 1983]

• Optimal algorithm in the convex setting

• Practice: Sutskever et al. 2013 observed AGD to be much faster than GD

• Widely used in training neural networks since then

• Theory: Finds an ϵ-FOSP in O
1

ϵ2
iterations [Ghadimi & Lan 2013]

• No improvement over GD

Question 2: Does essentially pure AGD find
SOSPs faster than GD?

• Our result: Yes, in ෨𝑂
polylog(𝑑)

𝜖1.75
steps compared to ෨𝑂

polylog(𝑑)

𝜖2
for GD

• Perturbation + negative curvature exploitation (NCE) on top of AGD
• NCE inspired by Carmon et al. 2017

• Carmon et al. 2016 and Agarwal et al. 2017 show this improved rate for a
more complicated algorithm
• Solve sequence of regularized problems using AGD

Summary

Algorithm Paper # Iterations Simplicity

Perturbed gradient
descent

Ge et al. 2015
Levy 2016 𝑂 poly

𝑑

𝜖 Single loop

Jin, Ge, N., Kakade, Jordan
2017

෩𝑶
𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝒅)

𝝐𝟐 Single loop

Sequence of regularized
subproblems with AGD

Carmon et al. 2016
Agarwal et al. 2017

෨𝑂
polylog(𝑑)

𝜖1.75 Nested loop

Perturbed AGD + NCE Jin, N., Jordan 2017
෩𝑶

𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝒅)

𝝐𝟏.𝟕𝟓 Single loop

𝜖-SOSP [Nesterov & Polyak 2006]

𝛻𝑓 𝑥 ≤ 𝜖 & 𝜆min 𝛻2𝑓 𝑥 ≿ − 𝜖

• Convergence to SOSPs very important in practice

• Pure GD and AGD can get stuck near FOSPs (saddle points)

Part I
Main Ideas of the Proof of

Gradient Descent

Setting

• Gradient Lipschitz: 𝛻𝑓 𝑥 − 𝛻𝑓 𝑦 ≲ 𝑥 − 𝑦

• Hessian Lipschitz: 𝛻2𝑓 𝑥 − 𝛻2𝑓 𝑦 ≲ 𝑥 − 𝑦

• Lower bounded: min
𝑥

𝑓 𝑥 > −∞

How does GD behave?
Recall

FOSP: 𝛻𝑓 𝑥 small

SOSP: 𝛻𝑓 𝑥 small &
𝜆min 𝛻2𝑓 𝑥 ≿ 0GD step

𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

How does GD behave?
Recall

FOSP: 𝛻𝑓 𝑥 small

SOSP: 𝛻𝑓 𝑥 small &
𝜆min 𝛻2𝑓 𝑥 ≿ 0GD step

𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

𝑓 𝑥𝑡+1 ≤ 𝑓 𝑥𝑡 −
𝜂

2
𝛻𝑓 𝑥𝑡

2

𝛻𝑓 𝑥𝑡 large

SOSP Saddle point

𝛻𝑓 𝑥𝑡 small

𝑥𝑡 𝑓 𝑥𝑡

−𝜂𝛻𝑓 𝑥𝑡 𝑓 𝑥𝑡+1

How does GD behave?
Recall

FOSP: 𝛻𝑓 𝑥 small

SOSP: 𝛻𝑓 𝑥 small &
𝜆min 𝛻2𝑓 𝑥 ≿ 0GD step

𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

𝑓 𝑥𝑡+1 ≤ 𝑓 𝑥𝑡 −
𝜂

2
𝛻𝑓 𝑥𝑡

2

𝛻𝑓 𝑥𝑡 large

SOSP Saddle point

𝛻𝑓 𝑥𝑡 small

𝑥𝑡 𝑓 𝑥𝑡

−𝜂𝛻𝑓 𝑥𝑡 𝑓 𝑥𝑡+1

How to
escape saddle

points?

Perturbed gradient descent

1. For 𝑡 = 0,1,⋯ do

2. if perturbation_condition_holds then

3. 𝑥𝑡 ← 𝑥𝑡 + 𝜉𝑡 where 𝜉𝑡 ∼ 𝑈𝑛𝑖𝑓 𝐵0 𝜖

4. 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Perturbed gradient descent

1. For 𝑡 = 0,1,⋯ do

2. if perturbation_condition_holds then

3. 𝑥𝑡 ← 𝑥𝑡 + 𝜉𝑡 where 𝜉𝑡 ∼ 𝑈𝑛𝑖𝑓 𝐵0 𝜖

4. 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Between two perturbations,
just run GD!

Perturbed gradient descent

1. For 𝑡 = 0,1,⋯ do

2. if perturbation_condition_holds then

3. 𝑥𝑡 ← 𝑥𝑡 + 𝜉𝑡 where 𝜉𝑡 ∼ 𝑈𝑛𝑖𝑓 𝐵0 𝜖

4. 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Between two perturbations,
just run GD!

1. 𝛻𝑓 𝑥𝑡 is small
2. No perturbation in last

several iterations

How can
perturbation

help?

Key question

• 𝑆 ≝ set of points around saddle point from where gradient descent
does not escape quickly

• Escape ≝ function value decreases significantly

• How much is Vol 𝑆 ?

• Vol 𝑆 small ⇒ perturbed GD escapes saddle points efficiently

Two dimensional quadratic case

• 𝑓 𝑥 =
1

2
𝑥⊤

1 0
0 −1

𝑥

• 𝜆min 𝐻 = −1 < 0

• 0,0 is a saddle point

• GD: 𝑥𝑡+1 =
1 − 𝜂 0
0 1 + 𝜂

𝑥𝑡

• 𝑆 is a thin strip, Vol 𝑆 is small

0,0

S

𝐵 0,0

Three dimensional quadratic case

• 𝑓 𝑥 =
1

2
𝑥⊤

1 0 0
0 1 0
0 0 −1

𝑥

• 0,0,0 is a saddle point

• GD: 𝑥𝑡+1 =

1 − 𝜂 0 0
0 1 − 𝜂 0
0 0 1 + 𝜂

𝑥𝑡

• 𝑆 is a thin disc, Vol 𝑆 is small

0,0,0
S

𝐵 0,0,0

General case

Key technical results

𝑆 ∼ thin deformed disc

Vol 𝑆 is small

Improve or localize

𝑓 𝑥𝑡+1 ≤ 𝑓 𝑥𝑡 −
𝜂

2
𝛻𝑓 𝑥𝑡

2

= 𝑓 𝑥𝑡 −
𝜂

2

𝑥𝑡−𝑥𝑡+1

𝜂

2

𝑥𝑡 − 𝑥𝑡+1
2 ≤ 2𝜂 𝑓 𝑥𝑡 − 𝑓(𝑥𝑡+1)

𝑥0 − 𝑥𝑡
2 ≤ 𝑡

𝑖=0

𝑡−1

𝑥𝑖 − 𝑥𝑖+1
2 ≤ 2𝜂𝑡 𝑓 𝑥0 − 𝑓 𝑥𝑡

Two key ingredients of the proof

Two key ingredients of the proof

Improve or localize

𝑥0 − 𝑥𝑡
2 ≤ 𝑡

𝑖=0

𝑡−1

𝑥𝑖 − 𝑥𝑖+1
2 ≤ 2𝜂𝑡 𝑓 𝑥0 − 𝑓 𝑥𝑡

Upshot
Either function value

decreases significantly
or iterates do not move much

Proof idea

• If GD from either 𝑢 or 𝑤 goes outside a
small ball, it escapes (function value)

• If GD from both 𝑢 and 𝑤 lie in a small
ball, use local quadratic approximation
of 𝑓(⋅)

• Show the claim for exact quadratic, and
bound approximation error using
Hessian Lipschitz property

Coupling

Either GD from 𝑢 escapes

Or GD from 𝑤 escapes

Putting everything together
GD step

𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡 𝛻𝑓 𝑥𝑡 large

SOSP

Saddle point

𝛻𝑓 𝑥𝑡 small

𝑓(⋅) decreases

Perturbation
+ GD

Stays at SOSP

Perturbation
+ GD

Moves away
from SOSP

Part II
Main Ideas of the Proof of

Accelerated Gradient Descent

Nesterov’s AGD

Iterate 𝑥𝑡 & Velocity 𝑣𝑡
1. 𝑥𝑡+1 = 𝑥𝑡 + 1 − 𝜃 𝑣𝑡 − 𝜂𝛻𝑓 𝑥𝑡 + 1 − 𝜃 𝑣𝑡
2. 𝑣𝑡+1 = 𝑥𝑡+1 − 𝑥𝑡

Gradient descent at 𝑥𝑡 + 1 − 𝜃 𝑣𝑡

Challenge

Known potential functions depend on optimum 𝑥∗

Differential equation view of AGD

• AGD is a discretization of the following ODE [Su et al. 2015]

ሷ𝑥 + ෨𝜃 ሶ𝑥 + 𝛻𝑓 𝑥 = 0

• Multiplying by ሶ𝑥 and integrating from 𝑡1 to 𝑡2 gives us

𝑓 𝑥𝑡2 +
1

2
ሶ𝑥𝑡2

2
= 𝑓 𝑥𝑡1 +

1

2
ሶ𝑥𝑡1

2
− ෨𝜃න

𝑡1

𝑡2

ሶ𝑥𝑡
2𝑑𝑡

• Hamiltonian 𝑓 𝑥𝑡 +
1

2
ሶ𝑥𝑡

2 decreases monotonically

After discretization

Iterate: 𝑥𝑡 and velocity: 𝑣𝑡 ≔ 𝑥𝑡 − 𝑥𝑡−1

• Hamiltonian 𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 decreases monotonically if 𝑓 ⋅ “not

too nonconvex” between 𝑥𝑡 and 𝑥𝑡 + 𝑣𝑡
• too nonconvex = negative curvature

• Can increase if 𝑓 ⋅ is “too nonconvex”

• If the function is “too nonconvex”, reset velocity or move in
nonconvex direction – negative curvature exploitation

Hamiltonian decrease

𝑓 ⋅ between 𝑥𝑡 and 𝑥𝑡 + 𝑣𝑡

𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 decreases

AGD step

𝑣𝑡+1 = 0 Move in ±𝑣𝑡 direction

Not too nonconvex Too nonconvex

𝑣𝑡 large 𝑣𝑡 small

Negative curvature exploitation – 𝑣𝑡 small

𝑥𝑡

𝑥𝑡 + 𝑣𝑡

−𝛻𝑓 𝑥𝑡

𝑥𝑡 − 𝑣𝑡

One of ±𝑣𝑡 directions decreases 𝑓 𝑥𝑡

Hamiltonian decrease
𝑓 ⋅ between 𝑥𝑡 and 𝑥𝑡 + 𝑣𝑡

𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 decreases

AGD step

𝑣𝑡+1 = 0 Move in ±𝑣𝑡 direction

Not too nonconvex
Too nonconvex

(Negative curvature exploitation)

𝑣𝑡 large 𝑣𝑡 small

Enough decrease
in a single step

Need to do
amortized

analysis

Improve or localize

𝑓 𝑥𝑡+1 +
1

2𝜂
𝑣𝑡+1

2 ≤ 𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 −
𝜃

2𝜂
𝑣𝑡

2

𝑡=0

𝑇−1

𝑥𝑡+1 − 𝑥𝑡
2 ≤

2𝜂

𝜃
⋅ 𝑓 𝑥0 − 𝑓(𝑥𝑇)

• Approximate locally by a quadratic and perform computations
• Precise computations are technically challenging

Summary

• Simple variations to GD/AGD ensure efficient escape from saddle
points

• Fine understanding of geometric structure around saddle points

• Novel techniques of independent interest

• Some extensions to stochastic setting

Open questions

➢Is NCE really necessary?

➢Lower bounds – recent work by Carmon et al. 2017, but gaps
between upper and lower bounds

➢Extensions to stochastic setting

➢Nonconvex optimization for faster algorithms

Thank you!

Questions?

