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Nonconvex optimization

min
𝑥

𝑓 𝑥Problem: 𝑓 ⋅ : nonconvex function

Applications: Deep learning, compressed sensing, 
matrix completion, dictionary learning, 
nonnegative matrix factorization, … 



Gradient descent (GD) [Cauchy 1847]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Question
How does it perform?
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Gradient descent (GD) [Cauchy 1847]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Question
How does it perform?

Answer
Converges to first order 

stationary points

Definition
ϵ-First order stationary point (ϵ-FOSP) : 𝛻𝑓(𝑥) ≤ ϵ

Concretely

ϵ-FOSP in O
1

ϵ2
iterations

[Folklore]
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How do FOSPs look like?

Hessian PSD
𝛻2𝑓 𝑥 ≽ 0

Second order stationary 
points (SOSP)

Hessian NSD
𝛻2𝑓 𝑥 ≼ 0

Hessian indefinite
𝜆min(𝛻

2𝑓 𝑥 ) ≤ 0
𝜆max(𝛻

2𝑓 𝑥 ) ≥ 0



FOSPs in popular problems

• Very well studied

• Neural networks [Dauphin et al. 2014]

• Matrix sensing [Bhojanapalli et al. 2016]

• Matrix completion [Ge et al. 2016]

• Robust PCA [Ge et al. 2017]

• Tensor factorization [Ge et al. 2015, Ge & Ma 2017]

• Smooth semidefinite programs [Boumal et al. 2016]

• Synchronization & community detection [Bandeira et al. 2016, Mei et al. 2017]



Upshot
1. FOSP not good enough
2. Finding SOSP sufficient

Two major observations

• FOSPs: proliferation (exponential #) of saddle points
• Recall FOSP ≜ 𝛻𝑓 𝑥 = 0

• Gradient descent can get stuck near them

• SOSPs: not just local minima; as good as global minima
• Recall SOSP ≜ 𝛻𝑓 𝑥 = 0 & 𝛻2𝑓 𝑥 ≽ 0



Can gradient descent find SOSPs?

• Yes, perturbed GD finds an 𝜖-SOSP in 𝑂 poly
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Can gradient descent find SOSPs?

• Yes, perturbed GD finds an 𝜖-SOSP in 𝑂 poly
𝑑

𝜖
iterations [Ge et al. 2015]

• GD is a first order method while SOSP captures second order information

Question 1
Does perturbed GD converge to SOSP efficiently?

In particular, independent of 𝒅?

Our result

Almost yes, in ෨𝑂
polylog(𝑑)

𝜖2
iterations!



Accelerated gradient descent (AGD) [Nesterov 1983]

• Optimal algorithm in the convex setting

• Practice: Sutskever et al. 2013 observed AGD to be much faster than GD

• Widely used in training neural networks since then

• Theory: Finds an ϵ-FOSP in O
1

ϵ2
iterations [Ghadimi & Lan 2013]

• No improvement over GD



Question 2: Does essentially pure AGD find 
SOSPs faster than GD?

• Our result: Yes, in ෨𝑂
polylog(𝑑)

𝜖1.75
steps compared to ෨𝑂

polylog(𝑑)

𝜖2
for GD

• Perturbation + negative curvature exploitation (NCE) on top of AGD
• NCE inspired by Carmon et al. 2017

• Carmon et al. 2016 and Agarwal et al. 2017 show this improved rate for a 
more complicated algorithm
• Solve sequence of regularized problems using AGD



Summary

Algorithm Paper # Iterations Simplicity

Perturbed gradient 
descent

Ge et al. 2015
Levy 2016 𝑂 poly

𝑑

𝜖 Single loop

Jin, Ge, N., Kakade, Jordan 
2017

෩𝑶
𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝒅)

𝝐𝟐 Single loop

Sequence of regularized 
subproblems with AGD

Carmon et al. 2016
Agarwal et al. 2017

෨𝑂
polylog(𝑑)

𝜖1.75 Nested loop

Perturbed AGD + NCE Jin, N., Jordan 2017
෩𝑶

𝐩𝐨𝐥𝐲𝐥𝐨𝐠(𝒅)

𝝐𝟏.𝟕𝟓 Single loop

𝜖-SOSP [Nesterov & Polyak 2006]

𝛻𝑓 𝑥 ≤ 𝜖 & 𝜆min 𝛻2𝑓 𝑥 ≿ − 𝜖

• Convergence to SOSPs very important in practice

• Pure GD and AGD can get stuck near FOSPs (saddle points)



Part I
Main Ideas of the Proof of 

Gradient Descent



Setting

• Gradient Lipschitz: 𝛻𝑓 𝑥 − 𝛻𝑓 𝑦 ≲ 𝑥 − 𝑦

• Hessian Lipschitz: 𝛻2𝑓 𝑥 − 𝛻2𝑓 𝑦 ≲ 𝑥 − 𝑦

• Lower bounded: min
𝑥

𝑓 𝑥 > −∞



How does GD behave?
Recall

FOSP: 𝛻𝑓 𝑥 small

SOSP: 𝛻𝑓 𝑥 small & 
𝜆min 𝛻2𝑓 𝑥 ≿ 0GD step

𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡
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How to 
escape saddle 

points?



Perturbed gradient descent
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Perturbed gradient descent

1. For 𝑡 = 0,1,⋯ do

2. if perturbation_condition_holds then

3. 𝑥𝑡 ← 𝑥𝑡 + 𝜉𝑡 where 𝜉𝑡 ∼ 𝑈𝑛𝑖𝑓 𝐵0 𝜖

4. 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

Between two perturbations, 
just run GD!

1. 𝛻𝑓 𝑥𝑡 is small
2. No perturbation in last 

several iterations



How can 
perturbation 

help?



Key question

• 𝑆 ≝ set of points around saddle point from where gradient descent 
does not escape quickly

• Escape ≝ function value decreases significantly

• How much is Vol 𝑆 ?

• Vol 𝑆 small ⇒ perturbed GD escapes saddle points efficiently



Two dimensional quadratic case

• 𝑓 𝑥 =
1

2
𝑥⊤

1 0
0 −1

𝑥

• 𝜆min 𝐻 = −1 < 0

• 0,0 is a saddle point

• GD: 𝑥𝑡+1 =
1 − 𝜂 0
0 1 + 𝜂

𝑥𝑡

• 𝑆 is a thin strip, Vol 𝑆 is small

0,0

S

𝐵 0,0



Three dimensional quadratic case

• 𝑓 𝑥 =
1

2
𝑥⊤

1 0 0
0 1 0
0 0 −1

𝑥

• 0,0,0 is a saddle point

• GD: 𝑥𝑡+1 =

1 − 𝜂 0 0
0 1 − 𝜂 0
0 0 1 + 𝜂

𝑥𝑡

• 𝑆 is a thin disc, Vol 𝑆 is small

0,0,0
S

𝐵 0,0,0



General case

Key technical results

𝑆 ∼ thin deformed disc

Vol 𝑆 is small



Improve or localize

𝑓 𝑥𝑡+1 ≤ 𝑓 𝑥𝑡 −
𝜂

2
𝛻𝑓 𝑥𝑡

2

= 𝑓 𝑥𝑡 −
𝜂

2

𝑥𝑡−𝑥𝑡+1

𝜂

2

𝑥𝑡 − 𝑥𝑡+1
2 ≤ 2𝜂 𝑓 𝑥𝑡 − 𝑓(𝑥𝑡+1)

𝑥0 − 𝑥𝑡
2 ≤ 𝑡

𝑖=0

𝑡−1

𝑥𝑖 − 𝑥𝑖+1
2 ≤ 2𝜂𝑡 𝑓 𝑥0 − 𝑓 𝑥𝑡

Two key ingredients of the proof



Two key ingredients of the proof

Improve or localize

𝑥0 − 𝑥𝑡
2 ≤ 𝑡

𝑖=0

𝑡−1

𝑥𝑖 − 𝑥𝑖+1
2 ≤ 2𝜂𝑡 𝑓 𝑥0 − 𝑓 𝑥𝑡

Upshot
Either function value 

decreases significantly
or iterates do not move much



Proof idea

• If GD from either 𝑢 or 𝑤 goes outside a 
small ball, it escapes (function value    )

• If GD from both 𝑢 and 𝑤 lie in a small 
ball, use local quadratic approximation 
of 𝑓(⋅)

• Show the claim for exact quadratic, and 
bound approximation error using 
Hessian Lipschitz property

Coupling

Either GD from 𝑢 escapes

Or GD from 𝑤 escapes



Putting everything together
GD step

𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡 𝛻𝑓 𝑥𝑡 large

SOSP

Saddle point

𝛻𝑓 𝑥𝑡 small

𝑓(⋅) decreases

Perturbation
+ GD

Stays at SOSP

Perturbation
+ GD

Moves away 
from SOSP



Part II
Main Ideas of the Proof of 

Accelerated Gradient Descent



Nesterov’s AGD

Iterate 𝑥𝑡 & Velocity 𝑣𝑡
1. 𝑥𝑡+1 = 𝑥𝑡 + 1 − 𝜃 𝑣𝑡 − 𝜂𝛻𝑓 𝑥𝑡 + 1 − 𝜃 𝑣𝑡
2. 𝑣𝑡+1 = 𝑥𝑡+1 − 𝑥𝑡

Gradient descent at 𝑥𝑡 + 1 − 𝜃 𝑣𝑡

Challenge

Known potential functions depend on optimum 𝑥∗



Differential equation view of AGD

• AGD is a discretization of the following ODE [Su et al. 2015]

ሷ𝑥 + ෨𝜃 ሶ𝑥 + 𝛻𝑓 𝑥 = 0

• Multiplying by ሶ𝑥 and integrating from 𝑡1 to 𝑡2 gives us

𝑓 𝑥𝑡2 +
1

2
ሶ𝑥𝑡2

2
= 𝑓 𝑥𝑡1 +

1

2
ሶ𝑥𝑡1

2
− ෨𝜃න

𝑡1

𝑡2

ሶ𝑥𝑡
2𝑑𝑡

• Hamiltonian 𝑓 𝑥𝑡 +
1

2
ሶ𝑥𝑡

2 decreases monotonically



After discretization

Iterate: 𝑥𝑡 and velocity: 𝑣𝑡 ≔ 𝑥𝑡 − 𝑥𝑡−1

• Hamiltonian 𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 decreases monotonically if 𝑓 ⋅ “not 

too nonconvex” between 𝑥𝑡 and 𝑥𝑡 + 𝑣𝑡
• too nonconvex = negative curvature

• Can increase if 𝑓 ⋅ is “too nonconvex”

• If the function is “too nonconvex”, reset velocity or move in 
nonconvex direction – negative curvature exploitation



Hamiltonian decrease

𝑓 ⋅ between 𝑥𝑡 and 𝑥𝑡 + 𝑣𝑡

𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 decreases

AGD step

𝑣𝑡+1 = 0 Move in ±𝑣𝑡 direction

Not too nonconvex Too nonconvex

𝑣𝑡 large 𝑣𝑡 small



Negative curvature exploitation – 𝑣𝑡 small

𝑥𝑡

𝑥𝑡 + 𝑣𝑡

−𝛻𝑓 𝑥𝑡

𝑥𝑡 − 𝑣𝑡

One of ±𝑣𝑡 directions decreases 𝑓 𝑥𝑡



Hamiltonian decrease
𝑓 ⋅ between 𝑥𝑡 and 𝑥𝑡 + 𝑣𝑡

𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 decreases

AGD step

𝑣𝑡+1 = 0 Move in ±𝑣𝑡 direction

Not too nonconvex
Too nonconvex

(Negative curvature exploitation)

𝑣𝑡 large 𝑣𝑡 small

Enough decrease 
in a single step

Need to do 
amortized 

analysis



Improve or localize

𝑓 𝑥𝑡+1 +
1

2𝜂
𝑣𝑡+1

2 ≤ 𝑓 𝑥𝑡 +
1

2𝜂
𝑣𝑡

2 −
𝜃

2𝜂
𝑣𝑡

2



𝑡=0

𝑇−1

𝑥𝑡+1 − 𝑥𝑡
2 ≤

2𝜂

𝜃
⋅ 𝑓 𝑥0 − 𝑓(𝑥𝑇)

• Approximate locally by a quadratic and perform computations
• Precise computations are technically challenging



Summary

• Simple variations to GD/AGD ensure efficient escape from saddle 
points

• Fine understanding of geometric structure around saddle points

• Novel techniques of independent interest

• Some extensions to stochastic setting



Open questions

➢Is NCE really necessary?

➢Lower bounds – recent work by Carmon et al. 2017, but gaps 
between upper and lower bounds

➢Extensions to stochastic setting

➢Nonconvex optimization for faster algorithms



Thank you!

Questions?


