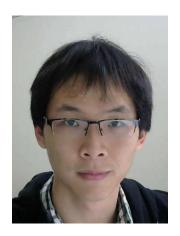
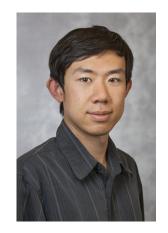
How to Escape Saddle Points Efficiently?

Praneeth Netrapalli Microsoft Research India



Chi Jin UC Berkeley

Michael I. Jordan UC Berkeley



Rong Ge Duke Univ.

Sham M. Kakade U Washington

Nonconvex optimization

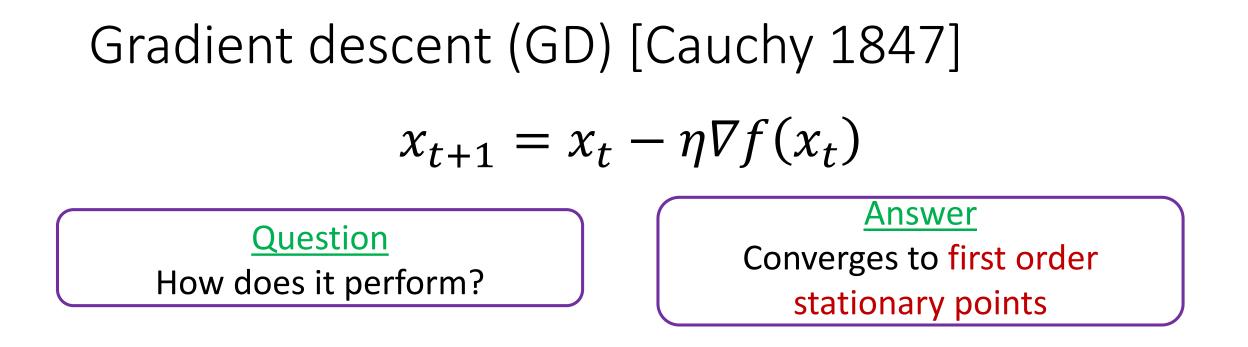
Problem: $\min_{x} f(x) = f(\cdot)$: nonconvex function

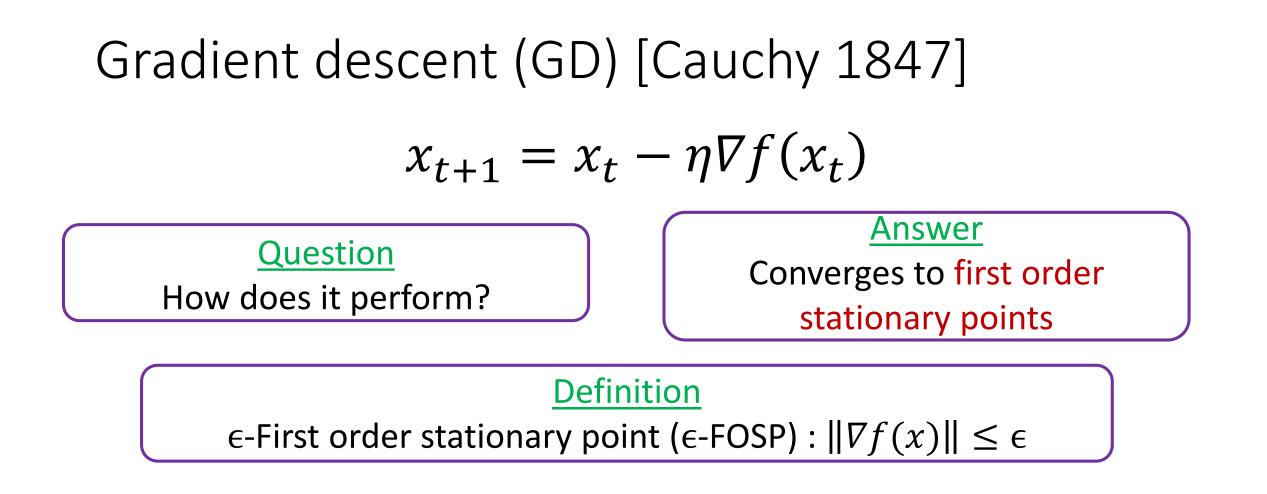
Applications: Deep learning, compressed sensing, matrix completion, dictionary learning, nonnegative matrix factorization, ... Gradient descent (GD) [Cauchy 1847]

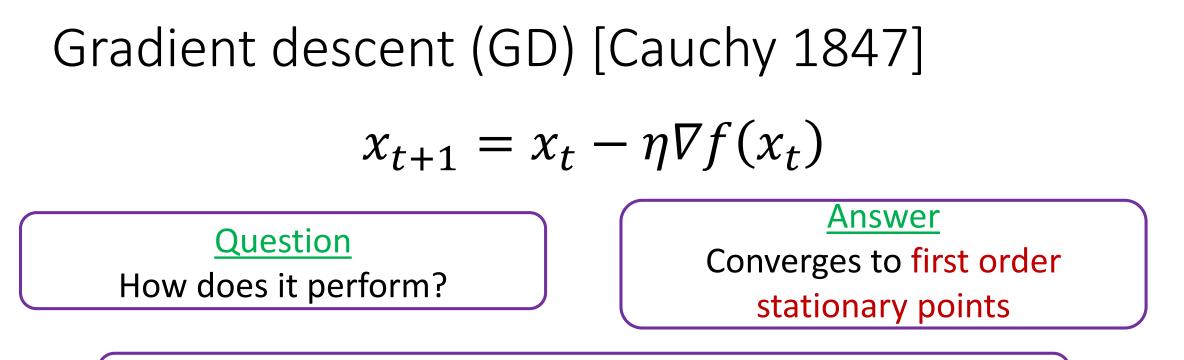
$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

Question

How does it perform?



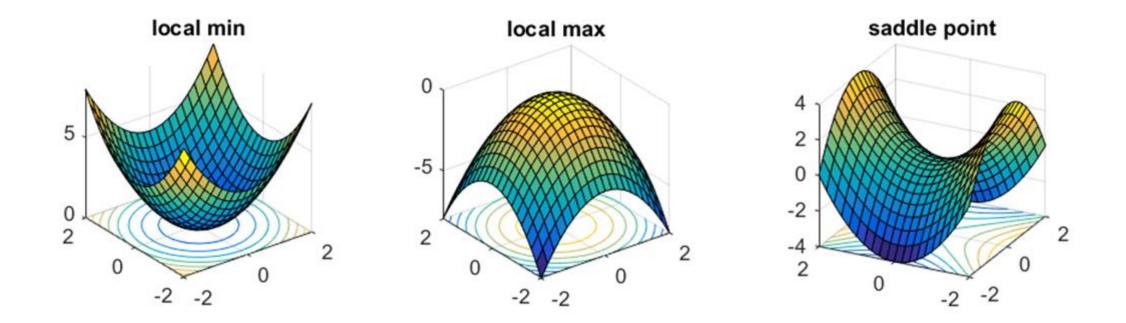


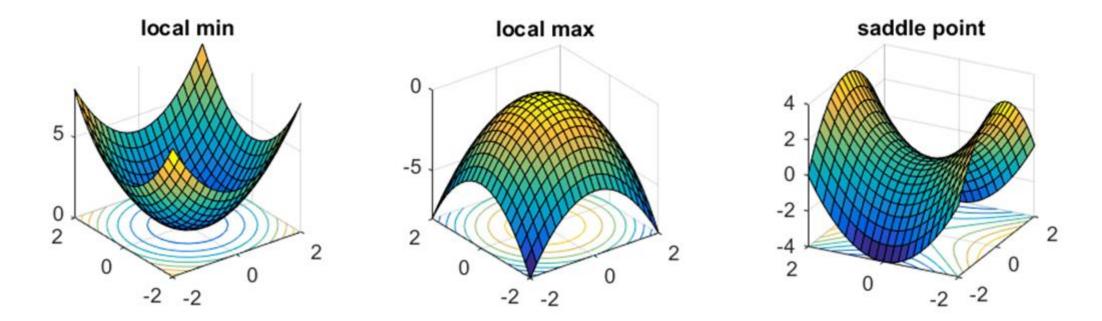


Definition

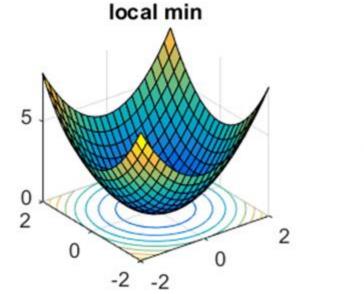
 ϵ -First order stationary point (ϵ -FOSP) : $\|\nabla f(x)\| \leq \epsilon$

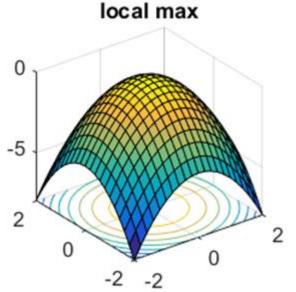
 $\frac{\text{Concretely}}{\epsilon - \text{FOSP in O}\left(\frac{1}{\epsilon^2}\right) \text{ iterations}}$ [Folklore]

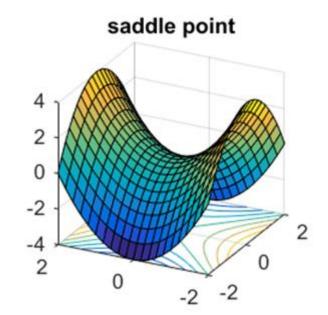




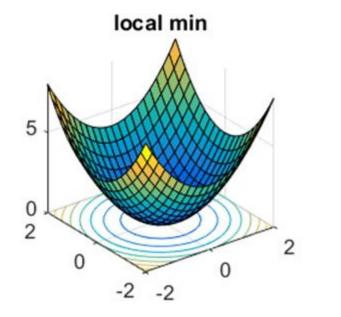
Hessian PSD $\nabla^2 f(x) \ge 0$ Second order stationary points (SOSP)

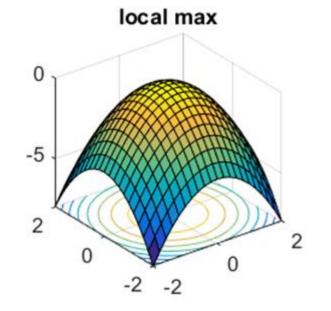






Hessian PSD $\nabla^2 f(x) \ge 0$ Second order stationary points (SOSP) Hessian NSD $\nabla^2 f(x) \leq 0$





saddle point 4 2 0 -2 -4 2 0 0 -2 -2 -2 2

Hessian PSD $\nabla^2 f(x) \ge 0$ Second order stationary points (SOSP) Hessian NSD $\nabla^2 f(x) \leq 0$

Hessian indefinite $\lambda_{\min}(\nabla^2 f(x)) \leq 0$ $\lambda_{\max}(\nabla^2 f(x)) \geq 0$

FOSPs in popular problems

- Very well studied
 - Neural networks [Dauphin et al. 2014]
 - Matrix sensing [Bhojanapalli et al. 2016]
 - Matrix completion [Ge et al. 2016]
 - Robust PCA [Ge et al. 2017]
 - Tensor factorization [Ge et al. 2015, Ge & Ma 2017]
 - Smooth semidefinite programs [Boumal et al. 2016]
 - Synchronization & community detection [Bandeira et al. 2016, Mei et al. 2017]

Two major observations

- FOSPs: proliferation (exponential #) of saddle points
 - Recall FOSP $\triangleq \nabla f(x) = 0$
 - Gradient descent can get stuck near them
- SOSPs: not just local minima; as good as global minima
 - Recall SOSP $\triangleq \nabla f(x) = 0 \& \nabla^2 f(x) \ge 0$

Can gradient descent find SOSPs?

- Yes, perturbed GD finds an ϵ -SOSP in $O\left(\operatorname{poly}\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]
- GD is a first order method while SOSP captures second order information

Can gradient descent find SOSPs?

- Yes, perturbed GD finds an ϵ -SOSP in $O\left(\operatorname{poly}\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]
- GD is a first order method while SOSP captures second order information

Question 1

Does perturbed GD converge to SOSP **efficiently**? In particular, **independent of** *d*?

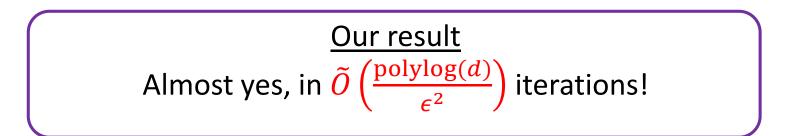
Can gradient descent find SOSPs?

- Yes, perturbed GD finds an ϵ -SOSP in $O\left(\operatorname{poly}\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]
- GD is a first order method while SOSP captures second order information

Question 1

Does perturbed GD converge to SOSP efficiently?

In particular, **independent of** *d*?



Accelerated gradient descent (AGD) [Nesterov 1983]

- Optimal algorithm in the convex setting
- Practice: Sutskever et al. 2013 observed AGD to be much faster than GD
- Widely used in training neural networks since then
- Theory: Finds an ϵ -FOSP in $O\left(\frac{1}{\epsilon^2}\right)$ iterations [Ghadimi & Lan 2013]
- No improvement over GD

Question 2: Does essentially pure AGD find SOSPs faster than GD?

• Our result: Yes, in $\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^{1.75}}\right)$ steps compared to $\tilde{O}\left(\frac{\text{polylog}(d)}{\epsilon^2}\right)$ for GD

- Perturbation + negative curvature exploitation (NCE) on top of AGD
 - NCE inspired by Carmon et al. 2017
- Carmon et al. 2016 and Agarwal et al. 2017 show this improved rate for a more complicated algorithm
 - Solve sequence of regularized problems using AGD

Summary

 $\frac{\epsilon \text{-SOSP} [\text{Nesterov & Polyak 2006}]}{\|\nabla f(x)\| \le \epsilon \& \lambda_{\min}(\nabla^2 f(x)) \gtrsim -\sqrt{\epsilon}}$

- Convergence to SOSPs very important in practice
- Pure GD and AGD can get stuck near FOSPs (saddle points)

Algorithm	Paper	# Iterations	Simplicity
Perturbed gradient descent	Ge et al. 2015 Levy 2016	$O\left(\operatorname{poly}\left(\frac{d}{\epsilon}\right)\right)$	Single loop
	Jin, Ge, N., Kakade, Jordan 2017	$\widetilde{O}\left(rac{\operatorname{polylog}(d)}{\epsilon^2} ight)$	Single loop
Sequence of regularized subproblems with AGD	Carmon et al. 2016 Agarwal et al. 2017	$\tilde{O}\left(\frac{\operatorname{polylog}(d)}{\epsilon^{1.75}}\right)$	Nested loop
Perturbed AGD + NCE	Jin, N., Jordan 2017	$\widetilde{O}\left(rac{\mathrm{polylog}(d)}{\epsilon^{1.75}} ight)$	Single loop

Part I Main Ideas of the Proof of Gradient Descent

Setting

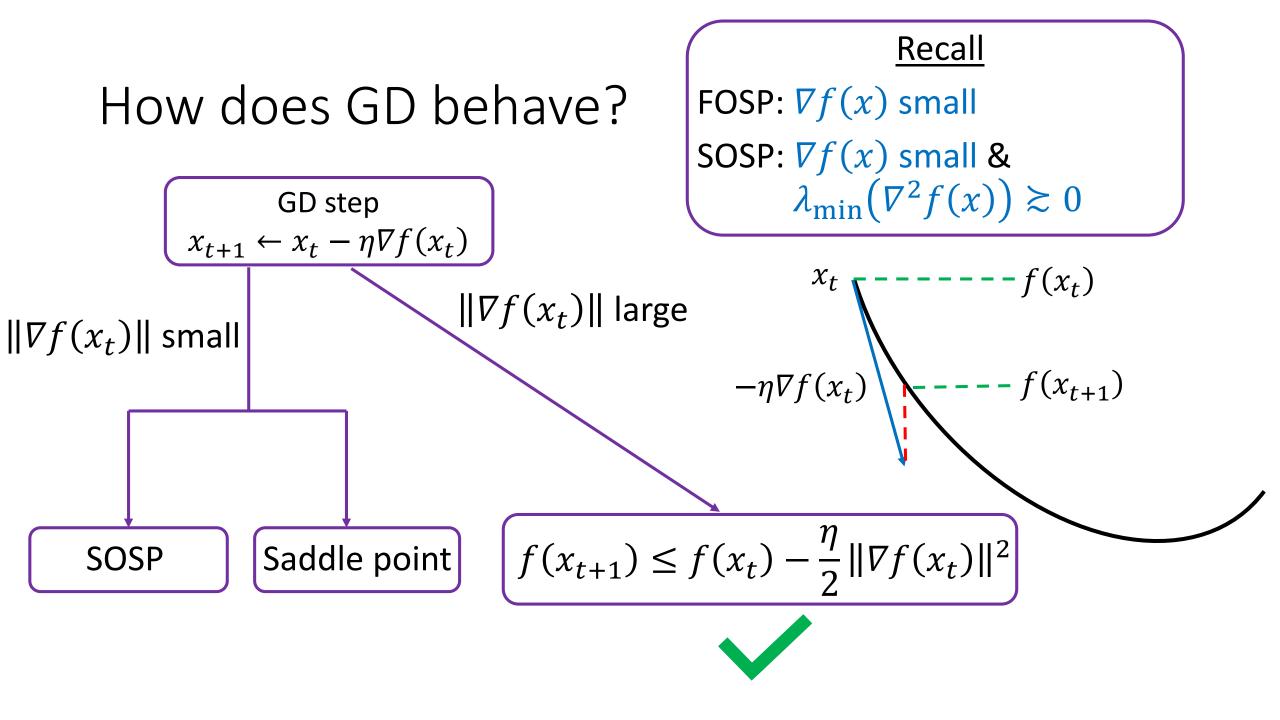
- Gradient Lipschitz: $\|\nabla f(x) \nabla f(y)\| \leq \|x y\|$
- Hessian Lipschitz: $\|\nabla^2 f(x) \nabla^2 f(y)\| \le \|x y\|$
- Lower bounded: $\min_{x} f(x) > -\infty$

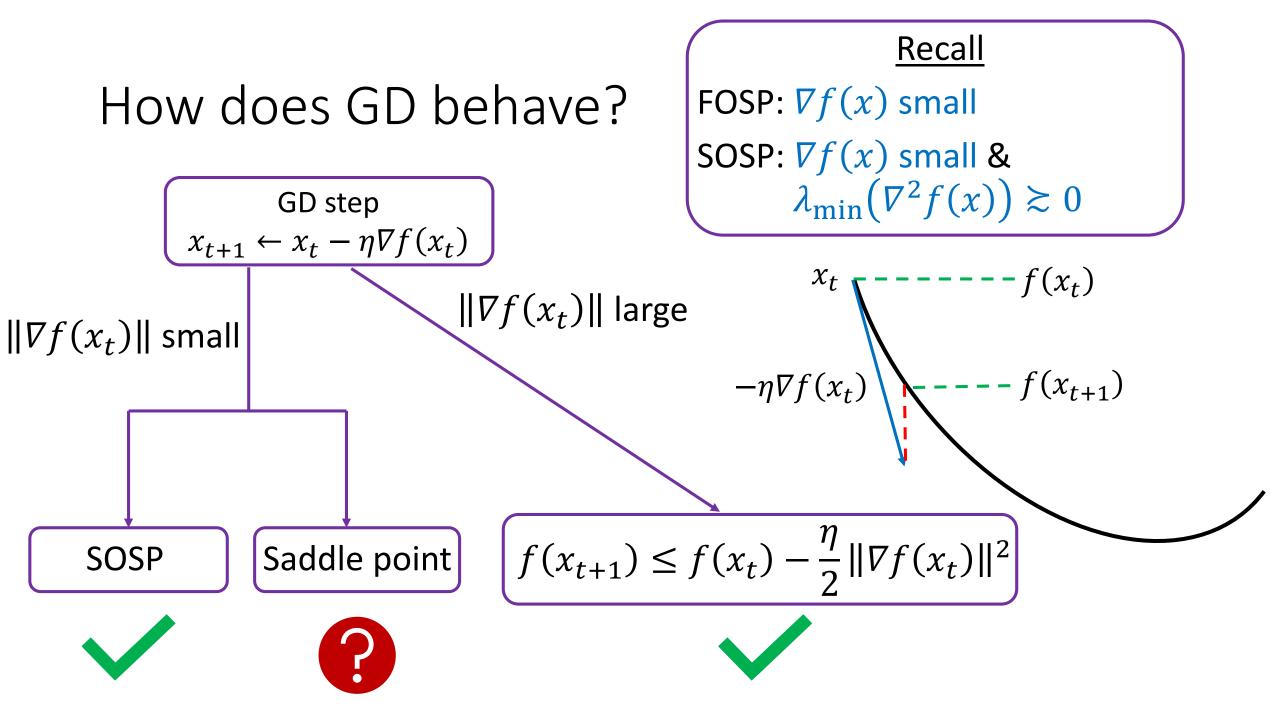
How does GD behave?

GD step $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

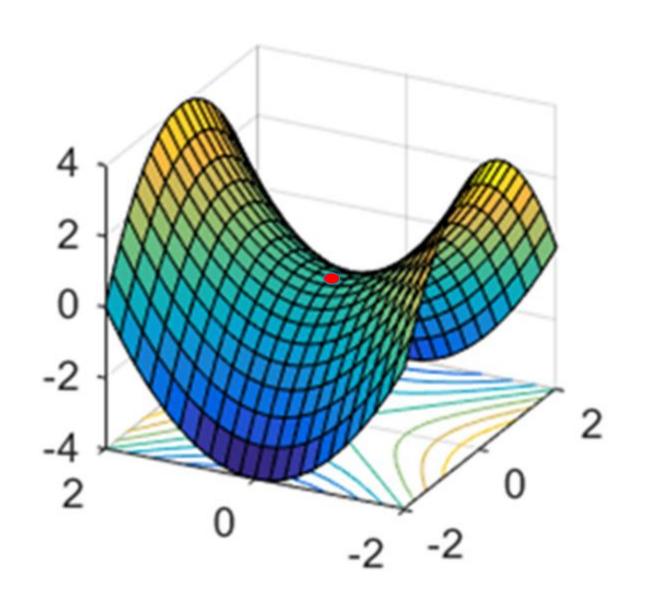
<u>Recall</u>

FOSP: $\nabla f(x)$ small SOSP: $\nabla f(x)$ small & $\lambda_{\min}(\nabla^2 f(x)) \gtrsim 0$





How to escape saddle points?



Perturbed gradient descent

1. **For**
$$t = 0, 1, \dots$$
 do

- 2. **if** perturbation_condition_holds **then**
- 3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif(B_0(\epsilon))$
- 4. $x_{t+1} \leftarrow x_t \eta \nabla f(x_t)$

Perturbed gradient descent

1. **For**
$$t = 0, 1, \dots$$
 do

- 2. **if** perturbation_condition_holds **then**
- 3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif(B_0(\epsilon))$
- 4. $x_{t+1} \leftarrow x_t \eta \nabla f(x_t)$

Between two perturbations, just run GD!

Perturbed gradient descent

1. $\nabla f(x_t)$ is small 2. No perturbation in last several iterations

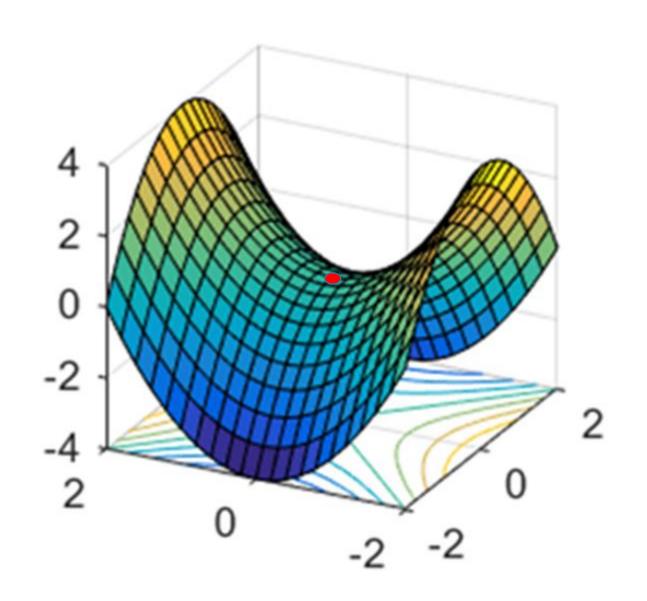
2. **if** perturbation_condition_holds **then**

3.
$$x_t \leftarrow x_t + \xi_t$$
 where $\xi_t \sim Unif(B_0(\epsilon))$

4. $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

Between two perturbations, just run GD!

How can perturbation help?



Key question

- S def set of points around saddle point from where gradient descent does not escape quickly
- Escape $\stackrel{\text{def}}{=}$ function value decreases significantly
- How much is Vol(S)?
- Vol(S) small \Rightarrow perturbed GD escapes saddle points efficiently

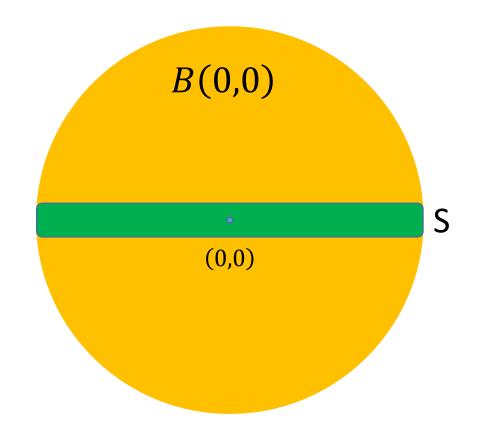
Two dimensional quadratic case

•
$$f(x) = \frac{1}{2}x^{\mathsf{T}} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} x$$

- $\lambda_{\min}(H) = -1 < 0$
- (0,0) is a saddle point

• GD:
$$x_{t+1} = \begin{bmatrix} 1 - \eta & 0 \\ 0 & 1 + \eta \end{bmatrix} x_t$$

• *S* is a thin strip, Vol(*S*) is small



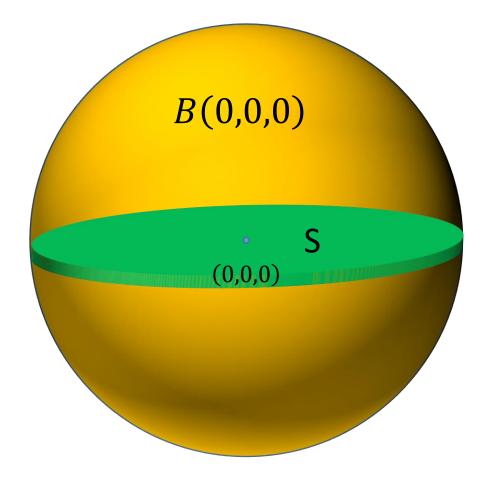
Three dimensional quadratic case

•
$$f(x) = \frac{1}{2}x^{\top} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} x$$

• (0,0,0) is a saddle point

• GD:
$$x_{t+1} = \begin{bmatrix} 1 - \eta & 0 & 0 \\ 0 & 1 - \eta & 0 \\ 0 & 0 & 1 + \eta \end{bmatrix} x_t$$

• *S* is a thin disc, Vol(*S*) is small

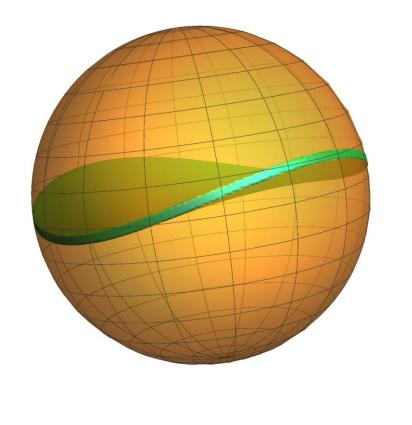


General case

Key technical results

 $S \sim$ thin deformed disc

Vol(S) is small



Two key ingredients of the proof

Improve or localize

$$\begin{split} f(x_{t+1}) &\leq f(x_t) - \frac{\eta}{2} \| \nabla f(x_t) \|^2 \\ &= f(x_t) - \frac{\eta}{2} \left\| \frac{x_t - x_{t+1}}{\eta} \right\|^2 \end{split}$$

$$\|x_t - x_{t+1}\|^2 \le 2\eta (f(x_t) - f(x_{t+1}))$$

$$\|x_0 - x_t\|^2 \le t \sum_{i=0}^{t-1} \|x_i - x_{i+1}\|^2 \le 2\eta t \left(f(x_0) - f(x_t) \right)$$

Two key ingredients of the proof

Improve or localize

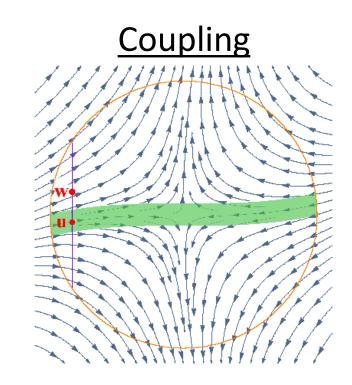
<u>Upshot</u>

Either function value decreases significantly or iterates do not move much

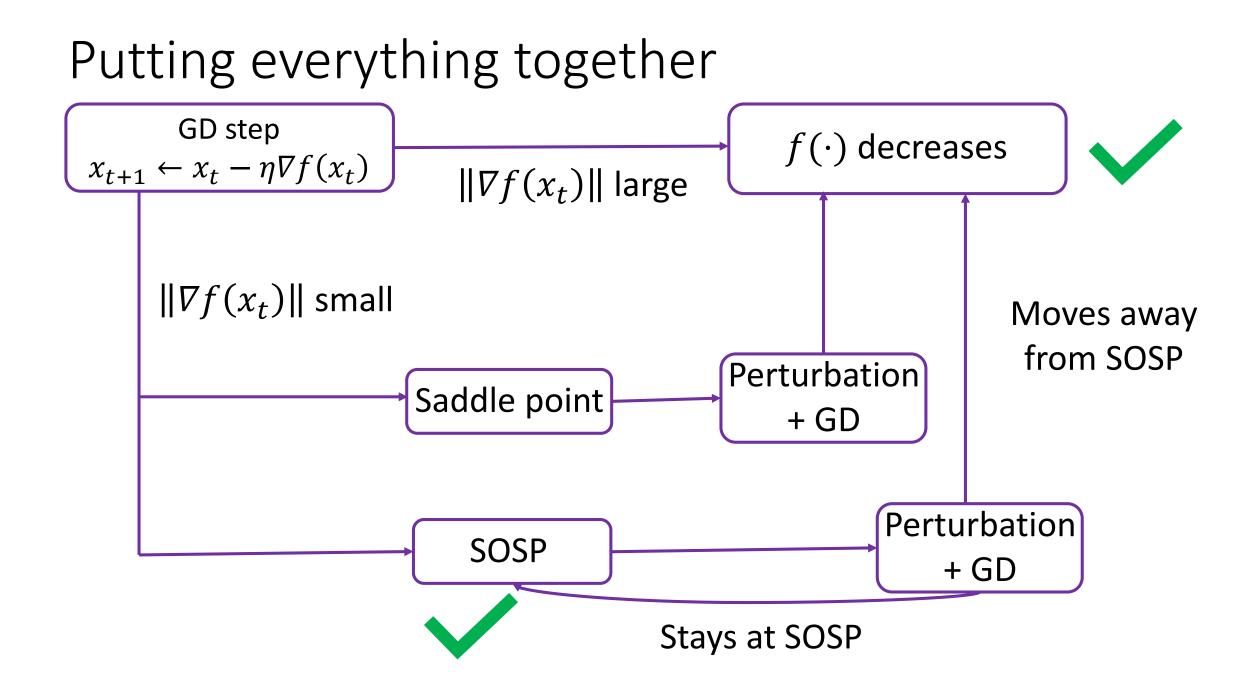
$$\|x_0 - x_t\|^2 \le t \sum_{i=0}^{t-1} \|x_i - x_{i+1}\|^2 \le 2\eta t \left(f(x_0) - f(x_t) \right)$$

Proof idea

- If GD from either *u* or *w* goes outside a small ball, it escapes (function value)
- If GD from both *u* and *w* lie in a small ball, use local quadratic approximation of *f*(·)
- Show the claim for exact quadratic, and bound approximation error using Hessian Lipschitz property

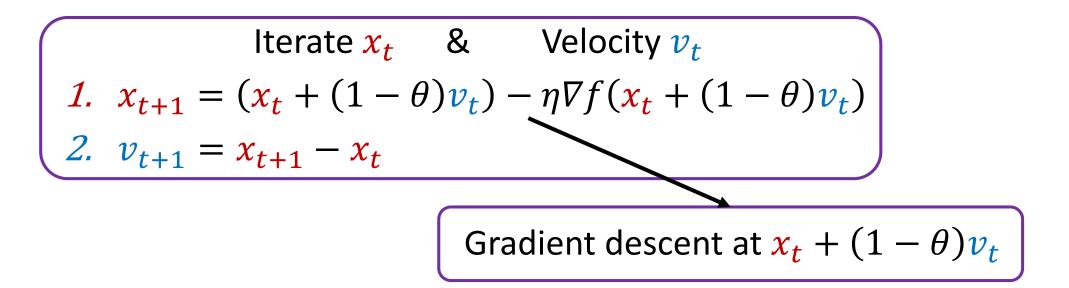


Either GD from *u* escapes Or GD from *w* escapes



Part II Main Ideas of the Proof of Accelerated Gradient Descent

Nesterov's AGD



<u>Challenge</u>

Known potential functions depend on optimum x^*

Differential equation view of AGD

• AGD is a discretization of the following ODE [Su et al. 2015]

$$\ddot{x} + \tilde{\theta}\dot{x} + \nabla f(x) = 0$$

• Multiplying by \dot{x} and integrating from t_1 to t_2 gives us

$$f(x_{t_2}) + \frac{1}{2} \|\dot{x}_{t_2}\|^2 = f(x_{t_1}) + \frac{1}{2} \|\dot{x}_{t_1}\|^2 - \tilde{\theta} \int_{t_1}^{t_2} \|\dot{x}_t\|^2 dt$$

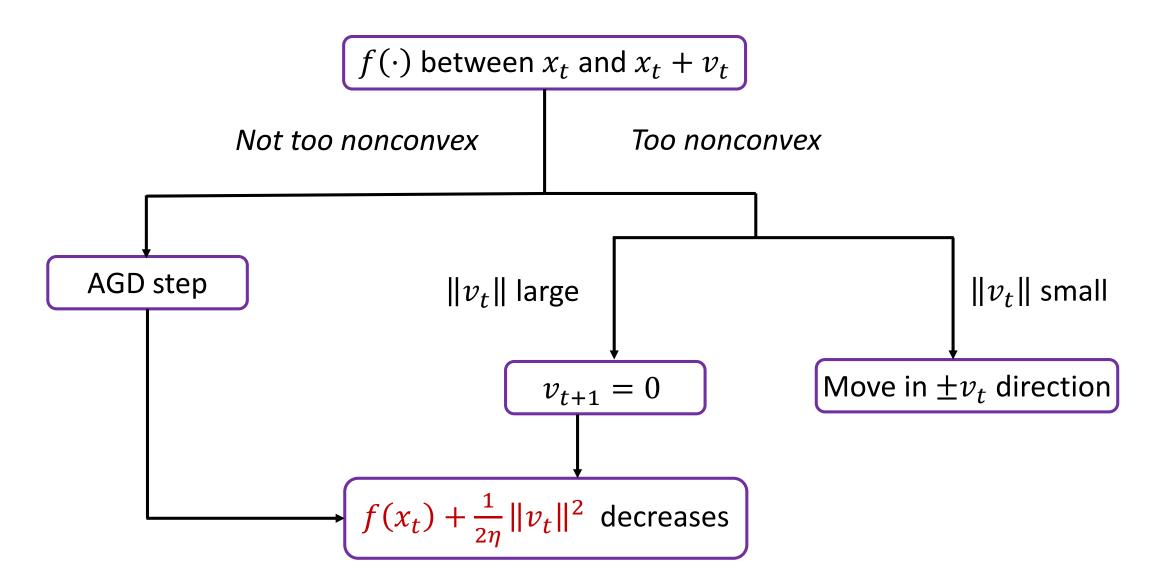
• Hamiltonian $f(x_t) + \frac{1}{2} ||\dot{x}_t||^2$ decreases monotonically

After discretization

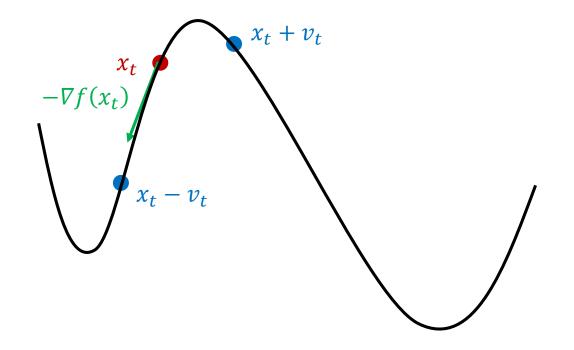
Iterate: x_t and velocity: $v_t \coloneqq x_t - x_{t-1}$

- Hamiltonian $f(x_t) + \frac{1}{2\eta} ||v_t||^2$ decreases monotonically if $f(\cdot)$ "not too nonconvex" between x_t and $x_t + v_t$
 - *too nonconvex = negative curvature*
 - Can increase if $f(\cdot)$ is *"too nonconvex"*
- If the function is *"too nonconvex"*, reset velocity or move in nonconvex direction *negative curvature exploitation*

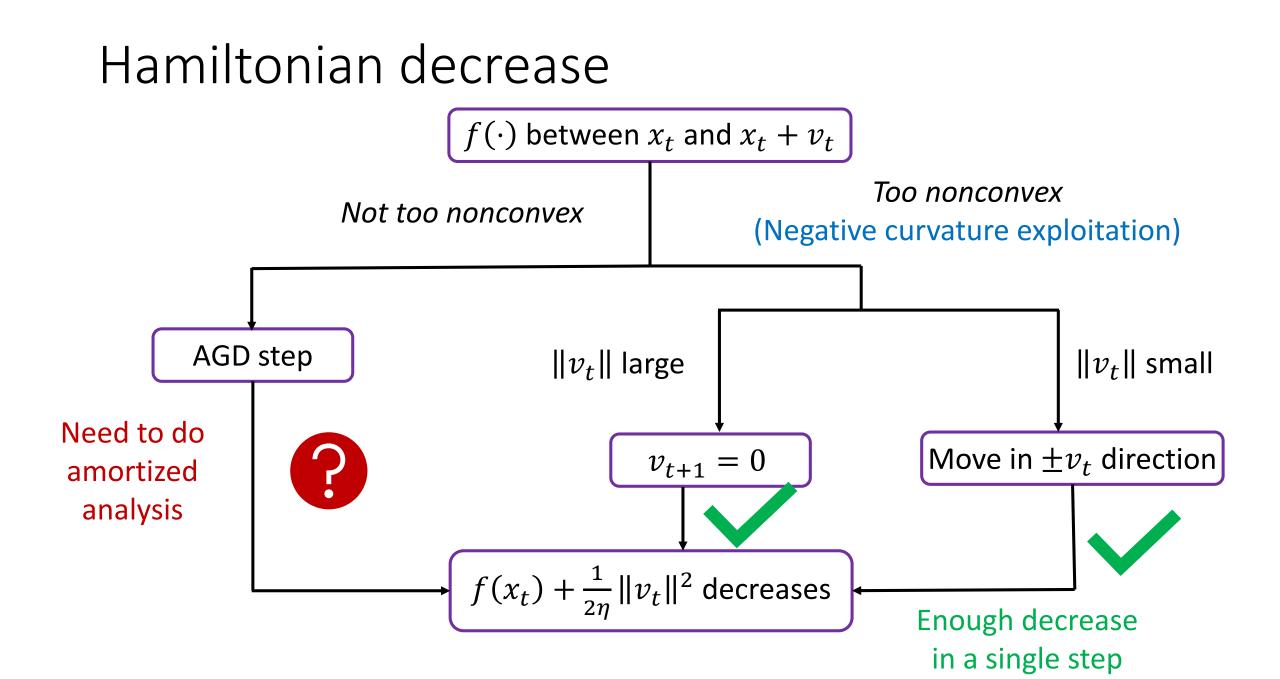
Hamiltonian decrease



Negative curvature exploitation $- \|v_t\|$ small



One of $\pm v_t$ directions decreases $f(x_t)$



Improve or localize

$$f(x_{t+1}) + \frac{1}{2\eta} \|v_{t+1}\|^2 \le f(x_t) + \frac{1}{2\eta} \|v_t\|^2 - \frac{\theta}{2\eta} \|v_t\|^2$$
$$\sum_{t=0}^{T-1} \|x_{t+1} - x_t\|^2 \le \frac{2\eta}{\theta} \cdot (f(x_0) - f(x_T))$$

- Approximate locally by a quadratic and perform computations
 - Precise computations are technically challenging

Summary

- Simple variations to GD/AGD ensure efficient escape from saddle points
- Fine understanding of geometric structure around saddle points
- Novel techniques of independent interest
- Some extensions to stochastic setting

Open questions

≻Is NCE really necessary?

Lower bounds – recent work by Carmon et al. 2017, but gaps between upper and lower bounds

Extensions to stochastic setting

>Nonconvex optimization for faster algorithms

Thank you!

Questions?