Continuity of Lyapunov exponents for non-uniformly fiber-bunched linear cocycles

Catalina Freijo

Universidade Federal de Minas Gerais

September 24, 2019

Let

M compact metric space, $f: M \to M$ continue, μ ergodic f -invariant, $A: M \to SL(2,\mathbb{R})$ continue.

Let

M compact metric space,

 $f: M \to M$ continue,

 μ ergodic f -invariant,

 $A: M \to SL(2,\mathbb{R})$ continue.

We define linear cocycle by

$$F_A: M \times \mathbb{R}^2 \to M \times \mathbb{R}^2$$

$$F_A(x, v) = (f(x), A(x)v).$$

We denote

$$A^n(x) = A(f^{n-1}(x)) \dots A(x).$$

We denote

$$A^{n}(x) = A(f^{n-1}(x)) \dots A(x).$$

By Furstenberg-Kesten, the limits

$$\lambda_{+}(A) = \lim_{n \to \infty} \frac{1}{n} \log ||A^{n}(x)||$$

and

$$\lambda_{-}(A) = \lim_{n \to \infty} \frac{1}{n} \log \|(A^{n}(x))^{-1}\|^{-1}$$

are well defined μ -almost every point.

Theorem - Mañé-Bochi [2002]

If f is an homeomorphism and μ is aperiodic. Then A is a continuity point in the C^0 topology if and only if

- a) A is uniformly hyperbolic,
- b) $\lambda_{+}(A) = 0 = \lambda_{-}(A)$.

Recently, Viana and Yang (2016) prove that when the base is non-invertible Mañé-Bochi is not true: there exists a C^0 continuity point with $\lambda_+(A)>0$ and non-uniformly hyperbolic.

Let $f: M \to M$ be a sub-shift of finite type with expansion rate σ and μ an ergodic f- invariant measure with local product structure and $\operatorname{supp}(\mu) = M$.

Definition

An uniform stable holonomy for A over f are isomorphisms $H^s_{x,y}\colon \mathbb{R}^2 \to \mathbb{R}^2$

- $\bullet \ H^s_{y,z} \circ H^s_{x,y} = H^s_{x,z} \ \mathrm{e} \ H^s_{x,x} = \mathit{Id};$
- $\bullet \ A(y) \circ H^s_{x,y} = H^s_{f(x),f(y)} \circ A(x);$
- $(x, y, \xi) \mapsto H_{x,y}^s(\xi)$ is continuous.

Theorem (Backes, Brown e Butler, 2018)

If
$$(A_k, H^{s,k}, H^{u,k}) \stackrel{C^0}{\longrightarrow} (A, H^s, H^u)$$
, then $\lambda_+(A_k) \to \lambda_+(A)$.

Theorem (Backes, Brown e Butler, 2018)

If
$$(A_k, H^{s,k}, H^{u,k}) \stackrel{C^0}{\longrightarrow} (A, H^s, H^u)$$
, then $\lambda_+(A_k) \to \lambda_+(A)$.

Conjecture (M.Viana)

Se
$$(A_k, H^{s,k}) \stackrel{C^0}{\longrightarrow} (A, H^s)$$
, then $\lambda_+(A_k) \to \lambda_+(A)$.

Results

Case $\lambda_{+}(A) < \frac{\log \sigma}{2}$ or non-uniformly fiber-bunched.

Case $\lambda_{+}(A) < \frac{\log \sigma}{2}$ or non-uniformly fiber-bunched.

Definition

A uniform stable holonomy for A over f are isomorphisms $H^s_{x,y}\colon \mathbb{R}^2 \to \mathbb{R}^2$ for every $y \in W^s_{loc}(x)$ with $x \in M$

- $H_{y,z}^s \circ H_{x,y}^s = H_{x,z}^s$ and $H_{x,x}^s = Id$;
- $A(y) \circ H_{x,y}^s = H_{f(x),f(y)}^s \circ A(x);$
- $(x, y, \xi) \mapsto H_{x,y}^s(\xi)$ is continuous.

Holonomies

Case $\lambda_+(A) < \frac{\log \sigma}{2}$ or non-uniformly fiber-bunched.

Definition

A uniform stable holonomy for A over f are isomorphisms $H^s_{x,y} \colon \mathbb{R}^2 \to \mathbb{R}^2$ for every $y \in W^s_{loc}(x)$ with $x \in M$

- $\bullet \ H^s_{y,z} \circ H^s_{x,y} = H^s_{x,z} \ \mathrm{e} \ H^s_{x,x} = Id;$
- $A(y) \circ H_{x,y}^s = H_{f(x),f(y)}^s \circ A(x);$
- $(x, y, \xi) \mapsto H^s_{x,y}(\xi)$ is continuous.

Holonomies

Case $\lambda_{+}(A) < \frac{\log \sigma}{2}$ or non-uniformly fiber-bunched.

Definition

A *non-uniform stable holonomy* for A over f are isomorphisms $H^s_{x,y} \colon \mathbb{R}^2 \to \mathbb{R}^2$, for every $y \in W^s_{loc}(x)$ with x in a full measure set M^s

- $\bullet \ H^s_{y,z} \circ H^s_{x,y} = H^s_{x,z} \ \text{and} \ H^s_{x,x} = Id;$
- $\bullet \ A(y) \circ H^s_{x,y} = H^s_{f(x),f(y)} \circ A(x);$
- $(x, y, \xi) \mapsto H^s_{x,y}(\xi)$ is measurable.

Holonomies

Case $\lambda_{+}(A) < \frac{\log \sigma}{2}$ or non-uniformly fiber-bunched.

Definition

A *non-uniform stable holonomy* for A over f are isomorphisms $H^s_{x,y}\colon \mathbb{R}^2 \to \mathbb{R}^2$, for every $y \in W^s_{loc}(x)$ with x in a full measure set M^s

- $\bullet \ H^s_{y,z} \circ H^s_{x,y} = H^s_{x,z} \ \text{and} \ H^s_{x,x} = Id;$
- $\bullet \ A(y) \circ H^s_{x,y} = H^s_{f(x),f(y)} \circ A(x);$
- $(x, y, \xi) \mapsto H_{x,y}^s(\xi)$ is measurable. There exist $\mathcal{D}_I \subset \mathcal{D}_{I+1}$ with $\mu(\mathcal{D}_I) < 1 - \frac{1}{I}$. If $x \in \mathcal{D}_I$

$$||H_{y,z}^s - id|| \le C_I d(y,z)$$
 with $y,z \in W_{loc}^s(x)$.

Case $\lambda_{+}(A) < \frac{\log \sigma}{2}$ or non-uniformly fiber-bunched.

Theorem A (.-Marin)

lf

$$A_k \xrightarrow{Lip} A$$
 and $H^{s,k} \xrightarrow{C^0} H^s$

then

$$\lambda_+(A_k) \to \lambda_+(A)$$

Case $\lambda_{+}(A) < \frac{\alpha \log \sigma}{2}$ or non-uniformly fiber-bunched.

Theorem A (.-Marin)

lf

$$A_k \xrightarrow{\alpha} A$$
 and $H^{s,k} \xrightarrow{C^0} H^s$

then

$$\lambda_+(A_k) \to \lambda_+(A)$$

Results

A locally constant cocycle A is *irreducible* if there is no proper subspace of \mathbb{R}^2 invariant by A(x) for μ -a.e.p.

Results

A locally constant cocycle A is *irreducible* if there is no proper subspace of \mathbb{R}^2 invariant by A(x) for μ -a.e.p.

Theorem B (.-Marin)

Let A be irreducible locally constant and non-uniformly fiber-bunched. If $A_k \xrightarrow{Lip} A$, then $\lambda_+(A_k) \to \lambda_+(A)$

Case $\lambda_+(A) \geq \frac{\log \sigma}{2}$ need more regularity: both f and A need to be $C^{1+\varepsilon}$.

Case $\lambda_+(A) \geq \frac{\log \sigma}{2}$ need more regularity: both f and A need to be $C^{1+\varepsilon}$.

• Partial result: Generalization of Viana-Yang.

Case $\lambda_+(A) \geq \frac{\log \sigma}{2}$ need more regularity: both f and A need to be $C^{1+\varepsilon}$.

• Partial result: Generalization of Viana-Yang.

We consider $\mathbb{P}(F_A)$ as a differential cocycle, thus

$$\lambda(\mathbb{P}(F_A), m^u) = \lambda_-(A) - \lambda_+(A) = 2\lambda_-(A) < 0 < \log \sigma,$$

Case $\lambda_+(A) \geq \frac{\log \sigma}{2}$ need more regularity: both f and A need to be $C^{1+\varepsilon}$.

• Partial result: Generalization of Viana-Yang.

We consider $\mathbb{P}(F_A)$ as a differential cocycle, thus

$$\lambda(\mathbb{P}(F_A), m^u) = \lambda_-(A) - \lambda_+(A) = 2\lambda_-(A) < 0 < \log \sigma,$$

and

$$\lambda(\mathbb{P}(F_A), m^s) = -\lambda_-(A) + \lambda_+(A) = 2\lambda_+(A) \ge \log \sigma,$$

Muchas gracias! Muito obrigada! Thanks you!