On the representation of measures

Christian S. Rodrigues

Universidade Estadual de Campinas

Bangalore - 27th Sep 2019

Smooth and Homogeneous Dynamics - ICTS 2019

Representation of measures

Consider a family of Borel probability measures $\{\mu_x\}_{x\in X}$ on a Riemannian manifold M, parametrised by a Riemannian manifold X.

A representation of $\{\mu_x\}_{x\in X}$ is a mapping

 $T:(x,\omega)\in X\times\Omega\mapsto T(x,\omega)\in M$ such that, for each x,

$$\mu_{\mathsf{X}} = \mathsf{T}(\mathsf{X},\cdot)_* \mathbb{P},$$

where (Ω, \mathbb{P}) is an auxiliary probability space.

Problem:

Which conditions assure a representation s.t. $T(\cdot, \omega)$ are C^k -regular uniformly in ω ?

Representation of measures

Consider a family of Borel probability measures $\{\mu_x\}_{x\in X}$ on a Riemannian manifold M, parametrised by a Riemannian manifold X.

A representation of $\{\mu_x\}_{x\in X}$ is a mapping

 $T:(x,\omega)\in X\times\Omega\mapsto T(x,\omega)\in M$ such that, for each x,

$$\mu_{\mathsf{X}} = \mathsf{T}(\mathsf{X},\cdot)_* \mathbb{P},$$

where (Ω, \mathbb{P}) is an auxiliary probability space.

Problem:

Which conditions assure a representation s.t. $T(\cdot, \omega)$ are C^k -regular uniformly in ω ?

Markov chain

Let $f: M \to M$ be C^r for $r \ge 0$ and a small perturbation parameter $\varepsilon > 0$.

The Markov chain: a family $\{p_{\varepsilon}(\cdot|x)\}$ of Borel probability measures.

- Every $p_{\varepsilon}(\cdot | x)$ is supported inside an ε -neighbourhood of f(x).
- Random orbit: $\{x_i\}$ where each x_{i+1} has distribution $p_{\varepsilon}(\cdot | x_i)$.
- Jumps $x_j \mapsto f(x_j)$ and disperses with distribution $p_{\varepsilon}(\cdot | x_j)$.

Iteration of random maps

We consider $f: M \to M$ to be C^r for $r \ge 0$ and a small perturbation parameter $\varepsilon > 0$. The random iteration of maps is given by

- Assuming the existence of a family of probability distributions $\{\nu_{\varepsilon}\}$ on the space of C^r -maps.
- Support of ν_{ε} is in a ε -neighbourhood of f(x).
- Random orbit: $x_j = f_{\omega_j} \circ \cdots \circ f_{\omega_1}(x_0)$, where f_{ω_j} are i.i.d. random variables with distribution ν_{ε} .
- The random orbits generated by the random maps indeed give rise to a discrete time Markov chain.

Stochastic stability

A system (f,μ) is stochastically stable under the perturbation scheme $\{p_{\varepsilon}(\,\cdot\,|x)\}$ or $\{\nu_{\varepsilon}: \varepsilon>0\}$ if

$$\lim_{arepsilon o 0} \int arphi d\mu_{arepsilon} = \int arphi d\mu \quad ext{for every continuous } arphi: U o \mathbb{R}.$$

- Several contributions proving stochastic stability of different systems: Sinai, Kifer, L.-S. Young, Keller, Araújo, Alves, Benedicks, Viana, etc.
- Arguments: assume existence of probability on the space of maps, $\nu_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \delta_f$, control of distortion, hyperbolic times, thermodynamics formalism, etc.
- Questions: dependence on the probability distributions of the Markov chains, relation with structural properties, shadowing, etc.

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel *U*

$$p_{\varepsilon}(U|X) = \nu_{\varepsilon}(\{f_{\omega} : f_{\omega}(X) \in U\}).$$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem and the Moser trick.

Representation of Markov chains

The sequence of random maps is a representation of the Markov chain if for any Borel *U*

$$p_{\varepsilon}(U|x) = \nu_{\varepsilon}(\{f_{\omega} : f_{\omega}(x) \in U\}).$$

- Some contributions: Blumenthal and Corso '70, Kifer '86, Quas '91, Araújo '00, Benedicks and Viana '06, ...
- We tackled the general case in terms of a transportation problem and the Moser trick.

Main result

Theorem (Jost, Matveev, Portegies, R.)

We show that a family $\{\mu_x\}_{x\in X}$ is C^k -representable in case M is a compact, oriented, and connected Riemannian manifold of class C^{k+2} and X is a compact Riemannian manifold of class C^k , and the measures $\{\mu_x\}_{x\in X}$ have positive densities of class C^k on the interior of M (and have suitable decay towards the boundary of M).

Jost, Matveev, Portegies, R. - To appear in *Communications in Analysis and Geometry (2019)*.

Further results: Jost, Kell, R., Calculus of Variations and PDE's 2015

On optimal transport

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- Modern context: given μ and ν probability measures, find a measurable map T s.t.

$$\min_{S_*\mu=\nu}\left\{\int_X c(x,S(x))d\mu(x)\right\},$$

where $c: X \times Y \to [0, \infty]$ is some given *cost* function, and the minimum is taken over all measurable maps $S: X \to Y$, such that $S_*\mu = \nu$.

On optimal transport

- Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum cost.
- Modern context: given μ and ν probability measures, find a measurable map T s.t.

$$\min_{S_*\mu=\nu}\left\{\int_X c(x,S(x))d\mu(x)\right\},\,$$

where $c: X \times Y \to [0, \infty]$ is some given *cost* function, and the minimum is taken over all measurable maps $S: X \to Y$, such that $S_*\mu = \nu$.

The Monge-Ampère equation

Alternatively: weak solutions (Kantorovich): γ on $X \times Y$, with $\pi_{\mathcal{P}(X)*}\gamma = \mu$ and $\pi_{\mathcal{P}(Y)*}\gamma = \nu$, Minimisation problem:

$$C(\mu, \nu) = \inf_{\gamma \in \mathcal{P}(X \times Y)} \int_{X \times Y} c(x, y) d\gamma(x, y),$$

$$c: X \times Y \rightarrow [0, +\infty].$$

- Duality \rightarrow existence of optimal transport maps of form: $\sim \nabla u$
- ullet Jacobian equations: $S_*\mu=
 u o$ Monge-Ampère equation.
- Regularity of solutions u ⇒ regularity of transport maps.

Price: positivity of densities, and convexity on/of the support.

The Monge-Ampère equation

Alternatively: weak solutions (Kantorovich): γ on $X \times Y$, with $\pi_{\mathcal{P}(X)*}\gamma = \mu$ and $\pi_{\mathcal{P}(Y)*}\gamma = \nu$, Minimisation problem:

$$C(\mu,\nu) = \inf_{\gamma \in \mathcal{P}(X \times Y)} \int_{X \times Y} c(x,y) d\gamma(x,y),$$

 $c: X \times Y \rightarrow [0, +\infty].$

- Duality \rightarrow existence of optimal transport maps of form: $\sim \nabla u$
- Jacobian equations: $S_*\mu=
 u o$ Monge-Ampère equation.
- Regularity of solutions $u \Rightarrow$ regularity of transport maps.

Price: positivity of densities, and convexity on/of the support.

The Monge-Ampère equation

Alternatively: weak solutions (Kantorovich): γ on $X \times Y$, with $\pi_{\mathcal{P}(X)*}\gamma = \mu$ and $\pi_{\mathcal{P}(Y)*}\gamma = \nu$, Minimisation problem:

$$C(\mu, \nu) = \inf_{\gamma \in \mathcal{P}(X \times Y)} \int_{X \times Y} c(x, y) d\gamma(x, y),$$

 $c: X \times Y \rightarrow [0, +\infty].$

- Duality \rightarrow existence of optimal transport maps of form: $\sim \nabla u$
- Jacobian equations: $S_*\mu=
 u o$ Monge-Ampère equation.
- Regularity of solutions $u \Rightarrow$ regularity of transport maps.

Price: positivity of densities, and convexity on/of the support.

- The Moser trick: oriented, connected, compact manifolds.
 - Volume forms are isomorphic.
 - There exists a flow Φ_t that connects μ_0 and μ_t along a deformation.
 - Φ₁ provides the solution of Monge-Kantorovich problem.
- Find regular family of transport maps.
 - $T(x, \cdot): M \to M$ that pushs a reference measure μ to μ_x .
- **Show regular dependence of** $T(x, \cdot)$ **on** x.
 - The map $T: X \times M \to M$ is the representation, for which $T(\cdot, \omega)$ is regular.

- The Moser trick: oriented, connected, compact manifolds.
 - Volume forms are isomorphic.
 - There exists a flow Φ_t that connects μ_0 and μ_t along a deformation.
 - Φ₁ provides the solution of Monge-Kantorovich problem.
- Find regular family of transport maps.
 - $T(x, \cdot) : M \to M$ that pushs a reference measure μ to μ_x .
- ③ Show regular dependence of $T(x, \cdot)$ on x.
 - The map $T: X \times M \to M$ is the representation, for which $T(\cdot, \omega)$ is regular.

- The Moser trick: oriented, connected, compact manifolds.
 - Volume forms are isomorphic.
 - There exists a flow Φ_t that connects μ_0 and μ_t along a deformation.
 - Φ₁ provides the solution of Monge-Kantorovich problem.
- Find regular family of transport maps.
 - $T(x, \cdot): M \to M$ that pushs a reference measure μ to μ_x .
- **3** Show regular dependence of $T(x, \cdot)$ on x.
 - The map $T: X \times M \to M$ is the representation, for which $T(\cdot, \omega)$ is regular.

- The Moser trick: oriented, connected, compact manifolds.
 - Volume forms are isomorphic.
 - There exists a flow Φ_t that connects μ_0 and μ_t along a deformation.
 - Φ₁ provides the solution of Monge-Kantorovich problem.
- Find regular family of transport maps.
 - $T(x, \cdot) : M \to M$ that pushs a reference measure μ to μ_x .
- **3** Show regular dependence of $T(x, \cdot)$ on x.
 - The map $T: X \times M \to M$ is the representation, for which $T(\cdot, \omega)$ is regular.

Thanks for your attention!