Hyperbolic *p*-barycenters, circumcenters, and Moebius maps

Kingshook Biswas, Indian Statistical Institute, Kolkata.

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\})$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms of $\mathbb{R}^n \cup \{\infty\}$ preserving cross-ratios

where cross-ratio of a quadruple of distinct points given by

$$[\xi, \xi', \eta, \eta'] = \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

Conjugating by stereographic projection gives

 $\mathsf{Moeb}(S^n) = \mathsf{group}$ of homeomorphisms of S^n preserving cross-ratios

$\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\})$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms of $\mathbb{R}^n \cup \{\infty\}$ preserving cross-ratios

where cross-ratio of a quadruple of distinct points given by

$$[\xi, \xi', \eta, \eta'] = \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

Conjugating by stereographic projection gives

$\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\})$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms of $\mathbb{R}^n \cup \{\infty\}$ preserving cross-ratios

where cross-ratio of a quadruple of distinct points given by

$$[\xi, \xi', \eta, \eta'] = \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

Conjugating by stereographic projection gives

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\})$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms of $\mathbb{R}^n \cup \{\infty\}$ preserving cross-ratios

where cross-ratio of a quadruple of distinct points given by

$$[\xi, \xi', \eta, \eta'] = \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

Conjugating by stereographic projection gives

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\})$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms of $\mathbb{R}^n \cup \{\infty\}$ preserving cross-ratios

where cross-ratio of a quadruple of distinct points given by

$$[\xi, \xi', \eta, \eta'] = \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

Conjugating by stereographic projection gives

 $\mathsf{Moeb}(\mathbb{R}^n \cup \{\infty\})$

- = < reflections in hyperplanes, inversions in spheres >
- = group of homeomorphisms of $\mathbb{R}^n \cup \{\infty\}$ preserving cross-ratios

where cross-ratio of a quadruple of distinct points given by

$$[\xi, \xi', \eta, \eta'] = \frac{||\xi - \eta|| ||\xi' - \eta'||}{||\xi - \eta'|| ||\xi' - \eta||}$$

Conjugating by stereographic projection gives

 $\mathsf{Moeb}(S^n) = \mathsf{group}$ of homeomorphisms of S^n preserving cross-ratios

 $\mathbb{H}^n=(\mathbb{R}^{n-1}\times\mathbb{R}^+, \frac{ds^2}{x_n^2})$ upper half-space model of *n*-dim real hyperbolic space.

 $\partial \mathbb{H}^n = \mathbb{R}^{n-1} \cup \{\infty\}$ boundary.

$$\mathsf{Isom}(\mathbb{H}^n) o \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\}) \ f \mapsto f_{|\partial \mathbb{H}^n}$$

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$

 $\mathbb{H}^n=(\mathbb{R}^{n-1}\times\mathbb{R}^+, \frac{ds^2}{x_n^2})$ upper half-space model of *n*-dim real hyperbolic space.

$$\partial \mathbb{H}^n = \mathbb{R}^{n-1} \cup \{\infty\}$$
 boundary.

$$\mathsf{Isom}(\mathbb{H}^n) o \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\}) \ f \mapsto f_{|\partial \mathbb{H}^n}$$

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$

 $\mathbb{H}^n=(\mathbb{R}^{n-1}\times\mathbb{R}^+, \frac{ds^2}{x_n^2})$ upper half-space model of *n*-dim real hyperbolic space.

 $\partial \mathbb{H}^n = \mathbb{R}^{n-1} \cup \{\infty\}$ boundary.

$$\mathsf{Isom}(\mathbb{H}^n) \to \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$
$$f \mapsto f_{|\partial \mathbb{H}^n}$$

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$

 $\mathbb{H}^n=(\mathbb{R}^{n-1}\times\mathbb{R}^+,\frac{ds^2}{x_n^2})$ upper half-space model of *n*-dim real hyperbolic space.

 $\partial \mathbb{H}^n = \mathbb{R}^{n-1} \cup \{\infty\}$ boundary.

$$\mathsf{Isom}(\mathbb{H}^n) o \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$
 $f \mapsto f_{|\partial \mathbb{H}^n}$

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$

 $\mathbb{H}^n=(\mathbb{R}^{n-1}\times\mathbb{R}^+,\frac{ds^2}{x_n^2})$ upper half-space model of *n*-dim real hyperbolic space.

 $\partial \mathbb{H}^n = \mathbb{R}^{n-1} \cup \{\infty\}$ boundary.

$$\mathsf{Isom}(\mathbb{H}^n) \to \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$
$$f \mapsto f_{|\partial \mathbb{H}^n}$$

$$\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Moeb}(\mathbb{R}^{n-1} \cup \{\infty\})$$

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Step 1. Choosing basepoints $x_0, y_0 \in \mathbb{H}^n$, ϕ induces equivariant quasi-isometry

$$F_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot y_0$$
$$g \cdot x_0 \mapsto \phi(g) \cdot y_0$$

Step 2. F_0 extends to an equivariant homeomorphism $f: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. f equivariant and quasi-conformal implies f Moebius.

Step 4. *f* Moebius implies *f* extends to an equivariant isometry

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Step 1. Choosing basepoints $x_0, y_0 \in \mathbb{H}^n$, ϕ induces equivariant quasi-isometry

$$F_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot y_0$$
$$g \cdot x_0 \mapsto \phi(g) \cdot y_0$$

Step 2. F_0 extends to an equivariant homeomorphism $f: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. f equivariant and quasi-conformal implies f Moebius.

Step 4. *f* Moebius implies *f* extends to an equivariant isometry

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Step 1. Choosing basepoints $x_0, y_0 \in \mathbb{H}^n$, ϕ induces equivariant quasi-isometry

$$F_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot y_0$$
$$g \cdot x_0 \mapsto \phi(g) \cdot y_0$$

Step 2. F_0 extends to an equivariant homeomorphism $f: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. f equivariant and quasi-conformal implies f Moebius.

Step 4. f Moebius implies f extends to an equivariant isometry $F : I \cap I \cap I$

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Step 1. Choosing basepoints $x_0, y_0 \in \mathbb{H}^n$, ϕ induces equivariant quasi-isometry

$$F_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot y_0$$

 $g \cdot x_0 \mapsto \phi(g) \cdot y_0$

Step 2. F_0 extends to an equivariant homeomorphism $f: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. *f* equivariant and quasi-conformal implies *f* Moebius.

Step 4. f Moebius implies f extends to an equivariant isometry $F \cdot \mathbb{H}^n \longrightarrow \mathbb{H}^n$

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Step 1. Choosing basepoints $x_0, y_0 \in \mathbb{H}^n$, ϕ induces equivariant quasi-isometry

$$F_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot y_0$$

 $g \cdot x_0 \mapsto \phi(g) \cdot y_0$

Step 2. F_0 extends to an equivariant homeomorphism $f: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Step 3. *f* equivariant and quasi-conformal implies *f* Moebius.

Step 4. *f* Moebius implies *f* extends to an equivariant isometry $F \cdot \mathbb{H}^n \to \mathbb{H}^n$

(Mostow) For $n \ge 3$, any isomorphism $\phi : \pi_1(M) \to \pi_1(N)$ between fundamental groups of closed hyperbolic n-manifolds M, N is induced by an isometry $f : M \to N$.

Step 1. Choosing basepoints $x_0, y_0 \in \mathbb{H}^n$, ϕ induces equivariant quasi-isometry

$$F_0: \pi_1(M) \cdot x_0 \to \pi_1(N) \cdot y_0$$

 $g \cdot x_0 \mapsto \phi(g) \cdot y_0$

- **Step 2.** F_0 extends to an equivariant homeomorphism $f: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.
- **Step 3.** *f* equivariant and quasi-conformal implies *f* Moebius.
- **Step 4.** *f* Moebius implies *f* extends to an equivariant isometry $F: \mathbb{H}^n \to \mathbb{H}^n$.

X closed negatively curved n-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

Theorem

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi : \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n=2.

Theorem

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi : \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theore

(Otal) Yes, if n=2.

Theorem

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

(Otal) Yes, if n = 2.

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

X closed negatively curved *n*-manifold

Each free homotopy class of closed curves contains a unique closed geodesic

Length function $I_X : \pi_1(X) \to \mathbb{R}^+$

Question: Given X, Y closed negatively curved n-manifolds, and $\phi: \pi_1(X) \to \pi_1(Y)$ an isomorphism such that $I_Y \circ \phi = I_X$, is X isometric to Y?

Theorem

(Otal) Yes, if n = 2.

Theorem

(X, d) metric space is CAT(-1) if:

- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\bar{s},\bar{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\bar{s},\bar{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\overline{s},\overline{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\bar{s},\bar{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\bar{s},\bar{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

- (X, d) metric space is CAT(-1) if:
- (1) X is a length space: For all $p, q \in X$, exists isometric embedding $\gamma : [0, T = d(p, q)] \to X$ with $\gamma(0) = p, \gamma(T) = q$.
- (2) X satisfies CAT(-1) inequality: Geodesic triangles thinner than in \mathbb{H}^2 , $d(s,t) \leq d_{\mathbb{H}^2}(\bar{s},\bar{t})$.

Facts:

Unique geodesic joining any two points.

Contractible.

Examples:

X complete simply connected manifold, $K \leq -1$.

Boundary at infinity

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{ geodesic ray} \} / \sim$$

where $\gamma_1 \sim \gamma_2$ if $\{d(\gamma_1(t), \gamma_2(t)) : t \geq 0\}$ bounded

$$\gamma(\infty) := [\gamma].$$

For $x \in X$, $\xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x$, $\gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in \overline{X}$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

 \overline{X} compact iff X proper.

Boundary at infinity

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \} / \sim$$
 where $\gamma_1 \sim \gamma_2$ if $\{ d(\gamma_1(t), \gamma_2(t)) : t \geq 0 \}$ bounded.

$$\gamma(\infty) := [\gamma]$$

For $x \in X$, $\xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x$, $\gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in \overline{X}$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

 \overline{X} compact iff X proper.

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \} / \sim$$

where $\gamma_1 \sim \gamma_2$ if $\{d(\gamma_1(t), \gamma_2(t)) : t \geq 0\}$ bounded.

$$\gamma(\infty):=[\gamma].$$

For $x \in X, \xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x, \gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in \overline{X}$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

$$\partial X := \{ [\gamma] : \gamma : [0,\infty) \to X \quad \text{ geodesic ray} \} / \sim$$

where $\gamma_1 \sim \gamma_2$ if $\{d(\gamma_1(t), \gamma_2(t)) : t \geq 0\}$ bounded.

$$\gamma(\infty) := [\gamma].$$

For $x \in X$, $\xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x$, $\gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in X$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \} / \sim$$

where $\gamma_1 \sim \gamma_2$ if $\{d(\gamma_1(t), \gamma_2(t)) : t \geq 0\}$ bounded.

$$\gamma(\infty) := [\gamma].$$

For $x \in X$, $\xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x$, $\gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in \overline{X}$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \} / \sim$$

where $\gamma_1 \sim \gamma_2$ if $\{d(\gamma_1(t), \gamma_2(t)) : t \geq 0\}$ bounded.

$$\gamma(\infty) := [\gamma].$$

For $x \in X$, $\xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x$, $\gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in X$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \} / \sim$$

where $\gamma_1 \sim \gamma_2$ if $\{d(\gamma_1(t), \gamma_2(t)) : t \geq 0\}$ bounded.

$$\gamma(\infty) := [\gamma].$$

For $x \in X$, $\xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x$, $\gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in \overline{X}$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

$$\partial X := \{ [\gamma] : \gamma : [0, \infty) \to X \quad \text{geodesic ray} \} / \sim$$

where $\gamma_1 \sim \gamma_2$ if $\{d(\gamma_1(t), \gamma_2(t)) : t \geq 0\}$ bounded.

$$\gamma(\infty) := [\gamma].$$

For $x \in X$, $\xi \in \partial X$, unique geodesic ray γ with $\gamma(0) = x$, $\gamma(\infty) = \xi$.

For $\xi, \eta \in \partial X$ distinct points, unique bi-infinite geodesic $\gamma : \mathbb{R} \to X$ with $\gamma(-\infty) = \xi, \gamma(\infty) = \eta$.

Cone topology on $\overline{X} = X \cup \partial X$:

Neighbourhood of $\xi = \gamma(\infty) \in \partial X$: Points $y \in \overline{X}$ outside ball of radius R such that geodesic joining $\gamma(0)$ to y stays close to γ up to time R.

Examples:

X simply connected complete manifold, $K \leq -1$, then the map

$$T_X^1 X \to \partial X$$

 $V \mapsto \gamma_V(\infty)$

(where γ_{ν} unique geodesic ray with $\gamma'_{\nu}(0) = \nu$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^n \cup \partial \mathbb{B}^n$.

X rooted binary tree, then $\partial X \simeq \{0,1\}^{\mathbb{N}}$ (Cantor set).

Examples:

X simply connected complete manifold, $K \leq -1$, then the map

$$T_X^1 X \to \partial X$$
$$V \mapsto \gamma_V(\infty)$$

(where γ_{ν} unique geodesic ray with $\gamma_{\nu}'(0) = \nu$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^n \cup \partial \mathbb{B}^n$.

X rooted binary tree, then $\partial X \simeq \{0,1\}^{\mathbb{N}}$ (Cantor set).

Examples:

X simply connected complete manifold, $K \leq -1$, then the map

$$T_X^1 X \to \partial X$$
 $V \mapsto \gamma_V(\infty)$

(where γ_{ν} unique geodesic ray with $\gamma_{\nu}'(0) = \nu$) is a homeomorphism, $X \cup \partial X \simeq \mathbb{B}^n \cup \partial \mathbb{B}^n$.

X rooted binary tree, then $\partial X \simeq \{0,1\}^{\mathbb{N}}$ (Cantor set).

For $x, y, z \in X$, $\angle^{(-1)}yxz$ comparison angle between [x, y), [x, z) at x.

For $x \in X$, $\xi, \eta \in \partial X$, limiting comparison angle

$$\angle^{(-1)}\xi X\eta := \lim_{y \to \xi, z \to \eta} \angle^{(-1)} yxz$$

exists.

Visual metric on ∂X based at $x \in X$:

$$\rho_X(\xi,\eta) := \sin\left(\frac{\angle^{(-1)}\xi X\eta}{2}\right)$$

For $x, y, z \in X$, $\angle^{(-1)}yxz$ comparison angle between [x, y), [x, z) at x.

For $x \in X$, $\xi, \eta \in \partial X$, limiting comparison angle

$$\angle^{(-1)}\xi X\eta := \lim_{y \to \xi, z \to \eta} \angle^{(-1)}yxz$$

exists.

Visual metric on ∂X based at $x \in X$:

$$\rho_X(\xi,\eta) := \sin\left(\frac{\angle^{(-1)}\xi X\eta}{2}\right)$$

For $x, y, z \in X$, $\angle^{(-1)}yxz$ comparison angle between [x, y), [x, z) at x.

For $x \in X$, $\xi, \eta \in \partial X$, limiting comparison angle

$$\angle^{(-1)}\xi X\eta := \lim_{y \to \xi, z \to \eta} \angle^{(-1)}yxz$$

exists.

Visual metric on ∂X based at $x \in X$:

$$\rho_X(\xi,\eta) := \sin\left(\frac{\angle^{(-1)}\xi X\eta}{2}\right)$$

For $x, y, z \in X$, $\angle^{(-1)}yxz$ comparison angle between [x, y), [x, z) at x.

For $x \in X$, $\xi, \eta \in \partial X$, limiting comparison angle

$$\angle^{(-1)}\xi X\eta := \lim_{y \to \xi, z \to \eta} \angle^{(-1)}yxz$$

exists.

Visual metric on ∂X based at $x \in X$:

$$\rho_X(\xi,\eta) := \sin\left(\frac{\angle^{(-1)}\xi X\eta}{2}\right)$$

$$(y|z)_x := \frac{1}{2}(d(x,y) + d(x,z) - d(y,z))$$

For X metric tree, $(y|z)_X = \text{length of common segment of } [x,y], [x,z].$

For $\xi, \eta \in \partial X$, the limit

$$(\xi|\eta)_X := \lim_{y \to \xi, z \to \eta} (y|z)_X \in [0, \infty]$$

exists.

Visual metric

$$\rho_X(\xi,\eta) = \exp(-(\xi|\eta)_X)$$

.

$$(y|z)_x := \frac{1}{2}(d(x,y) + d(x,z) - d(y,z))$$

For X metric tree, $(y|z)_x$ = length of common segment of [x, y], [x, z].

For $\xi, \eta \in \partial X$, the limit

$$(\xi|\eta)_X := \lim_{y \to \xi, z \to \eta} (y|z)_X \in [0, \infty]$$

exists.

Visual metric

$$\rho_X(\xi,\eta) = \exp(-(\xi|\eta)_X)$$

.

$$(y|z)_x := \frac{1}{2}(d(x,y) + d(x,z) - d(y,z))$$

For X metric tree, $(y|z)_x$ = length of common segment of [x, y], [x, z].

For $\xi, \eta \in \partial X$, the limit

$$(\xi|\eta)_X := \lim_{y \to \xi, z \to \eta} (y|z)_X \in [0, \infty]$$

exists.

Visual metric

$$\rho_X(\xi,\eta) = \exp(-(\xi|\eta)_X)$$

(ロ) (回) (重) (重) (重) (重) のQの

$$(y|z)_X := \frac{1}{2}(d(x,y) + d(x,z) - d(y,z))$$

For X metric tree, $(y|z)_x$ = length of common segment of [x, y], [x, z].

For $\xi, \eta \in \partial X$, the limit

$$(\xi|\eta)_X := \lim_{y \to \xi, z \to \eta} (y|z)_X \in [0, \infty]$$

exists.

Visual metric

$$\rho_{X}(\xi,\eta) = \exp(-(\xi|\eta)_{X})$$

.

 (Z, ρ) metric space, cross-ratio defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)},$$

Injective map $f:(Z_1,\rho_1)\to (Z_2,\rho_2)$ between metric spaces is **Moebius** if it preserves cross-ratios.

f is conformal if

$$df_{\rho_1,\rho_2}(\xi) := \lim_{\eta \to \xi} \frac{\rho_2(f(\xi),f(\eta))}{\rho_1(\xi,\eta)}$$

exists for all $\xi \in Z_1$.

 (Z, ρ) metric space, cross-ratio defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)},$$

Injective map $f:(Z_1,\rho_1)\to (Z_2,\rho_2)$ between metric spaces is **Moebius** if it preserves cross-ratios.

f is conformal if

$$df_{\rho_1,\rho_2}(\xi) := \lim_{\eta \to \xi} \frac{\rho_2(f(\xi), f(\eta))}{\rho_1(\xi, \eta)}$$

exists for all $\xi \in Z_1$.

 (Z, ρ) metric space, cross-ratio defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)},$$

Injective map $f:(Z_1,\rho_1)\to (Z_2,\rho_2)$ between metric spaces is **Moebius** if it preserves cross-ratios.

f is conformal if

$$df_{\rho_1,\rho_2}(\xi) := \lim_{\eta \to \xi} \frac{\rho_2(f(\xi), f(\eta))}{\rho_1(\xi, \eta)}$$

exists for all $\xi \in Z_1$.

 (Z, ρ) metric space, cross-ratio defined by

$$[\xi, \xi', \eta, \eta']_{\rho} := \frac{\rho(\xi, \eta)\rho(\xi', \eta')}{\rho(\xi, \eta')\rho(\xi', \eta)},$$

Injective map $f:(Z_1,\rho_1)\to (Z_2,\rho_2)$ between metric spaces is **Moebius** if it preserves cross-ratios.

f is conformal if

$$df_{\rho_1,\rho_2}(\xi) := \lim_{\eta \to \xi} \frac{\rho_2(f(\xi),f(\eta))}{\rho_1(\xi,\eta)}$$

exists for all $\xi \in Z_1$.

We say f is C^1 conformal if df_{ρ_1,ρ_2} is continuous.

Any Moebius map is C^1 conformal.

Any Moebius map satisfies the **Geometric Mean-Value Theorem**:

$$\left(rac{
ho_2(f(\xi),f(\eta))}{
ho_1(\xi,\eta)}
ight)^2=df_{
ho_1,
ho_2}(\xi)df_{
ho_1,
ho_2}(\eta)$$

We say f is C^1 conformal if df_{ρ_1,ρ_2} is continuous.

Any Moebius map is C^1 conformal.

Any Moebius map satisfies the **Geometric Mean-Value Theorem**:

$$\left(rac{
ho_2(f(\xi),f(\eta))}{
ho_1(\xi,\eta)}
ight)^2=df_{
ho_1,
ho_2}(\xi)df_{
ho_1,
ho_2}(\eta)$$

We say f is C^1 conformal if df_{ρ_1,ρ_2} is continuous.

Any Moebius map is C^1 conformal.

Any Moebius map satisfies the **Geometric Mean-Value Theorem**:

$$\left(rac{
ho_2(f(\xi),f(\eta))}{
ho_1(\xi,\eta)}
ight)^2=df_{
ho_1,
ho_2}(\xi)df_{
ho_1,
ho_2}(\eta)$$

For two metrics ρ_1, ρ_2 on the same space Z, if $[\quad]_{\rho_1} \equiv [\quad]_{\rho_2}$, define the derivative of ρ_2 with respect to ρ_1 to be

$$rac{d
ho_2}{d
ho_1}:=$$
 derivative of the Moebius map $id:(Z,
ho_1) o(Z,
ho_2)$

Let $(Z,
ho_0)$ be a compact metric space with $\mathsf{diam}(Z,
ho_0)=1$.

Assume ρ_0 is **antipodal**, i.e. for any $\xi \in Z$ there exists $\eta \in Z$ such that $\rho_0(\xi, \eta) = 1$.

$$\mathcal{M}(Z, \rho_0) := \{ \rho : \rho \text{ diameter one, antipodal metric on } Z, [\quad]_{\rho} = [\quad]_{\rho_0}$$

For two metrics ρ_1, ρ_2 on the same space Z, if $[\quad]_{\rho_1} \equiv [\quad]_{\rho_2}$, define the derivative of ρ_2 with respect to ρ_1 to be

$$rac{d
ho_2}{d
ho_1}:=$$
 derivative of the Moebius map $id:(Z,
ho_1) o(Z,
ho_2)$

Let (Z, ρ_0) be a compact metric space with $diam(Z, \rho_0) = 1$.

Assume ρ_0 is **antipodal**, i.e. for any $\xi \in Z$ there exists $\eta \in Z$ such that $\rho_0(\xi, \eta) = 1$.

$$\mathcal{M}(Z, \rho_0) := \{ \rho : \rho \text{ diameter one, antipodal metric on } Z, [\quad]_{\rho} = [\quad]_{\rho_0}$$

For two metrics ρ_1, ρ_2 on the same space Z, if $[\quad]_{\rho_1} \equiv [\quad]_{\rho_2}$, define the derivative of ρ_2 with respect to ρ_1 to be

$$\dfrac{d
ho_2}{d
ho_1}:=$$
 derivative of the Moebius map $id:(Z,
ho_1) o(Z,
ho_2)$

Let (Z, ρ_0) be a compact metric space with $diam(Z, \rho_0) = 1$.

Assume ρ_0 is **antipodal**, i.e. for any $\xi \in Z$ there exists $\eta \in Z$ such that $\rho_0(\xi, \eta) = 1$.

$$\mathcal{M}(Z, \rho_0) := \{ \rho : \rho \text{ diameter one, antipodal metric on } Z, [\quad]_{\rho} = [\quad]_{\rho_0}$$

For two metrics ρ_1, ρ_2 on the same space Z, if $[\quad]_{\rho_1} \equiv [\quad]_{\rho_2}$, define the derivative of ρ_2 with respect to ρ_1 to be

$$\frac{d\rho_2}{d\rho_1}:=$$
 derivative of the Moebius map $id:(Z,\rho_1) o (Z,\rho_2)$

Let (Z, ρ_0) be a compact metric space with diam $(Z, \rho_0) = 1$.

Assume ρ_0 is **antipodal**, i.e. for any $\xi \in Z$ there exists $\eta \in Z$ such that $\rho_0(\xi, \eta) = 1$.

$$\mathfrak{M}(Z, \rho_0) := \{ \rho : \rho \text{ diameter one, antipodal metric on } Z, [\quad]_{\rho} = [\quad]_{\rho_0} \}$$

For $\rho_1, \rho_2 \in \mathcal{M}(Z, \rho_0)$,

$$\left(\max_{\xi\in Z}\frac{d\rho_2}{d\rho_1}(\xi)\right)\cdot\left(\min_{\xi\in Z}\frac{d\rho_2}{d\rho_1}(\xi)\right)=1$$

$$d_{\mathbb{M}}(\rho_1, \rho_2) := \max_{\xi \in Z} \log \frac{d\rho_2}{d\rho_1}(\xi)$$

is a metric on $\mathfrak{M}(Z,
ho_0)$ making it into a proper metric space

For $\rho_1, \rho_2 \in \mathcal{M}(Z, \rho_0)$,

$$\left(\max_{\xi\in\mathcal{Z}}\frac{d\rho_2}{d\rho_1}(\xi)\right)\cdot\left(\min_{\xi\in\mathcal{Z}}\frac{d\rho_2}{d\rho_1}(\xi)\right)=1$$

$$d_{\mathbb{M}}(
ho_1,
ho_2) := \max_{\xi\in\mathcal{Z}}\log rac{d
ho_2}{d
ho_1}(\xi)$$

is a metric on $\mathfrak{M}(Z, \rho_0)$ making it into a proper metric space.

X CAT(-1) space, $x \in X$, then

$$[\xi,\xi',\eta,\eta']_{\rho_{\mathsf{X}}} = \exp\left(-(\xi|\eta)_{\mathsf{X}} - (\xi'|\eta')_{\mathsf{X}} + (\xi|\eta')_{\mathsf{X}} + (\xi'|\eta)_{\mathsf{X}}\right)$$

does not depend on x, so ∂X has a canonical cross-ration

Any isometry $F: X \to Y$ between CAT(-1) spaces extends to a Moebius map $f: \partial X \to \partial Y$.

For $x, y \in X$,

$$\frac{d\rho_y}{d\rho_x}(\xi) = \exp(B(x, y, \xi))$$

where

$$B(x,y,\xi) := \lim_{z \to \xi} (d(x,z) - d(y,z))$$

X CAT(-1) space, $x \in X$, then

$$[\xi, \xi', \eta, \eta']_{\rho_X} = \exp\left(-(\xi|\eta)_X - (\xi'|\eta')_X + (\xi|\eta')_X + (\xi'|\eta)_X\right)$$

does not depend on x, so ∂X has a canonical cross-ratio.

Any isometry $F: X \to Y$ between CAT(-1) spaces extends to a Moebius map $f: \partial X \to \partial Y$.

For $x, y \in X$,

$$\frac{d\rho_y}{d\rho_x}(\xi) = \exp(B(x, y, \xi))$$

where

$$B(x, y, \xi) := \lim_{z \to \xi} (d(x, z) - d(y, z))$$

X CAT(-1) space, $x \in X$, then

$$[\xi, \xi', \eta, \eta']_{\rho_X} = \exp\left(-(\xi|\eta)_X - (\xi'|\eta')_X + (\xi|\eta')_X + (\xi'|\eta)_X\right)$$

does not depend on x, so ∂X has a canonical cross-ratio.

Any isometry $F: X \to Y$ between CAT(-1) spaces extends to a Moebius map $f: \partial X \to \partial Y$.

For $x, y \in X$,

$$\frac{d\rho_y}{d\rho_x}(\xi) = \exp(B(x, y, \xi))$$

where

$$B(x, y, \xi) := \lim_{z \to \xi} (d(x, z) - d(y, z))$$

X CAT(-1) space, $x \in X$, then

$$[\xi, \xi', \eta, \eta']_{\rho_X} = \exp\left(-(\xi|\eta)_X - (\xi'|\eta')_X + (\xi|\eta')_X + (\xi'|\eta)_X\right)$$

does not depend on x, so ∂X has a canonical cross-ratio.

Any isometry $F: X \to Y$ between CAT(-1) spaces extends to a Moebius map $f: \partial X \to \partial Y$.

For $x, y \in X$,

$$\frac{d\rho_{y}}{d\rho_{x}}(\xi) = \exp(B(x, y, \xi))$$

where

$$B(x,y,\xi) := \lim_{z \to \xi} (d(x,z) - d(y,z))$$

Isometric embedding

Assume X is proper and geodesically complete. Then $(\partial X, \rho_X)$ is compact, diameter one and antipodal.

Let $\mathcal{M}(\partial X) := \mathcal{M}(\partial X, \rho_X)$ (independent of choice of $X \in X$).

The map

$$i_X: X \to \mathcal{M}(\partial X)$$
$$X \mapsto \rho_X$$

is an isometric embedding.

The image of the embedding is $\frac{1}{2} \log 2$ -dense in $\mathcal{M}(\partial X)$.

Isometric embedding

Assume X is proper and geodesically complete. Then $(\partial X, \rho_X)$ is compact, diameter one and antipodal.

Let $\mathcal{M}(\partial X) := \mathcal{M}(\partial X, \rho_X)$ (independent of choice of $x \in X$).

The map

$$i_X: X \to \mathfrak{M}(\partial X)$$

 $x \mapsto \rho_X$

is an isometric embedding.

The image of the embedding is $\frac{1}{2} \log 2$ -dense in $\mathcal{M}(\partial X)$.

Isometric embedding

Assume X is proper and geodesically complete. Then $(\partial X, \rho_X)$ is compact, diameter one and antipodal.

Let $\mathcal{M}(\partial X) := \mathcal{M}(\partial X, \rho_X)$ (independent of choice of $x \in X$).

The map

$$i_X: X \to \mathcal{M}(\partial X)$$

 $x \mapsto \rho_x$

is an isometric embedding.

The image of the embedding is $\frac{1}{2} \log 2$ -dense in $\mathcal{M}(\partial X)$.

Isometric embedding

Assume X is proper and geodesically complete. Then $(\partial X, \rho_X)$ is compact, diameter one and antipodal.

Let $\mathcal{M}(\partial X) := \mathcal{M}(\partial X, \rho_X)$ (independent of choice of $x \in X$).

The map

$$i_X: X \to \mathfrak{M}(\partial X)$$

 $x \mapsto \rho_x$

is an isometric embedding.

The image of the embedding is $\frac{1}{2} \log 2$ -dense in $\mathcal{M}(\partial X)$.

Geodesic flow of a CAT(-1) space

X CAT(-1) space. Define the geodesic flow space of X by

$$\mathfrak{G}X := \{ \gamma : \mathbb{R} \to X \text{ bi-infinite geodesic } \}$$

(endowed with the topology of uniform convergence on compacts).

(For X a simply connected manifold with $K \leq -1$, the map $\gamma \mapsto \gamma'(0)$ identifies $\Im X$ with T^1X)

The geodesic flow of X is the 1-parameter group of homeomorphisms $(\phi_t : \Im X \to \Im X)_{t \in \mathbb{R}}$ defined by

$$(\phi_t \gamma)(s) := \gamma(s+t)$$

Geodesic flow of a CAT(-1) space

X CAT(-1) space. Define the geodesic flow space of X by

$$\mathfrak{G}X := \{ \gamma : \mathbb{R} \to X \text{ bi-infinite geodesic } \}$$

(endowed with the topology of uniform convergence on compacts).

(For X a simply connected manifold with $K \le -1$, the map $\gamma \mapsto \gamma'(0)$ identifies $\Im X$ with T^1X)

The geodesic flow of X is the 1-parameter group of homeomorphisms $(\phi_t : \Im X \to \Im X)_{t \in \mathbb{R}}$ defined by

$$(\phi_t \gamma)(s) := \gamma(s+t)$$

Geodesic flow of a CAT(-1) space

X CAT(-1) space. Define the geodesic flow space of X by

$$\mathfrak{G}X := \{ \gamma : \mathbb{R} \to X \text{ bi-infinite geodesic } \}$$

(endowed with the topology of uniform convergence on compacts).

(For X a simply connected manifold with $K \le -1$, the map $\gamma \mapsto \gamma'(0)$ identifies $\Im X$ with T^1X)

The geodesic flow of X is the 1-parameter group of homeomorphisms $(\phi_t : \Im X \to \Im X)_{t \in \mathbb{R}}$ defined by

$$(\phi_t \gamma)(s) := \gamma(s+t)$$

Define continuous 'projections'

$$\pi: \mathfrak{G}X \to X$$
$$\gamma \mapsto \gamma(\mathbf{0})$$

and

$$p: \mathfrak{G}X \to \partial X$$
$$\gamma \mapsto \gamma(\infty)$$

Define continuous 'projections'

$$\pi: \mathfrak{G}X \to X$$
$$\gamma \mapsto \gamma(0)$$

and

$$p: \mathfrak{G}X \to \partial X$$
$$\gamma \mapsto \gamma(\infty)$$

Given X, Y CAT(-1) spaces and $f: \partial X \to \partial Y$ a conformal map, f induces a homeomorphism $\phi: \mathcal{G}X \to \mathcal{G}Y$ conjugating the geodesic flows, which is defined as follows:

Given
$$\gamma \in \mathcal{G}X$$
, let $x = \gamma(0), \xi = \gamma(-\infty), \eta = \gamma(+\infty)$.

There is a unique $y \in (f(\xi), f(\eta))$ such that

$$df_{\rho_X,\rho_Y}(\eta) = \frac{df^*\rho_Y}{d\rho_X}(\eta) = 1$$

Define $\phi(\gamma) = \tilde{\gamma}$ where $\tilde{\gamma} \in \mathcal{G}Y$ is the unique bi-infinite geodesic with $\tilde{\gamma}(0) = y, f(\xi) = \tilde{\gamma}(-\infty), f(\eta) = \tilde{\gamma}(+\infty)$.

Given X, Y CAT(-1) spaces and $f: \partial X \to \partial Y$ a conformal map, f induces a homeomorphism $\phi: \mathcal{G}X \to \mathcal{G}Y$ conjugating the geodesic flows, which is defined as follows:

Given
$$\gamma \in \mathcal{G}X$$
, let $x = \gamma(0), \xi = \gamma(-\infty), \eta = \gamma(+\infty)$.

There is a unique $y \in (f(\xi), f(\eta))$ such that

$$df_{\rho_X,\rho_Y}(\eta) = \frac{df^*\rho_Y}{d\rho_X}(\eta) = 1$$

Define $\phi(\gamma) = \tilde{\gamma}$ where $\tilde{\gamma} \in \mathcal{G}Y$ is the unique bi-infinite geodesic with $\tilde{\gamma}(0) = y, f(\xi) = \tilde{\gamma}(-\infty), f(\eta) = \tilde{\gamma}(+\infty)$.

Given X, Y CAT(-1) spaces and $f: \partial X \to \partial Y$ a conformal map, f induces a homeomorphism $\phi: \mathcal{G}X \to \mathcal{G}Y$ conjugating the geodesic flows, which is defined as follows:

Given
$$\gamma \in \mathcal{G}X$$
, let $x = \gamma(0), \xi = \gamma(-\infty), \eta = \gamma(+\infty)$.

There is a unique $y \in (f(\xi), f(\eta))$ such that

$$df_{\rho_X,\rho_Y}(\eta) = \frac{df^*\rho_Y}{d\rho_X}(\eta) = 1$$

Define $\phi(\gamma) = \tilde{\gamma}$ where $\tilde{\gamma} \in \mathcal{G} Y$ is the unique bi-infinite geodesic with $\tilde{\gamma}(0) = y, f(\xi) = \tilde{\gamma}(-\infty), f(\eta) = \tilde{\gamma}(+\infty)$.

Given X, Y CAT(-1) spaces and $f: \partial X \to \partial Y$ a conformal map, f induces a homeomorphism $\phi: \mathcal{G}X \to \mathcal{G}Y$ conjugating the geodesic flows, which is defined as follows:

Given
$$\gamma \in \mathcal{G}X$$
, let $x = \gamma(0), \xi = \gamma(-\infty), \eta = \gamma(+\infty)$.

There is a unique $y \in (f(\xi), f(\eta))$ such that

$$df_{\rho_X,\rho_Y}(\eta) = \frac{df^*\rho_Y}{d\rho_X}(\eta) = 1$$

Define $\phi(\gamma) = \tilde{\gamma}$ where $\tilde{\gamma} \in \mathcal{G} Y$ is the unique bi-infinite geodesic with $\tilde{\gamma}(0) = y, f(\xi) = \tilde{\gamma}(-\infty), f(\eta) = \tilde{\gamma}(+\infty)$.

By the Geometric Mean-Value Theorem,

$$df_{\rho_x,\rho_y}(\xi) \cdot df_{\rho_x,\rho_y}(\eta) = \left(\frac{\rho_y(f(\xi),f(\eta))}{\rho_x(\xi,\eta)}\right)^2 = 1$$

SO

$$df_{\rho_x,\rho_y}(\eta) = 1$$
 if and only if $df_{\rho_x,\rho_y}(\xi) = 1$

$$\phi(-\gamma) = -\phi(\gamma)$$

By the Geometric Mean-Value Theorem,

$$df_{\rho_x,\rho_y}(\xi) \cdot df_{\rho_x,\rho_y}(\eta) = \left(\frac{\rho_y(f(\xi),f(\eta))}{\rho_x(\xi,\eta)}\right)^2 = 1$$

SO

$$df_{\rho_x,\rho_y}(\eta) = 1$$
 if and only if $df_{\rho_x,\rho_y}(\xi) = 1$

$$\phi(-\gamma) = -\phi(\gamma)$$

By the Geometric Mean-Value Theorem,

$$df_{\rho_x,\rho_y}(\xi) \cdot df_{\rho_x,\rho_y}(\eta) = \left(\frac{\rho_y(f(\xi),f(\eta))}{\rho_x(\xi,\eta)}\right)^2 = 1$$

SO

$$df_{\rho_x,\rho_y}(\eta) = 1$$
 if and only if $df_{\rho_x,\rho_y}(\xi) = 1$

$$\phi(-\gamma) = -\phi(\gamma)$$

By the Geometric Mean-Value Theorem,

$$df_{\rho_x,\rho_y}(\xi) \cdot df_{\rho_x,\rho_y}(\eta) = \left(\frac{\rho_y(f(\xi),f(\eta))}{\rho_x(\xi,\eta)}\right)^2 = 1$$

SO

$$df_{\rho_x,\rho_y}(\eta) = 1$$
 if and only if $df_{\rho_x,\rho_y}(\xi) = 1$

$$\phi(-\gamma) = -\phi(\gamma)$$

$f: \partial X \to \partial Y$ conformal map.

The **integrated Schwarzian** of f is the function $S(f): \partial^2 X \to \mathbb{R}$ defined by

$$S(f)(\xi,\eta) := -\log(df_{\rho_X,\rho_Y}(\xi) \cdot df_{\rho_X,\rho_Y}(\eta))$$

Measures deviation of ϕ from being flip-equivariant:

$$\phi(-\gamma) = -\phi_{-t}(\phi(\gamma))$$
 where $t = S(t)(\xi, \eta)$

S(f) = 0 if f is Moebius.

$$S(f \circ g) = S(f) \circ (g,g) + S(g)$$

 $f: \partial X \to \partial Y$ conformal map.

The **integrated Schwarzian** of f is the function $S(f): \partial^2 X \to \mathbb{R}$ defined by

$$S(f)(\xi,\eta) := -\log(df_{\rho_X,\rho_Y}(\xi) \cdot df_{\rho_X,\rho_Y}(\eta))$$

Measures deviation of ϕ from being flip-equivariant:

$$\phi(-\gamma) = -\phi_{-t}(\phi(\gamma))$$
 where $t = S(f)(\xi, \eta)$

S(f) = 0 if f is Moebius.

$$S(f \circ g) = S(f) \circ (g,g) + S(g)$$

 $f: \partial X \to \partial Y$ conformal map.

The **integrated Schwarzian** of f is the function $S(f): \partial^2 X \to \mathbb{R}$ defined by

$$S(f)(\xi,\eta) := -\log(df_{\rho_X,\rho_Y}(\xi) \cdot df_{\rho_X,\rho_Y}(\eta))$$

Measures deviation of ϕ from being flip-equivariant:

$$\phi(-\gamma) = -\phi_{-t}(\phi(\gamma))$$
 where $t = S(t)(\xi, \eta)$

S(f) = 0 if f is Moebius.

$$S(f \circ g) = S(f) \circ (g,g) + S(g)$$

 $f: \partial X \to \partial Y$ conformal map.

The **integrated Schwarzian** of f is the function $S(f): \partial^2 X \to \mathbb{R}$ defined by

$$S(f)(\xi,\eta) := -\log(df_{\rho_X,\rho_Y}(\xi) \cdot df_{\rho_X,\rho_Y}(\eta))$$

Measures deviation of ϕ from being flip-equivariant:

$$\phi(-\gamma) = -\phi_{-t}(\phi(\gamma))$$
 where $t = S(t)(\xi, \eta)$

S(f) = 0 if f is Moebius.

$$S(f \circ g) = S(f) \circ (g,g) + S(g)$$

 $f: \partial X \to \partial Y$ conformal map.

The **integrated Schwarzian** of f is the function $S(f): \partial^2 X \to \mathbb{R}$ defined by

$$S(f)(\xi,\eta) := -\log(df_{\rho_X,\rho_Y}(\xi) \cdot df_{\rho_X,\rho_Y}(\eta))$$

Measures deviation of ϕ from being flip-equivariant:

$$\phi(-\gamma) = -\phi_{-t}(\phi(\gamma))$$
 where $t = S(f)(\xi, \eta)$

S(f) = 0 if f is Moebius.

$$\mathcal{S}(f\circ g)=\mathcal{S}(f)\circ (g,g)+\mathcal{S}(g)$$

Integrated Schwarzian and cross-ratio distortion

Theorem

(B.) X complete, simply connected manifold with $-b^2 \le K \le -1$, Y proper, geodesically complete CAT(-1) space. For $f: U \subset \partial X \to \partial Y$ a C^1 conformal map,

$$\log \frac{[f(\xi), f(\xi'), f(\eta), f(\eta')]}{[\xi, \xi', \eta, \eta']}$$

$$= \frac{1}{2} (S(f)(\xi, \eta) + S(f)(\xi', \eta') - S(f)(\xi, \eta') - S(f)(\xi', \eta))$$

for all quadruples in $U \subset \partial X$.

In particular f is Moebius if and only if S(f) = 0.

Given closed negatively curved manifolds X, Y and an isomorphism $\phi: \pi_1(X) \to \pi_1(Y)$.

 ϕ induces an equivariant homeomorphism $f:\partial ilde{X} o \partial ilde{Y}.$

Theorem

(Otal) X, Y have same marked length spectrum (i.e. $I_Y \circ \phi = I_X$) if and only if $f: \partial \widetilde{X} \to \partial \widetilde{Y}$ is Moebius.

Question: X, Y CAT(-1) spaces. Does a Moebius map $f: \partial X \to \partial Y$ extend to an isometry $F: X \to Y$?

Theorem

Given closed negatively curved manifolds X, Y and an isomorphism $\phi: \pi_1(X) \to \pi_1(Y)$.

 ϕ induces an equivariant homeomorphism $f: \partial \tilde{X} \to \partial \tilde{Y}$.

(Otal) X,Y have same marked length spectrum (i.e. $I_Y\circ\phi=I_X$) if and only if $f:\partial \widetilde X o\partial \widetilde Y$ is Moebius.

Question: X, Y CAT(-1) spaces. Does a Moebius map $f: \partial X \to \partial Y$ extend to an isometry $F: X \to Y$?

Given closed negatively curved manifolds X, Y and an isomorphism $\phi: \pi_1(X) \to \pi_1(Y)$.

 ϕ induces an equivariant homeomorphism $f: \partial \tilde{X} \to \partial \tilde{Y}$.

Theorem

(Otal) X, Y have same marked length spectrum (i.e. $I_Y \circ \phi = I_X$) if and only if $f : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: X, Y CAT(-1) spaces. Does a Moebius map $f: \partial X \to \partial Y$ extend to an isometry $F: X \to Y$?

Given closed negatively curved manifolds X, Y and an isomorphism $\phi: \pi_1(X) \to \pi_1(Y)$.

 ϕ induces an equivariant homeomorphism $f: \partial \tilde{X} \to \partial \tilde{Y}$.

Theorem

(Otal) X, Y have same marked length spectrum (i.e. $I_Y \circ \phi = I_X$) if and only if $f : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: X, Y CAT(-1) spaces. Does a Moebius map $f: \partial X \to \partial Y$ extend to an isometry $F: X \to Y$?

Given closed negatively curved manifolds X, Y and an isomorphism $\phi: \pi_1(X) \to \pi_1(Y)$.

 ϕ induces an equivariant homeomorphism $f: \partial \tilde{X} \to \partial \tilde{Y}$.

Theorem

(Otal) X, Y have same marked length spectrum (i.e. $I_Y \circ \phi = I_X$) if and only if $f : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: X, Y CAT(-1) spaces. Does a Moebius map $f: \partial X \to \partial Y$ extend to an isometry $F: X \to Y$?

Given closed negatively curved manifolds X, Y and an isomorphism $\phi: \pi_1(X) \to \pi_1(Y)$.

 ϕ induces an equivariant homeomorphism $f: \partial \tilde{X} \to \partial \tilde{Y}$.

Theorem

(Otal) X, Y have same marked length spectrum (i.e. $I_Y \circ \phi = I_X$) if and only if $f : \partial \tilde{X} \to \partial \tilde{Y}$ is Moebius.

Question: X, Y CAT(-1) spaces. Does a Moebius map $f: \partial X \to \partial Y$ extend to an isometry $F: X \to Y$?

Theorem

X proper CAT(-1) space.

Circumcenter of a bounded set $A \subset X$ is the unique $x = c(A) \in X$ minimizing the function

$$p \in X \mapsto \sup_{q \in A} d(p, q)$$

Let $K \subset \mathfrak{G}X$ be a compact set such that $p(K) \subset \partial X$ is not a singleton.

Let $A_t = (\pi \circ \phi_t)(K) \subset X$. Then the limit

$$c_{\infty}(K) := \lim_{t \to \infty} c(A_t)$$

X proper CAT(-1) space.

Circumcenter of a bounded set $A \subset X$ is the unique $x = c(A) \in X$ minimizing the function

$$p \in X \mapsto \sup_{q \in A} d(p, q)$$

Let $K \subset \mathfrak{G}X$ be a compact set such that $p(K) \subset \partial X$ is not a singleton.

Let $A_t = (\pi \circ \phi_t)(K) \subset X$. Then the limit

$$c_{\infty}(K) := \lim_{t \to \infty} c(A_t)$$

X proper CAT(-1) space.

Circumcenter of a bounded set $A \subset X$ is the unique $x = c(A) \in X$ minimizing the function

$$p \in X \mapsto \sup_{q \in A} d(p, q)$$

Let $K \subset \mathfrak{G}X$ be a compact set such that $p(K) \subset \partial X$ is not a singleton.

Let $A_t = (\pi \circ \phi_t)(K) \subset X$. Then the limit

$$c_{\infty}(K) := \lim_{t \to \infty} c(A_t)$$

X proper CAT(-1) space.

Circumcenter of a bounded set $A \subset X$ is the unique $x = c(A) \in X$ minimizing the function

$$p \in X \mapsto \sup_{q \in A} d(p,q)$$

Let $K \subset \mathcal{G}X$ be a compact set such that $p(K) \subset \partial X$ is not a singleton.

Let $A_t = (\pi \circ \phi_t)(K) \subset X$. Then the limit

$$c_{\infty}(K) := \lim_{t \to \infty} c(A_t)$$

$\mathcal{F}(-1)$ -convex functions

A function $u: X \to \mathbb{R}$ is $\mathcal{F}(-1)$ -convex if it is continuous and its restriction to any geodesic satisfies $f'' - f \ge 0$ in the barrier sense, i.e. if g'' - g = 0 and g agrees with f at the endpoints of a geodesic segment then $f \le g$.

A proper, positive, $\mathfrak{F}(-1)$ -convex function on X has a unique minimum.

The asymptotic circumcenter $c_{\infty}(K)$ is the unique minimum of the proper, positive, $\mathcal{F}(-1)$ -convex function

$$p \in X \mapsto \sup_{\gamma \in K} \exp(B(p, \pi(\gamma), p(\gamma)))$$

$\mathcal{F}(-1)$ -convex functions

A function $u: X \to \mathbb{R}$ is $\mathcal{F}(-1)$ -convex if it is continuous and its restriction to any geodesic satisfies $f'' - f \ge 0$ in the barrier sense, i.e. if g'' - g = 0 and g agrees with f at the endpoints of a geodesic segment then $f \le g$.

A proper, positive, $\mathcal{F}(-1)$ -convex function on X has a unique minimum.

The asymptotic circumcenter $c_{\infty}(K)$ is the unique minimum of the proper, positive, $\mathcal{F}(-1)$ -convex function

$$p \in X \mapsto \sup_{\gamma \in K} \exp(B(p, \pi(\gamma), p(\gamma)))$$

$\mathcal{F}(-1)$ -convex functions

A function $u: X \to \mathbb{R}$ is $\mathcal{F}(-1)$ -convex if it is continuous and its restriction to any geodesic satisfies $f'' - f \ge 0$ in the barrier sense, i.e. if g'' - g = 0 and g agrees with f at the endpoints of a geodesic segment then $f \le g$.

A proper, positive, $\mathcal{F}(-1)$ -convex function on X has a unique minimum.

The asymptotic circumcenter $c_{\infty}(K)$ is the unique minimum of the proper, positive, $\mathcal{F}(-1)$ -convex function

$$p \in X \mapsto \sup_{\gamma \in K} \exp(B(p, \pi(\gamma), p(\gamma)))$$

Circumcenter extension of Moebius maps

Let $f: \partial X \to \partial Y$ be a Moebius homeomorphism between proper, geodesically complete CAT(-1) spaces.

Let $\phi: \mathfrak{G}X \to \mathfrak{G}Y$ be the associated geodesic conjugacy.

Pushing forward metrics by f gives an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$.

For $x \in X$, let

$$F(x) = c_{\infty}(\phi(T_x^1 X)) \in Y$$

where $T_x^1 X = \pi^{-1}(x) \subset \mathfrak{G}X$.

The point F(x) is the unique minimum of the function

$$y \in Y \mapsto d_{\mathcal{M}}(f_*\rho_X, \rho_Y)$$

 $F: X \to Y$ is called the **circumcenter extension** of the Moebius map f.

Circumcenter extension of Moebius maps

Let $f: \partial X \to \partial Y$ be a Moebius homeomorphism between proper, geodesically complete CAT(-1) spaces.

Let $\phi: \mathcal{G}X \to \mathcal{G}Y$ be the associated geodesic conjugacy.

Pushing forward metrics by f gives an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$.

For $x \in X$, let

$$F(x) = c_{\infty}(\phi(T_x^1 X)) \in Y$$

where $T_X^1 X = \pi^{-1}(X) \subset \mathfrak{G}X$.

The point F(x) is the unique minimum of the function

$$y \in Y \mapsto d_{\mathcal{M}}(f_*\rho_X, \rho_Y)$$

 $F: X \to Y$ is called the **circumcenter extension** of the Moebius map f.

Let $f: \partial X \to \partial Y$ be a Moebius homeomorphism between proper, geodesically complete CAT(-1) spaces.

Let $\phi: \mathcal{G}X \to \mathcal{G}Y$ be the associated geodesic conjugacy.

Pushing forward metrics by f gives an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$.

For $x \in X$, let

$$F(x) = c_{\infty}(\phi(T_X^1 X)) \in Y$$

where $T_x^1 X = \pi^{-1}(x) \subset \mathfrak{G}X$.

The point F(x) is the unique minimum of the function

$$y \in Y \mapsto d_{\mathcal{M}}(f_*\rho_X, \rho_Y)$$

Let $f: \partial X \to \partial Y$ be a Moebius homeomorphism between proper, geodesically complete CAT(-1) spaces.

Let $\phi: \mathfrak{G}X \to \mathfrak{G}Y$ be the associated geodesic conjugacy.

Pushing forward metrics by f gives an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$.

For $x \in X$, let

$$F(x) = c_{\infty}(\phi(T_x^1 X)) \in Y$$

where $T_x^1 X = \pi^{-1}(x) \subset \mathfrak{G}X$.

The point F(x) is the unique minimum of the function

$$y \in Y \mapsto d_{\mathcal{M}}(f_*\rho_X, \rho_y)$$

Let $f: \partial X \to \partial Y$ be a Moebius homeomorphism between proper, geodesically complete CAT(-1) spaces.

Let $\phi: \mathcal{G}X \to \mathcal{G}Y$ be the associated geodesic conjugacy.

Pushing forward metrics by f gives an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$.

For $x \in X$, let

$$F(x) = c_{\infty}(\phi(T_x^1 X)) \in Y$$

where $T_x^1 X = \pi^{-1}(x) \subset \mathfrak{G}X$.

The point F(x) is the unique minimum of the function

$$y \in Y \mapsto d_{\mathcal{M}}(f_*\rho_X, \rho_y)$$

Let $f: \partial X \to \partial Y$ be a Moebius homeomorphism between proper, geodesically complete CAT(-1) spaces.

Let $\phi: \mathcal{G}X \to \mathcal{G}Y$ be the associated geodesic conjugacy.

Pushing forward metrics by f gives an isometry $f_*: \mathcal{M}(\partial X) \to \mathcal{M}(\partial Y)$.

For $x \in X$, let

$$F(x) = c_{\infty}(\phi(T_x^1 X)) \in Y$$

where $T_X^1 X = \pi^{-1}(X) \subset \mathfrak{G}X$.

The point F(x) is the unique minimum of the function

$$y \in Y \mapsto d_{\mathcal{M}}(f_*\rho_X, \rho_y)$$

Results

Theorem

(B.) For X, Y proper, geodesically complete CAT(-1) spaces and $f: \partial X \to \partial Y$ a Moebius homeomorphism, the circumcenter extension $F: X \to Y$ is a $(1, \log 2)$ -quasi-isometry with image $\frac{1}{2} \log 2$ -dense in Y. Moreover, F is locally 1/2-Holder continuous:

$$d(F(x),F(y)) \le d(x,y)^{1/2}$$

if
$$d(x, y) \leq 1$$
.

(B.) If X, Y are metric trees, then the circumcenter extension F is a surjective isometry.

Results

Theorem

(B.) For X, Y proper, geodesically complete CAT(-1) spaces and $f: \partial X \to \partial Y$ a Moebius homeomorphism, the circumcenter extension $F: X \to Y$ is a $(1, \log 2)$ -quasi-isometry with image $\frac{1}{2} \log 2$ -dense in Y. Moreover, F is locally 1/2-Holder continuous:

$$d(F(x),F(y)) \le d(x,y)^{1/2}$$

if
$$d(x, y) \leq 1$$
.

(B.) If X, Y are metric trees, then the circumcenter extension F is a surjective isometry.

Results

Theorem

(B.) For X, Y proper, geodesically complete CAT(-1) spaces and $f: \partial X \to \partial Y$ a Moebius homeomorphism, the circumcenter extension $F: X \to Y$ is a $(1, \log 2)$ -quasi-isometry with image $\frac{1}{2} \log 2$ -dense in Y. Moreover, F is locally 1/2-Holder continuous:

$$d(F(x), F(y)) \le d(x, y)^{1/2}$$

if $d(x, y) \leq 1$.

Theorem

(B.) If X, Y are metric trees, then the circumcenter extension F is a surjective isometry.

Theorem

- (B.) Let X, Y be complete, simply connected manifolds with $-b^2 \le K \le -1$, and let $f: \partial X \to \partial Y$ be a Moebius homeomorphism with inverse $g: \partial Y \to \partial X$. Then:
- (1) The circumcenter extensions $F: X \to Y$ and $G: Y \to X$ of f and g are inverses of each other.
- (2) The maps F, G are \sqrt{b} -bi-Lipschitz.
- (3) The maps F, G are $(1, (1 1/b) \log 2)$ -quasi-isometries.

(B.) If closed, negatively curved manifolds X, Y have the same marked length spectrum then X, Y are bi-Lipschitz homeomorphic.

Theorem

- (B.) Let X, Y be complete, simply connected manifolds with $-b^2 \le K \le -1$, and let $f: \partial X \to \partial Y$ be a Moebius homeomorphism with inverse $g: \partial Y \to \partial X$. Then:
- (1) The circumcenter extensions $F: X \to Y$ and $G: Y \to X$ of f and g are inverses of each other.
- (2) The maps F, G are \sqrt{b} -bi-Lipschitz.
- (3) The maps F, G are $(1, (1 1/b) \log 2)$ -quasi-isometries.

(B.) If closed, negatively curved manifolds X, Y have the same marked length spectrum then X, Y are bi-Lipschitz homeomorphic.

Theorem

- (B.) Let X, Y be complete, simply connected manifolds with $-b^2 \le K \le -1$, and let $f: \partial X \to \partial Y$ be a Moebius homeomorphism with inverse $g: \partial Y \to \partial X$. Then:
- (1) The circumcenter extensions $F: X \to Y$ and $G: Y \to X$ of f and g are inverses of each other.
- (2) The maps F, G are \sqrt{b} -bi-Lipschitz.
- (3) The maps F, G are $(1, (1 1/b) \log 2)$ -quasi-isometries.

Theorem

(B.) If closed, negatively curved manifolds X, Y have the same marked length spectrum then X, Y are bi-Lipschitz homeomorphic.

Compactly supported deformations of metrics

 (X, g_0) complete, simply connected, $K(g_0) \leq -1$.

Let g be a metric on X such that $K(g) \le -1$, and $g = g_0$ outside a compact.

Then $id: (X, g_0) \to (X, g)$ induces a boundary map $id: \partial_{g_0} X \to \partial_g X$ which is locally Moebius, hence conformal.

Compactly supported deformations of metrics

 (X, g_0) complete, simply connected, $K(g_0) \leq -1$.

Let g be a metric on X such that $K(g) \le -1$, and $g = g_0$ outside a compact.

Then $id:(X,g_0)\to (X,g)$ induces a boundary map $\hat{id}:\partial_{g_0}X\to\partial_gX$ which is locally Moebius, hence conformal.

Compactly supported deformations of metrics

 (X, g_0) complete, simply connected, $K(g_0) \leq -1$.

Let g be a metric on X such that $K(g) \le -1$, and $g = g_0$ outside a compact.

Then $id: (X, g_0) \to (X, g)$ induces a boundary map $\hat{id}: \partial_{g_0} X \to \partial_g X$ which is locally Moebius, hence conformal.

Infinitesimal and local rigidity

Theorem

(B.) Given $(g_t)_{0 \le t \le 1}$ smooth 1-parameter family of compactly supported deformations of (X, g_0) . If $\hat{id}_t : \partial_{g_0} X \to \partial_{g_t} X$ is Moebius for all t, then \hat{id}_t extends to an isometry $F_t : (X, g_0) \to (X, g_t)$ for all t.

(B.) Assume $-b^2 \le K(g_0) \le -1$. Given a compact $K \subset X$, there exists $\epsilon = \epsilon(K)$ such that the following holds:

Let g be such that $g=g_0$ outside K, and such that $Vol_g(K)=Vol_{g_0}(K)$.

If $\hat{i}d:\partial_{g_0}X o\partial_gX$ is Moebius, and $||g-g_0||_{C^2}<\epsilon$, then $\hat{i}d$ extends to an isometry $F:(X,g_0) o(X,g)$.

Infinitesimal and local rigidity

Theorem

(B.) Given $(g_t)_{0 \le t \le 1}$ smooth 1-parameter family of compactly supported deformations of (X, g_0) . If $\hat{id}_t : \partial_{g_0} X \to \partial_{g_t} X$ is Moebius for all t, then \hat{id}_t extends to an isometry $F_t : (X, g_0) \to (X, g_t)$ for all t.

(B.) Assume $-b^2 \le K(g_0) \le -1$. Given a compact $K \subset X$, there exists $\epsilon = \epsilon(K)$ such that the following holds:

Let g be such that $g=g_0$ outside K, and such that $Vol_g(K)=Vol_{g_0}(K)$.

If $\hat{i}d:\partial_{g_0}X o\partial_gX$ is Moebius, and $||g-g_0||_{C^2}<\epsilon$, then $\hat{i}d$ extends to an isometry $F:(X,g_0) o(X,g)$.

Infinitesimal and local rigidity

Theorem

(B.) Given $(g_t)_{0 \le t \le 1}$ smooth 1-parameter family of compactly supported deformations of (X, g_0) . If $\hat{id}_t : \partial_{g_0} X \to \partial_{g_t} X$ is Moebius for all t, then \hat{id}_t extends to an isometry $F_t : (X, g_0) \to (X, g_t)$ for all t.

Theorem

(B.) Assume $-b^2 \le K(g_0) \le -1$. Given a compact $K \subset X$, there exists $\epsilon = \epsilon(K)$ such that the following holds:

Let g be such that $g = g_0$ outside K, and such that $Vol_g(K) = Vol_{g_0}(K)$.

If $\hat{id}: \partial_{g_0}X \to \partial_gX$ is Moebius, and $||g - g_0||_{C^2} < \epsilon$, then \hat{id} extends to an isometry $F: (X, g_0) \to (X, g)$.

Both proofs use the integrated Schwarzian $S(\hat{id})$ of the conformal map $\hat{id}: \partial_{q_0}X \to \partial_qX$.

Hyperbolic *p*-barycenters

X CAT(-1) space.

 μ probability measure on X with compact support which is not a singleton.

Let $1 \le p < \infty$. The hyperbolic *p*-barycenter of μ is the unique point $x = c^p(\mu) \in X$ which minimizes the positive, proper, $\mathcal{F}(-1)$ -convex function

$$z \in X \mapsto \int_X \cosh^p(d(z,y)) d\mu(y)$$

Hyperbolic *p*-barycenters

X CAT(-1) space.

 μ probability measure on X with compact support which is not a singleton.

Let $1 \le p < \infty$. The hyperbolic *p*-barycenter of μ is the unique point $x = c^p(\mu) \in X$ which minimizes the positive, proper, $\mathcal{F}(-1)$ -convex function

$$z \in X \mapsto \int_X \cosh^p(d(z,y)) d\mu(y)$$

Hyperbolic *p*-barycenters

X CAT(-1) space.

 μ probability measure on X with compact support which is not a singleton.

Let $1 \le p < \infty$. The hyperbolic *p*-barycenter of μ is the unique point $x = c^p(\mu) \in X$ which minimizes the positive, proper, $\mathcal{F}(-1)$ -convex function

$$z \in X \mapsto \int_X \cosh^p(d(z,y)) d\mu(y)$$

 ν probability measure on $\Im X$ with compact support K such that $p(K) \subset \partial X$ is not a singleton.

Let $\mu_t = (\pi \circ \phi_t)_* \nu$, probability measure on X with compact support.

For $1 \le p < \infty$, the limit

$$c_{\infty}^{p}(\nu) := \lim_{t \to \infty} c^{p}(\mu_{t})$$

exists. We call $c_{\infty}^{p}(\nu)$ the asymptotic hyperbolic p-barycenter of the measure ν .

$$z \in X \mapsto \int_{\mathfrak{q}_X} \exp(pB(z,\pi(\gamma),p(\gamma)))d\nu(\gamma)$$

 ν probability measure on $\Im X$ with compact support K such that $p(K) \subset \partial X$ is not a singleton.

Let $\mu_t = (\pi \circ \phi_t)_* \nu$, probability measure on X with compact support.

For $1 \le p < \infty$, the limit

$$c^p_{\infty}(\nu) := \lim_{t \to \infty} c^p(\mu_t)$$

exists. We call $c_{\infty}^{\rho}(\nu)$ the asymptotic hyperbolic ρ -barycenter of the measure ν .

$$z \in X \mapsto \int_{\mathfrak{I}_X} \exp(pB(z,\pi(\gamma),p(\gamma)))d\nu(\gamma)$$

 ν probability measure on $\Im X$ with compact support K such that $p(K) \subset \partial X$ is not a singleton.

Let $\mu_t = (\pi \circ \phi_t)_* \nu$, probability measure on X with compact support.

For $1 \le p < \infty$, the limit

$$\mathbf{c}_{\infty}^{\mathbf{p}}(\nu) := \lim_{t \to \infty} \mathbf{c}^{\mathbf{p}}(\mu_t)$$

exists. We call $c_{\infty}^{p}(\nu)$ the asymptotic hyperbolic p-barycenter of the measure ν .

$$z \in X \mapsto \int_{\mathfrak{I}_X} \exp(pB(z,\pi(\gamma),p(\gamma)))d\nu(\gamma)$$

 ν probability measure on $\Im X$ with compact support K such that $p(K) \subset \partial X$ is not a singleton.

Let $\mu_t = (\pi \circ \phi_t)_* \nu$, probability measure on X with compact support.

For $1 \le p < \infty$, the limit

$$c^{p}_{\infty}(\nu) := \lim_{t \to \infty} c^{p}(\mu_{t})$$

exists. We call $c_{\infty}^{p}(\nu)$ the asymptotic hyperbolic p-barycenter of the measure ν .

$$z \in X \mapsto \int_{GX} \exp(pB(z,\pi(\gamma),p(\gamma)))d\nu(\gamma)$$

 $f:\partial X\to\partial Y$ Moebius map, $\phi:\Im X\to\Im Y$ associated geodesic conjugacy.

 $\mathcal{M} = \{\mu_X : X \in X\}$ family of probability measures on ∂X such that $\text{supp}(\mu_X) = \partial X$.

For $x \in X, \xi \in \partial X$ let $\overrightarrow{x\xi} = \gamma'(0) \in T_X^1 X$, where $\gamma(0) = x, \gamma(\infty) = \xi$.

Let $q_X : \xi \in \partial X \mapsto \overrightarrow{x\xi} \in T^1_X X$.

The hyperbolic p-barycenter extension of f with respect to the family $\mathfrak M$ is defined by

$$F_{p,\mathfrak{M}}(x) := c^p_{\infty}((\phi \circ q_x)_*(\mu_x))$$

Let *F* be the circumcenter extension of *f*, then

$$F_{p,\mathfrak{M}} \to F$$

 $f:\partial X\to\partial Y$ Moebius map, $\phi:\Im X\to\Im Y$ associated geodesic conjugacy.

 $\mathcal{M} = \{\mu_X : X \in X\}$ family of probability measures on ∂X such that supp $(\mu_X) = \partial X$.

For $x \in X, \xi \in \partial X$ let $\overrightarrow{x\xi} = \gamma'(0) \in T_X^1 X$, where $\gamma(0) = X, \gamma(\infty) = \xi$.

Let $q_X : \xi \in \partial X \mapsto \overrightarrow{x\xi} \in T^1_X X$.

The hyperbolic p-barycenter extension of f with respect to the family $\mathfrak M$ is defined by

$$F_{p,\mathfrak{M}}(x) := c^p_{\infty}((\phi \circ q_x)_*(\mu_x))$$

Let *F* be the circumcenter extension of *f*, then

$$F_{p,\mathfrak{M}} \to F$$

 $f:\partial X\to\partial Y$ Moebius map, $\phi:\Im X\to\Im Y$ associated geodesic conjugacy.

 $\mathcal{M} = \{\mu_X : X \in X\}$ family of probability measures on ∂X such that $\operatorname{supp}(\mu_X) = \partial X$.

For $x \in X$, $\xi \in \partial X$ let $\overrightarrow{x\xi} = \gamma'(0) \in T_x^1 X$, where $\gamma(0) = x$, $\gamma(\infty) = \xi$.

Let $q_X : \xi \in \partial X \mapsto \overrightarrow{x\xi} \in T^1_X X$.

The hyperbolic p-barycenter extension of f with respect to the family $\mathfrak M$ is defined by

$$F_{p,\mathfrak{M}}(x) := c^p_{\infty}((\phi \circ q_x)_*(\mu_x))$$

Let *F* be the circumcenter extension of *f*, then

$$F_{p,\mathfrak{M}} \to F$$

 $f:\partial X\to\partial Y$ Moebius map, $\phi:\Im X\to\Im Y$ associated geodesic conjugacy.

 $\mathcal{M} = \{\mu_X : X \in X\}$ family of probability measures on ∂X such that $\mathrm{supp}(\mu_X) = \partial X$.

For
$$x \in X$$
, $\xi \in \partial X$ let $\overrightarrow{x\xi} = \gamma'(0) \in T_x^1 X$, where $\gamma(0) = x$, $\gamma(\infty) = \xi$.

Let $q_x : \xi \in \partial X \mapsto \overrightarrow{x\xi} \in T_x^1 X$.

The hyperbolic p-barycenter extension of f with respect to the family $\mathfrak M$ is defined by

$$F_{p,\mathfrak{M}}(x) := c^p_{\infty}((\phi \circ q_x)_*(\mu_x))$$

Let *F* be the circumcenter extension of *f*, then

$$F_{p,\mathfrak{M}} \to F$$

 $f:\partial X\to\partial Y$ Moebius map, $\phi:\Im X\to\Im Y$ associated geodesic conjugacy.

 $\mathcal{M} = \{\mu_X : X \in X\}$ family of probability measures on ∂X such that $\text{supp}(\mu_X) = \partial X$.

For $x \in X$, $\xi \in \partial X$ let $\overrightarrow{x\xi} = \gamma'(0) \in T_x^1 X$, where $\gamma(0) = x$, $\gamma(\infty) = \xi$.

Let $q_x : \xi \in \partial X \mapsto \overrightarrow{x\xi} \in T^1_x X$.

The hyperbolic p-barycenter extension of f with respect to the family $\mathfrak M$ is defined by

$$F_{p,\mathfrak{M}}(x) := c^p_{\infty}((\phi \circ q_x)_*(\mu_x))$$

Let *F* be the circumcenter extension of *f*, then

$$F_{p,\mathfrak{M}} \to F$$

 $f:\partial X\to\partial Y$ Moebius map, $\phi:\Im X\to\Im Y$ associated geodesic conjugacy.

 $\mathcal{M} = \{\mu_X : X \in X\}$ family of probability measures on ∂X such that $\text{supp}(\mu_X) = \partial X$.

For
$$x \in X$$
, $\xi \in \partial X$ let $\overrightarrow{x\xi} = \gamma'(0) \in T_x^1 X$, where $\gamma(0) = x, \gamma(\infty) = \xi$.

Let $q_x : \xi \in \partial X \mapsto \overrightarrow{x\xi} \in T^1_x X$.

The hyperbolic p-barycenter extension of f with respect to the family $\mathfrak M$ is defined by

$$F_{p,\mathfrak{M}}(x):=c^p_\infty((\phi\circ q_x)_*(\mu_x))$$

Let *F* be the circumcenter extension of *f*, then

$$F_{p,\mathfrak{M}} \to F$$

X, Y complete, simply connected manifolds with $-b^2 \le K \le -1$.

Fix a probability measure μ on ∂X with full support.

Fix constant family $\mathfrak{M} := \{ \mu_X := \mu | x \in X \}.$

Let $F_p: X \to Y$ be the hyperbolic *p*-barycenter extension of *f* with respect to this family \mathcal{M} .

The point $y = F_p(x) \in Y$ is the unique minimizer of the strictly convex function

$$z \in Y \mapsto \int_{\partial X} \exp(pB(z, \pi(\phi(\overrightarrow{x\xi})), f(\xi))) d\mu(\xi)$$

X, Y complete, simply connected manifolds with $-b^2 \le K \le -1$.

Fix a probability measure μ on ∂X with full support.

Fix constant family $\mathfrak{M} := \{ \mu_X := \mu | x \in X \}.$

Let $F_p: X \to Y$ be the hyperbolic *p*-barycenter extension of *f* with respect to this family \mathfrak{M} .

The point $y = F_p(x) \in Y$ is the unique minimizer of the strictly convex function

$$z \in Y \mapsto \int_{\partial X} \exp(pB(z, \pi(\phi(\overrightarrow{x\xi})), f(\xi))) d\mu(\xi)$$

X, Y complete, simply connected manifolds with $-b^2 \le K \le -1$.

Fix a probability measure μ on ∂X with full support.

Fix constant family $\mathfrak{M} := \{\mu_{\mathbf{X}} := \mu | \mathbf{X} \in \mathbf{X}\}.$

Let $F_p: X \to Y$ be the hyperbolic *p*-barycenter extension of *f* with respect to this family \mathcal{M} .

The point $y = F_p(x) \in Y$ is the unique minimizer of the strictly convex function

$$z \in Y \mapsto \int_{\partial X} \exp(pB(z, \pi(\phi(\overrightarrow{x\xi})), f(\xi))) d\mu(\xi)$$

X, Y complete, simply connected manifolds with $-b^2 \le K \le -1$.

Fix a probability measure μ on ∂X with full support.

Fix constant family $\mathfrak{M} := \{\mu_{\mathbf{X}} := \mu | \mathbf{X} \in \mathbf{X}\}.$

Let $F_p: X \to Y$ be the hyperbolic *p*-barycenter extension of *f* with respect to this family \mathfrak{M} .

The point $y = F_p(x) \in Y$ is the unique minimizer of the strictly convex function

$$z \in Y \mapsto \int_{\partial X} \exp(pB(z, \pi(\phi(\overrightarrow{x\xi})), f(\xi))) d\mu(\xi)$$

X, Y complete, simply connected manifolds with $-b^2 \le K \le -1$.

Fix a probability measure μ on ∂X with full support.

Fix constant family $\mathfrak{M} := \{\mu_{\mathbf{X}} := \mu | \mathbf{X} \in \mathbf{X}\}.$

Let $F_p: X \to Y$ be the hyperbolic *p*-barycenter extension of *f* with respect to this family \mathfrak{M} .

The point $y = F_p(x) \in Y$ is the unique minimizer of the strictly convex function

$$z \in Y \mapsto \int_{\partial X} \exp(\rho B(z, \pi(\phi(\overrightarrow{x\xi})), f(\xi))) d\mu(\xi)$$

X, Y complete, simply connected manifolds with $-b^2 \le K \le -1$.

Fix a probability measure μ on ∂X with full support.

Fix constant family $\mathfrak{M} := \{\mu_{\mathbf{X}} := \mu | \mathbf{X} \in \mathbf{X}\}.$

Let $F_p: X \to Y$ be the hyperbolic *p*-barycenter extension of *f* with respect to this family \mathfrak{M} .

The point $y = F_p(x) \in Y$ is the unique minimizer of the strictly convex function

$$z \in Y \mapsto \int_{\partial X} \exp(\rho B(z, \pi(\phi(\overrightarrow{x\xi})), f(\xi))) d\mu(\xi)$$

For $x \in X$, the probability measure μ_p^x on ∂X defined by

$$d\mu_p^X(\xi) = c_{X,p} \cdot \exp(pB(F_p(X), \pi(\phi(\overrightarrow{x\xi})), f(\xi)))d\mu(\xi)$$

satisfies

$$\int_{\partial X} \langle w, \overline{F_{\rho}(x)f(\xi)} \rangle d\mu_{\rho}^{x}(\xi) = 0$$

for all $w \in T_{F_p(x)} Y$, or

$$\int_{\partial Y} \langle w, \overline{F_p(x)\eta} \rangle df_* \mu_p^X(\eta) = 0$$

For $x \in X$, the probability measure μ_p^x on ∂X defined by

$$d\mu_p^X(\xi) = c_{X,p} \cdot \exp(pB(F_p(X), \pi(\phi(\overrightarrow{x\xi})), f(\xi)))d\mu(\xi)$$

satisfies

$$\int_{\partial X} \langle w, \overline{F_p(x)f(\xi)} \rangle d\mu_p^x(\xi) = 0$$

for all $w \in T_{F_p(x)} Y$, or

$$\int_{\partial Y} \langle w, \overline{F_p(x)\eta} \rangle df_* \mu_p^X(\eta) = 0$$

For $x \in X$, the probability measure μ_p^x on ∂X defined by

$$d\mu_p^{\mathsf{X}}(\xi) = c_{\mathsf{X},p} \cdot \exp(p\mathsf{B}(\mathsf{F}_p(\mathsf{X}), \pi(\phi(\overrightarrow{\mathsf{X}\xi})), f(\xi)))d\mu(\xi)$$

satisfies

$$\int_{\partial X} \langle w, \overline{F_p(x)f(\xi)} \rangle d\mu_p^x(\xi) = 0$$

for all $w \in T_{F_p(x)} Y$, or

$$\int_{\partial Y} \langle w, \overrightarrow{F_{p}(x)\eta} \rangle df_* \mu_p^{x}(\eta) = 0$$

For $x \in X$, the probability measure μ_p^x on ∂X defined by

$$d\mu_p^{\mathsf{X}}(\xi) = c_{\mathsf{X},p} \cdot \exp(p\mathsf{B}(\mathsf{F}_p(\mathsf{X}), \pi(\phi(\overrightarrow{\mathsf{X}\xi})), f(\xi)))d\mu(\xi)$$

satisfies

$$\int_{\partial X} \langle w, \overline{F_p(x)f(\xi)} \rangle d\mu_p^x(\xi) = 0$$

for all $w \in T_{F_p(x)} Y$, or

$$\int_{\partial Y} \langle w, \overrightarrow{F_{p}(x)\eta} \rangle df_* \mu_p^{x}(\eta) = 0$$

Letting $p \to \infty$, gives a probability measure μ_{∞}^{X} on ∂X such that the measure $f_*\mu_{\infty}^{X}$ on ∂Y is balanced at $F(x) \in Y$.

Moreover μ_{∞}^{x} has support contained in the set $K \subset \partial X$ where the function

$$\xi \in \partial X \mapsto \frac{df_* \rho_X}{d\rho_{F(X)}}(f(\xi))$$

attains its maximum.

Existence of a measure μ_{∞}^{x} satisfying the above two properties characterizes the point y = F(x).

x = G(y) is shown by using this criterion for the circumcenter map: it is proved that μ_{∞}^{x} is balanced at x, by showing

$$\left(\int_{\partial X} \langle v, \overrightarrow{x\xi} \rangle d\mu_p^{\chi}(\xi)\right)^2 \leq \frac{C}{p}$$

and letting $p \to \infty$

Letting $p \to \infty$, gives a probability measure μ_{∞}^{X} on ∂X such that the measure $f_*\mu_{\infty}^{X}$ on ∂Y is balanced at $F(x) \in Y$.

Moreover $\mu_{\infty}^{\mathsf{X}}$ has support contained in the set $K\subset \partial X$ where the function

$$\xi \in \partial X \mapsto \frac{df_* \rho_X}{d\rho_{F(X)}}(f(\xi))$$

attains its maximum.

Existence of a measure μ_{∞}^{x} satisfying the above two properties characterizes the point y = F(x).

x = G(y) is shown by using this criterion for the circumcenter map: it is proved that μ_{∞}^{x} is balanced at x, by showing

$$\left(\int_{\partial X} \langle v, \overrightarrow{x\xi} \rangle d\mu_p^{\mathsf{x}}(\xi)\right)^2 \leq \frac{C}{p}$$

and letting $ho
ightarrow \infty$.

Letting $p \to \infty$, gives a probability measure μ_{∞}^{X} on ∂X such that the measure $f_*\mu_{\infty}^{X}$ on ∂Y is balanced at $F(x) \in Y$.

Moreover $\mu_{\infty}^{\mathbf{X}}$ has support contained in the set $K \subset \partial X$ where the function

$$\xi \in \partial X \mapsto \frac{df_* \rho_X}{d\rho_{F(X)}}(f(\xi))$$

attains its maximum.

Existence of a measure μ_{∞}^{x} satisfying the above two properties characterizes the point y = F(x).

x = G(y) is shown by using this criterion for the circumcenter map: it is proved that μ_{∞}^{x} is balanced at x, by showing

$$\left(\int_{\partial X} \langle v, \overrightarrow{x\xi} \rangle d\mu_p^{\mathsf{x}}(\xi)\right)^2 \leq \frac{C}{p}$$

and letting $p \to \infty$.

Letting $p \to \infty$, gives a probability measure $\mu_{\infty}^{\mathsf{X}}$ on ∂X such that the measure $f_*\mu_{\infty}^{\mathsf{X}}$ on ∂Y is balanced at $F(x) \in Y$.

Moreover $\mu_{\infty}^{\mathsf{X}}$ has support contained in the set $K \subset \partial X$ where the function

$$\xi \in \partial X \mapsto \frac{df_* \rho_X}{d\rho_{F(X)}}(f(\xi))$$

attains its maximum.

Existence of a measure μ_{∞}^{x} satisfying the above two properties characterizes the point y = F(x).

x = G(y) is shown by using this criterion for the circumcenter map: it is proved that μ_{∞}^{x} is balanced at x, by showing

$$\left(\int_{\partial X} \langle v, \overrightarrow{x\xi} \rangle d\mu_p^{\mathsf{x}}(\xi)\right)^2 \leq \frac{C}{p}$$

and letting $p \to \infty$.

Letting $p \to \infty$, gives a probability measure $\mu_{\infty}^{\mathsf{X}}$ on ∂X such that the measure $f_*\mu_{\infty}^{\mathsf{X}}$ on ∂Y is balanced at $F(x) \in Y$.

Moreover $\mu_{\infty}^{\mathbf{X}}$ has support contained in the set $K \subset \partial X$ where the function

$$\xi \in \partial X \mapsto \frac{df_* \rho_X}{d\rho_{F(X)}}(f(\xi))$$

attains its maximum.

Existence of a measure μ_{∞}^{x} satisfying the above two properties characterizes the point y = F(x).

x = G(y) is shown by using this criterion for the circumcenter map: it is proved that μ_{∞}^{x} is balanced at x, by showing

$$\left(\int_{\partial X} \langle v, \overrightarrow{x\xi} \rangle d\mu_p^{x}(\xi)\right)^2 \leq \frac{C}{p}$$

and letting $p \to \infty$.

