Weak hyperbolicity for singular flows

Luciana Salgado

Smooth and homogeneous dynamics - ETDS2019 - ICTS

September 2019

Introduction

In this work, we present some weak hyperbolic structures and one obtain characterizations (or some conditions to get) of these properties.

Introduction

From now on,

M is a closed n-dimensional manifold, $n \geq 3$.

 $\mathfrak{X}^1(M)$ is the space of C^1 vector fields X on M,

 $X_t: M \to M, t \in \mathbb{R}$ is the C^1 flow generated by $X \in \mathfrak{X}^1(M)$.

 $\Lambda \subseteq M$ is a compact invariant set for X_t such that all singularities are hyperbolic, if any.

Uniform Hyperbolicity

Definition

The set Λ is said to be **hyperbolic** for a flow $X_t: M \to M$ if there are a continuous invariant splitting $T_x M = E_x^s \oplus E^X \oplus E_x^u$ and constants $C, \lambda > 0$ such that, $\forall x \in \Lambda$,

$$||DX_t|_{E_x^s}|| \le ce^{-\lambda t}, \ ||DX_{-t}|_{E_{(X_t(x))}^u}|| \le ce^{-\lambda t}.$$

Dominated splittings

A **dominated splitting** over Λ is a continuous DX_t -invariant splitting $T_{\Lambda}M = E \oplus F$ with $E_x \neq \{0\}$, $F_x \neq \{0\}$ for every $x \in \Lambda$ and such that there are positive constants K, λ satisfying

$$||DX_t|_{E_x}|| \cdot ||DX_{-t}|_{F_{X_t(x)}}|| < Ke^{-\lambda t},$$
 for all $x \in \Lambda$, and all $t > 0$.

Partial hyperbolicity

Definition

The set Λ is said to be **partially hyperbolic** for X if there is a dominated splitting $T_xM=E_x\oplus F_x$ such that E_x is uniformly contracted (or F_x is uniformly expanded) by DX_t .

Singular hyperbolicity

Given E a vector space, we denote by $\wedge^p E$ the exterior power of order p of E, defined as follows. If v_1, \ldots, v_n is a basis of E then $\wedge^p E$ is generated by

$$\{v_{i_1} \wedge \cdots \wedge v_{i_p}\}_{1 \leq i \leq n, i_j \neq i_k, j \neq k}.$$

Singular hyperbolicity

Any linear transformation $A: E \to F$ induces a transformation $\wedge^p A: \wedge^p E \to \wedge^p F$. We can see a p-plane as $\widetilde{v} \in \wedge^p (E_x) \setminus \{0\}$ of norm one.

Singular hyperbolicity

Hence, p-sectional expansion is given by the inequality

$$\|\wedge^p DX_t(x).\widetilde{v}\| > Ce^{\lambda t},$$

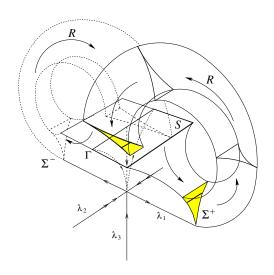
for some $\lambda > 0$ and every t > 0.

Singular/sectional hyperbolicity

The set Λ is said to be **p-sectionally hyperbolic** (or **singular hyperbolic of order p**) for a smooth flow X if:

- there exists a partially hyperbolic splitting $T_{\Lambda}M = E \oplus F$;
- ② E is uniformly contracting and the central subbundle F is p-sectionally expanding, with $2 \le p \le \dim(F)$.

Geometric Lorenz attractor



Turaev-Shil'nikov attractor

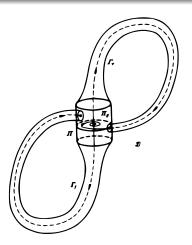


Figure: An attractor Γ of a n-dimensional vector field, $n \ge 4$, with 3-sectional expansion which is not (2-)sectionally expanding.

Characterization of domination property

Theorem (S.-2018)

A continuous DX_t -invariant splitting $T_{\Lambda}M = E \oplus F$ is dominated if, and only if, exists $\eta < 0$ for which

$$\liminf_{t\to +\infty} \frac{1}{t} \log |DX_t|_{E_x}| - \limsup_{t\to +\infty} \frac{1}{t} \log m(DX_t|_{F_x}) < \eta,$$

Theorem (S.-2018)

The set Λ is a partially hyperbolic for X, if and only if, there exists a continuous invariant splitting of the tangent bundle, $T_{\Lambda}M = E \oplus F$, of Λ such tthat:

- the Lyapunov exponents on E are negative (or positive on F), and

Theorem (S.-2018)

The set Λ is a partially hyperbolic for X, if and only if, there exists a continuous invariant splitting of the tangent bundle, $T_{\Lambda}M = E \oplus F$, of Λ such tthat:

- the Lyapunov exponents on E are negative (or positive on F), and
- $\lim \inf_{t \to +\infty} \frac{1}{t} \log |DX_t|_{E_x}| \lim \sup_{t \to +\infty} \frac{1}{t} \log m(DX_t|_{F_x}) < 0,$

Theorem (S.-2018)

The set Λ is a partially hyperbolic for X, if and only if, there exists a continuous invariant splitting of the tangent bundle, $T_{\Lambda}M = E \oplus F$, of Λ such tthat:

- the Lyapunov exponents on E are negative (or positive on F), and

p-sectional Lyapunov exponents

Definition

The p-sectional Lyapunov exponents (or Lyapunov exponents of order p) of x along F are the limits

$$\lim_{t\to+\infty}\frac{1}{t}\log\|\wedge^p DX_t(x).\widetilde{v}\|$$

whenever they exists, where $\tilde{v} \in \wedge^p F_x - \{0\}$.

Theorem (S.-2018)

- the Lyapunov exponents in the E direction are negative and
- the p-sectional Lyapunov exponents in the F direction are positive.

Theorem (S.-2018)

- the Lyapunov exponents in the E direction are negative and
- the p-sectional Lyapunov exponents in the F direction are positive.

Theorem (S.-2018)

- the Lyapunov exponents in the E direction are negative and
- the p-sectional Lyapunov exponents in the F direction are positive.

Theorem (S.-2018)

- the Lyapunov exponents in the E direction are negative and
- the p-sectional Lyapunov exponents in the F direction are positive.

Hyperbolicity via quadratic forms

Let f be a diffeomorphism on a closed manifold M and B a quadratic form on TM. Consider the quadratic form $f^{\sharp}B_{x}(v)=B_{f(x)}(Df(x)v), x\in M, v\in T_{x}M$.

Theorem (Lewowicz-1980): $f \in \mathrm{Diff}^r(M), r \geq 1$ is Anosov (hyperbolic over whole M) iff there exists a continuous non-degenerate quadratic form $B:TM \to \mathbb{R}$ such that $f^{\sharp}B - B > 0$.

Hyperbolicity via quadratic forms

Let f be a diffeomorphism on a closed manifold M and B a quadratic form on TM.

Consider the quadratic form $(C^{\dagger}, D, C) = D = (D, C, C)$

$$f^{\sharp}B_{x}(v)=B_{f(x)}(Df(x)v), x\in M, v\in T_{x}M.$$

Theorem (Lewowicz-1980): $f \in \operatorname{Diff}^r(M), r \geq 1$ is Anosov (hyperbolic over whole M) iff there exists a continuous non-degenerate quadratic form $B:TM \to \mathbb{R}$ such that $f^{\sharp}B - B > 0$.

\mathcal{J} -separation and monotonicity

Let \mathcal{J} be an indefinite non-degenerate quadratic form on TM.

Denote by $C_{\pm}(x) = \{v \in T_x M; \pm \mathcal{J}_x(v) > 0\} \cup \{0\}$ the open cones of positive and negative vectors, and $C_0(x) = \{v \in T_x M; \mathcal{J}_x(v) = 0\}$ their common boundary.

\mathcal{J} -separation and monotonicity

Given a continuous field of non-degenerate quadratic forms \mathcal{J} , we say that a cocycle $A_t(x)$ over X is

- strictly \mathcal{J} -separated if $A_t(x)(C_+(x) \cup C_0(x)) \subset C_+(X_t(x))$, for all t > 0 and $x \in U$;
- strictly \Im -monotone if $\partial_t (\Im_{X_t(x)}(A_t(x)v))|_{t=0} > 0$, for all $v \in T_x M \setminus \{0\}$, t > 0 and $x \in U$;

Strict \mathcal{J} separation

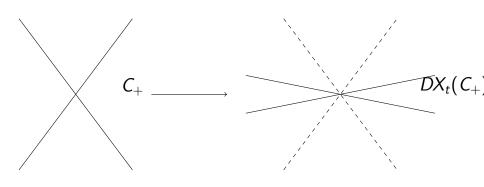


Figure: strict \mathcal{J} -separation.

Partially hyperbolic case

A field of quadratic forms \mathcal{J}_0 on U is equivalent with \mathcal{J} if there is C>1 such that

$$\frac{1}{C}\mathcal{J}_0 \le \mathcal{J} \le C\mathcal{J}_0. \tag{1}$$

Consider the operator $\tilde{J}_{0,x} := J_0 \cdot DX(x) + DX(x)^* \cdot J_0$, where $DX(x)^*$ is the adjoint of DX(x) with respect to the adapted inner product.

The Partially hyperbolic case

Theorem (Araujo-S. 2013)

Let X be a \mathcal{J} -non-negative vector field on U, with \mathcal{J} has constant index I_U . Then, Λ is partially hyperbolic of index I_U for X_t if, and only if, there are a equivalent \mathcal{J}_0 and a function $\delta: U \to \mathbb{R}$ such that

$$\tilde{J}_{0,x} - \delta(x)J_0$$
 is positive definite, $x \in U$.

Hyperbolicity via Lyapunov functions

Define

$$\Delta(x,t) := \int_0^t \delta(X_s(x)) \, ds. \tag{2}$$

The area under the function δ allows us to detect different dominated splittings with respect to linear multiplicative cocycles on vector bundles.

Hyperbolicity via Lyapunov functions

Define

$$\Delta(x,t) := \int_0^t \delta(X_s(x)) \, ds. \tag{2}$$

The area under the function δ allows us to detect different dominated splittings with respect to linear multiplicative cocycles on vector bundles.

If $\wedge^2 DX_t$ is strictly separated with respect to some family \mathcal{J} of quadratic forms, then there exists the function δ_2 with respect to the cocyle $\wedge^2 DX_t$.

We set

$$\widetilde{\Delta}_a^b(x) := \int_a^b \delta_2(X_s(x)) ds$$

the area under the function $\delta_2: U \to \mathbb{R}$ with respect to $\wedge^2 DX_t$ and its infinitesimal generator.

If $\wedge^2 DX_t$ is strictly separated with respect to some family \mathcal{J} of quadratic forms, then there exists the function δ_2 with respect to the cocyle $\wedge^2 DX_t$.

We set

$$\widetilde{\Delta}_a^b(x) := \int_a^b \delta_2(X_s(x)) ds$$

the area under the function $\delta_2: U \to \mathbb{R}$ with respect to $\wedge^2 DX_t$ and its infinitesimal generator.

Theorem (Araujo-S. 2015)

- **1** $\wedge^2 DX_t$ is strictly (− \mathcal{J})-separated
- \[
 \lambda \] is a singular hyperbolic set if either one of the following properties is true

 - $\mathfrak{J} = 2\operatorname{tr}(DX)\mathfrak{J} > 0$ on Λ .

Theorem (Araujo-S. 2015)

- $\wedge^2 DX_t$ is strictly $(-\beta)$ -separated;
- \[
 \lambda \] is a singular hyperbolic set if either one of the following properties is true
 - $\bullet \quad \Delta_0^t(x) \xrightarrow[t \to +\infty]{} -\infty \text{ for all } x \in \Lambda.$
 - $\mathfrak{J} = 2\operatorname{tr}(DX)\mathfrak{J} > 0$ on Λ .

Theorem (Araujo-S. 2015)

- $\wedge^2 DX_t$ is strictly $(-\mathcal{J})$ -separated;
- Λ is a singular hyperbolic set if either one of the following properties is true
 - $\bullet \quad \Delta_0^t(x) \xrightarrow[t \to +\infty]{} -\infty \text{ for all } x \in \Lambda.$
 - ② $\tilde{\mathcal{J}} 2 \operatorname{tr}(DX)\mathcal{J} > 0$ on Λ .

Theorem (Araujo-S. 2015)

- $\wedge^2 DX_t$ is strictly $(-\mathcal{J})$ -separated;
- lacktriangle Λ is a singular hyperbolic set if either one of the following properties is true
 - $\bullet \quad \widetilde{\Delta}_0^t(x) \xrightarrow[t \to +\infty]{} -\infty \text{ for all } x \in \Lambda.$

Theorem (Araujo-S. 2015)

- $\wedge^2 DX_t$ is strictly $(-\mathcal{J})$ -separated;
- lacktriangle Λ is a singular hyperbolic set if either one of the following properties is true
 - $\bullet \quad \widetilde{\Delta}_0^t(x) \xrightarrow[t \to +\infty]{} -\infty \text{ for all } x \in \Lambda.$

In 1963, E. Lorenz introduced the following system of nonlinear differential equations:

$$\dot{x}_1 = -\sigma x_1 + \sigma x_2,$$

 $\dot{x}_2 = \varrho x_1 - x_2 + x_1 x_3,$
 $\dot{x}_3 = -\beta x_3 + x_1 x_3.$

Theorem (Tucker 2002)

For the classical parameter values $(\sigma = 10, \beta = \frac{8}{3}, \varrho = 28)$, the Lorenz equations support a robust strange attractor \mathcal{A} . Furthermore, the flow admits a unique SRB measure μ with $\operatorname{supp}(\mu) = \mathcal{A}$.

Indeed, he proves that the attracting set is a *Singular Hyperbolic Attractor*!!

Theorem (Tucker 2002)

For the classical parameter values $(\sigma = 10, \beta = \frac{8}{3}, \varrho = 28)$, the Lorenz equations support a robust strange attractor A. Furthermore, the flow admits a unique SRB measure μ with $supp(\mu) = A$.

Indeed, he proves that the attracting set is a *Singular Hyperbolic Attractor*!!

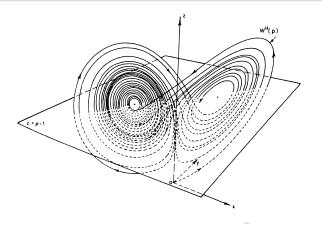


Figure: The Lorenz flow.

Acknowledgments

Thanks!