How to Escape Saddle Points Efficiently?

Praneeth Netrapalli
Microsoft Research India

Chi Jin
UC Berkeley

Michael I. Jordan UC Berkeley

Rong Ge Duke Univ.

Sham M. Kakade U Washington

Nonconvex optimization

Problem: $\min _{x} f(x) \quad f(\cdot)$: nonconvex function

Applications: Deep learning, compressed sensing, matrix completion, dictionary learning, nonnegative matrix factorization, ...

Gradient descent (GD) [Cauchy 1847]

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

Question
 How does it perform?

Gradient descent (GD) [Cauchy 1847]

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

Question

How does it perform?

Answer
Converges to first order stationary points

Gradient descent (GD) [Cauchy 1847]

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

Answer

Converges to first order stationary points

Definition

ϵ-First order stationary point (ϵ-FOSP) : $\|\nabla f(x)\| \leq \epsilon$

Gradient descent (GD) [Cauchy 1847]

$$
x_{t+1}=x_{t}-\eta \nabla f\left(x_{t}\right)
$$

Answer

Converges to first order stationary points

Definition

ϵ-First order stationary point (ϵ-FOSP) : \|Vf(x)\| $\boldsymbol{\leq \epsilon}$

Concretely

ϵ-FOSP in $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations
[Folklore]

How do FOSPs look like?

How do FOSPs look like?

Hessian PSD

$$
\nabla^{2} f(x) \succcurlyeq 0
$$

Second order stationary points (SOSP)

How do FOSPs look like?

Hessian PSD

$$
\nabla^{2} f(x) \succcurlyeq 0
$$

Second order stationary points (SOSP)

Hessian NSD

$$
\nabla^{2} f(x) \preccurlyeq 0
$$

How do FOSPs look like?

Hessian PSD

$$
\nabla^{2} f(x) \succcurlyeq 0
$$

Second order stationary points (SOSP)

Hessian NSD
$\nabla^{2} f(x) \preccurlyeq 0$
saddle point

Hessian indefinite
$\lambda_{\min }\left(\nabla^{2} f(x)\right) \leq 0$
$\lambda_{\max }\left(\nabla^{2} f(x)\right) \geq 0$

FOSPs in popular problems

- Very well studied
- Neural networks [Dauphin et al. 2014]
- Matrix sensing [Bhojanapalli et al. 2016]
- Matrix completion [Ge et al. 2016]
- Robust PCA [Ge et al. 2017]
- Tensor factorization [Ge et al. 2015, Ge \& Ma 2017]
- Smooth semidefinite programs [Boumal et al. 2016]
- Synchronization \& community detection [Bandeira et al. 2016, Mei et al. 2017]

Two major observations

- FOSPs: proliferation (exponential \#) of saddle points
- Recall FOSP $\triangleq \nabla f(x)=0$
- Gradient descent can get stuck near them
- SOSPs: not just local minima; as good as global minima
- Recall SOSP $\triangleq \nabla f(x)=0$ \& $\nabla^{2} f(x) \succcurlyeq 0$

Can gradient descent find SOSPs?

- Yes, perturbed GD finds an ϵ-SOSP in $O\left(\right.$ poly $\left.\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]
- GD is a first order method while SOSP captures second order information

Can gradient descent find SOSPs?

- Yes, perturbed GD finds an ϵ-SOSP in $O\left(\right.$ poly $\left.\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]
- GD is a first order method while SOSP captures second order information

Question 1

Does perturbed GD converge to SOSP efficiently? In particular, independent of d ?

Can gradient descent find SOSPs?

- Yes, perturbed GD finds an ϵ-SOSP in $O\left(\right.$ poly $\left.\left(\frac{d}{\epsilon}\right)\right)$ iterations [Ge et al. 2015]
- GD is a first order method while SOSP captures second order information

Question 1

Does perturbed GD converge to SOSP efficiently? In particular, independent of d ?

Our result

Almost yes, in $\tilde{O}\left(\frac{\text { polylog }(d)}{\epsilon^{2}}\right)$ iterations!

Accelerated gradient descent (AGD) [Nesterov 1983]

- Optimal algorithm in the convex setting
- Practice: Sutskever et al. 2013 observed AGD to be much faster than GD
- Widely used in training neural networks since then
- Theory: Finds an ϵ-FOSP in $\mathrm{O}\left(\frac{1}{\epsilon^{2}}\right)$ iterations [Ghadimi \& Lan 2013]
- No improvement over GD

Question 2: Does essentially pure AGD find SOSPs faster than GD?

- Our result: Yes, in $\tilde{O}\left(\frac{\operatorname{polylog}(d)}{\epsilon^{1.75}}\right)$ steps compared to $\tilde{O}\left(\frac{\operatorname{polylog}(d)}{\epsilon^{2}}\right)$ for GD
- Perturbation + negative curvature exploitation (NCE) on top of AGD
- NCE inspired by Carmon et al. 2017
- Carmon et al. 2016 and Agarwal et al. 2017 show this improved rate for a more complicated algorithm
- Solve sequence of regularized problems using AGD

Summary

- Convergence to SOSPs very important in practice
- Pure GD and AGD can get stuck near FOSPs (saddle points)

Algorithm	Paper	\# Iterations	Simplicity
Perturbed gradient			
descent	Ge et al. 2015 Levy 2016	Jin, Ge, N., Kakade, Jordan 2017	$\widetilde{\boldsymbol{O}}\left(\frac{\operatorname{polylog}(\boldsymbol{d})}{\boldsymbol{\epsilon}^{2}}\right)$

Part I

Main Ideas of the Proof of

 Gradient Descent
Setting

- Gradient Lipschitz: $\|\nabla f(x)-\nabla f(y)\| \lesssim\|x-y\|$
- Hessian Lipschitz: $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \lesssim\|x-y\|$
- Lower bounded: $\min _{x} f(x)>-\infty$

How does GD behave?

$$
\begin{gathered}
\text { GD step } \\
x_{t+1} \leftarrow x_{t}-\eta \nabla f\left(x_{t}\right)
\end{gathered}
$$

Recall
FOSP: $\nabla f(x)$ small SOSP: $\nabla f(x)$ small \&
$\lambda_{\text {min }}\left(\nabla^{2} f(x)\right) \gtrsim 0$

How does GD behave?

Recall

FOSP: $\nabla f(x)$ small SOSP: $\nabla f(x)$ small \&
$\lambda_{\text {min }}\left(\nabla^{2} f(x)\right) \gtrsim 0$
${ }^{x_{t}}{ }^{-------f\left(x_{t}\right)}$
$\left\|\nabla f\left(x_{t}\right)\right\|$ large

How does GD behave?

$\left\|\nabla f\left(x_{t}\right)\right\|$ small
$\left\|\nabla f\left(x_{t}\right)\right\|$ large

How to
 escape saddle points?

Perturbed gradient descent

1. For $t=0,1, \cdots$ do
2. if perturbation_condition_holds then
3.

$$
x_{t} \leftarrow x_{t}+\xi_{t} \text { where } \xi_{t} \sim \operatorname{Unif}\left(B_{0}(\epsilon)\right)
$$

4. $x_{t+1} \leftarrow x_{t}-\eta \nabla f\left(x_{t}\right)$

Perturbed gradient descent

1. For $t=0,1, \cdots$ do
2. if perturbation_condition_holds then
3.

$$
x_{t} \leftarrow x_{t}+\xi_{t} \text { where } \xi_{t} \sim \operatorname{Unif}\left(B_{0}(\epsilon)\right)
$$

4. $x_{t+1} \leftarrow x_{t}-\eta \nabla f\left(x_{t}\right)$

Perturbed gradient descent

$$
\text { 1. } \nabla f\left(x_{t}\right) \text { is small }
$$

2. No perturbation in last several iterations
3. For $t=0,1, \cdots$ do
4. if perturbation_condition_holds then
5.

$$
x_{t} \leftarrow x_{t}+\xi_{t} \text { where } \xi_{t} \sim \operatorname{Unif}\left(B_{0}(\epsilon)\right)
$$

4. $x_{t+1} \leftarrow x_{t}-\eta \nabla f\left(x_{t}\right)$

How can perturbation help?

Key question

- $S \stackrel{\text { def }}{=}$ set of points around saddle point from where gradient descent does not escape quickly
- Escape $\xlongequal{\text { def }}$ function value decreases significantly
- How much is $\operatorname{Vol}(S)$?
- $\operatorname{Vol}(S)$ small \Rightarrow perturbed GD escapes saddle points efficiently

Two dimensional quadratic case

- $f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] x$
- $\lambda_{\text {min }}(H)=-1<0$
- $(0,0)$ is a saddle point
- GD: $x_{t+1}=\left[\begin{array}{cc}1-\eta & 0 \\ 0 & 1+\eta\end{array}\right] x_{t}$
- S is a thin strip, $\operatorname{Vol}(S)$ is small

Three dimensional quadratic case

- $f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0\end{array}-1\right] x$
- $(0,0,0)$ is a saddle point
- GD: $x_{t+1}=\left[\begin{array}{ccc}1-\eta & 0 & 0 \\ 0 & 1-\eta & 0 \\ 0 & 0 & 1+\eta\end{array}\right] x_{t}$
- S is a thin disc, $\operatorname{Vol}(S)$ is small

General case

Key technical results
$S \sim$ thin deformed disc
$\operatorname{Vol}(S)$ is small

Two key ingredients of the proof

Improve or localize

$$
\begin{aligned}
f\left(x_{t+1}\right) & \leq f\left(x_{t}\right)-\frac{\eta}{2}\left\|\nabla f\left(x_{t}\right)\right\|^{2} \\
& =f\left(x_{t}\right)-\frac{\eta}{2}\left\|\frac{x_{t}-x_{t+1}}{\eta}\right\|^{2}
\end{aligned}
$$

$$
\left\|x_{t}-x_{t+1}\right\|^{2} \leq 2 \eta\left(f\left(x_{t}\right)-f\left(x_{t+1}\right)\right)
$$

$$
\left\|x_{0}-x_{t}\right\|^{2} \leq t \sum_{i=0}^{t-1}\left\|x_{i}-x_{i+1}\right\|^{2} \leq 2 \eta t\left(f\left(x_{0}\right)-f\left(x_{t}\right)\right)
$$

Two key ingredients of the proof

Improve or localize

Upshot
 Either function value decreases significantly or iterates do not move much

$$
\left\|x_{0}-x_{t}\right\|^{2} \leq t \sum_{i=0}^{t-1}\left\|x_{i}-x_{i+1}\right\|^{2} \leq 2 \eta t\left(f\left(x_{0}\right)-f\left(x_{t}\right)\right)
$$

Proof idea

- If GD from either u or w goes outside a small ball, it escapes (function value $\boldsymbol{\text { I }}$)
- If GD from both u and w lie in a small ball, use local quadratic approximation of $f(\cdot)$
- Show the claim for exact quadratic, and bound approximation error using Hessian Lipschitz property

Coupling

Either GD from u escapes
Or GD from w escapes

Putting everything together

Part II

Main Ideas of the Proof of Accelerated Gradient Descent

Nesterov's AGD

Challenge

Known potential functions depend on optimum x^{*}

Differential equation view of AGD

- AGD is a discretization of the following ODE [Su et al. 2015]

$$
\ddot{x}+\tilde{\theta} \dot{x}+\nabla f(x)=0
$$

- Multiplying by \dot{x} and integrating from t_{1} to t_{2} gives us

$$
f\left(x_{t_{2}}\right)+\frac{1}{2}\left\|\dot{x}_{t_{2}}\right\|^{2}=f\left(x_{t_{1}}\right)+\frac{1}{2}\left\|\dot{x}_{t_{1}}\right\|^{2}-\tilde{\theta} \int_{t_{1}}^{t_{2}}\left\|\dot{x}_{t}\right\|^{2} d t
$$

- Hamiltonian $f\left(x_{t}\right)+\frac{1}{2}\left\|\dot{x}_{t}\right\|^{2}$ decreases monotonically

After discretization

$$
\text { Iterate: } x_{t} \quad \text { and } \quad \text { velocity: } v_{t}:=x_{t}-x_{t-1}
$$

- Hamiltonian $f\left(x_{t}\right)+\frac{1}{2 \eta}\left\|v_{t}\right\|^{2}$ decreases monotonically if $f(\cdot)$ "not too nonconvex" between x_{t} and $x_{t}+v_{t}$
- too nonconvex = negative curvature
- Can increase if $f(\cdot)$ is "too nonconvex"
- If the function is "too nonconvex", reset velocity or move in nonconvex direction - negative curvature exploitation

Hamiltonian decrease

Negative curvature exploitation $-\left\|v_{t}\right\|$ small

One of $\pm v_{t}$ directions decreases $f\left(x_{t}\right)$

Hamiltonian decrease

Improve or localize

$$
\begin{gathered}
f\left(x_{t+1}\right)+\frac{1}{2 \eta}\left\|v_{t+1}\right\|^{2} \leq f\left(x_{t}\right)+\frac{1}{2 \eta}\left\|v_{t}\right\|^{2}-\frac{\theta}{2 \eta}\left\|v_{t}\right\|^{2} \\
\sum_{t=0}^{T-1}\left\|x_{t+1}-x_{t}\right\|^{2} \leq \frac{2 \eta}{\theta} \cdot\left(f\left(x_{0}\right)-f\left(x_{T}\right)\right)
\end{gathered}
$$

- Approximate locally by a quadratic and perform computations
- Precise computations are technically challenging

Summary

- Simple variations to GD/AGD ensure efficient escape from saddle points
- Fine understanding of geometric structure around saddle points
- Novel techniques of independent interest
- Some extensions to stochastic setting

Open questions

>Is NCE really necessary?
>Lower bounds - recent work by Carmon et al. 2017, but gaps between upper and lower bounds
>Extensions to stochastic setting
$>$ Nonconvex optimization for faster algorithms

Thank you!

Questions?

