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Nonabelian Gauge Theory

Consider a scalar multiplet ®(x) of length n, i.e.
®1(x)
D) =
Pn ()
where each @;(x) (i =1, ...,n) is a complex scalar field.
Construct the ‘free’ Lagrangian density
L=(0"D)d,d—MDTD

This is just a shorthand for n mass-degenerate free scalar fields, i.e.

n
L= 2(5”@ 0, 0; — M*¢; ;)
i—1



Now consider a global SU(N) gauge transformation
d(x) » d (x) = Ud(x)
where U is a SU(N) matrix, i.e. UT U =1 and detU = +1, where

Ujp - Uy , _
U=| : : n and N are different (in general)

U,y - U,
The number of free (real) parameters in this SU(N) matrix is
p=2N?2-N-2NC, —1=N%2-1
We can write this SU(N) transformation in the form U = e‘igg-T

S p
0.T = Z 6,T,
a=1

and the T = (’JI‘l, e, ’]I‘p) are the generators of SU(N

where the 6 = (01, vo Hp) are free (real) parameter



Under this gauge transformation
d(x) - D (x) =Ud(x)
ot (x) » &1 (x) = ot (x) UT
The Lagrangian density transforms to
L- L= 0"d)9,o — M2 T’
_ 2
= (0"UP)'9,Ud — M*DTUTUD global
= (0" ®)TUTUG, ® — M*®TUTUD  unitary
_ 2
= (0" ®)T9, & — M*PTd
=L

Thus, this system of n mass-degenerate free scalar fields possesses a
SU(N) global gauge symmetry — with p conserved currents/charges.



The next step is to convert this to a SU(N) local gauge symmetry, i.e.
d(x) - & (x) =Ux) d(x)
o (x) » 't (x) = ot (x) UT(x)
As in the nonAbelian case, the Lagrangian density will no longer remain
gauge invariant...

L L= (@), — M2 T
= (0"U®)"'9,U® — M*dTUTU D  local

= (U8, ® + 3,Ud)" (U3, + 9,Ud) — M2dTUT U

(19, + U, U) @] UtU(10, + U3, U)d — M2 UTUD unitary

= [(10, + Uta,U)®]' (10, + UT9,U)d — M2dTd> =



Solution: define a covariant derivative D, = 10, + igA, (x)

where the A, (x) is a n X n matrix of gauge fields, i.e.

H H

11 A1n
AH = : :
u u

a,1 *° Qppu

Not all of these need to be independent... (A" is Hermitian...)
We require the covariant derivative D, ® to transform exactly like @,

I.e.
]D)MCID — ]D)’MCD’ =U ]D)HCID

for then, if we rewrite the Lagrangian density as
L=D'P)'D,d - MDTP

it will be trivially gauge invariant.



How do we ensure that D, ® — ]D’HCID’ =UD,®?

By adjusting the transformation of the gauge field matrix A* ...

D,® - D& = (19, + igA’,)Ud

= 9,(UD) + igA, U

U(a,®) + (3,U)® + igA’, Ud

U(a,®) + UUT(9,U)P +igUUTA’, UD
= U[19, + UT9,U +igUTA’, U|®

If this is to be the same as
D,® = (19, + igA, )P
we must have igA, = igUTA", U+ U'9,U



Rewrite
igA, =igUTA’, U+ U'9,U
dS
igUTA", U = igA, —UT9,U
or,
igA', = igUA,U" — (9,U)U"
Note that UUT =1 leadsto (9,U)U" + U(3,UT) =0
.e.
igA', = igUA,U" + U(a,U") = igUA,U" + U(9,UT)UUT

or, finally,

A =Ula —Z(a utu|ut
U U gu



Quick check: suppose N =1andn =1, i.e. U(1) gauge symmetry
ThenU=e""9"%and A, = A4,.

Now,
Ay = U|A, - (9,UN)U| Ut

assumes the form
A

— p,—ligo _ L +ig0\,—ig0 | ,+igb
y=e [A# g(aﬂe )e e

— e—ig@ [All _;;(igaﬂe e+ig9)e—ig9] e+ig9
= A, + 8,0

which is what we had derived for the U(1) case.



How many independent fields do we require in the A, matrix?

Ay = U[A, - (9,UN)U| Ut

Since U = e=ig0T i.e. U has p free parameters, A, should have p

independent fields. This encourages us to expand

—

p
A*(x) = ZAg(x) T, = AX.T
a=1

One can now work out the transformation properties of the Ag (x)

fields in terms of the parameters 0 = (81, oo Hp).

(Will do this for specific cases...)



We can also use this expression

—_

p
Ak (x) = ZAg(x) T, =A*.T
a=1

to write out the interaction terms in the Lagrangian density...
L=D'P)'D,d - M*dTd
= [(10* + igA*)D]T (19, + igA, )P — M*PTD
= (0" ®)T9,® -M*DTP free scalar

+igl(0#P)TA, & — PTA*O,®|  gauge-scalar interaction
+ gZCIDTAV‘A\MCD seagull terms

10
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We should complete the Lagrangian density by adding a kinetic term
for the gauge fields...

i
F,, = —E[Dﬂ,u))v] =09,A, —d,A, +ig|A,, A,]

Now, we have
D, - D, ® =UD,d
=UD,U" Ud
=UD,UT®d" = D', =0UD,U"

F, - F,, = —é[u))’u,u))’v] = —é[[U D,U',UD,U"| =UF,, U

To get gauge invariance, we have to take the trace...



The full Lagrangian density is now

1
L= (D'D)'D,® — M*®Td — “Tr[F,, F* |

Since F,, = (BMAV — 01,&”) + ig[Au,Akv]

|

FY = (8*AY — 9VA*) + ig[A¥, A"]

Leads to triple gauge vertices and quadruple gauge vertices

absent in an Abelian gauge theory, e.g. QED
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SU(2) Gauge Theory

Recall that for weak interactions we needed three gauge bosons, the
+ 17— o
W W W,
This seems to indicate a gauge theory with three generators

and the obvious one to take is an SU(2) gauge theory.

All of the above formalism will work, except that now we must take the
generators as

Tl = %0'1 TZ = l0'2 Tg = 503
obeying the Lie algebra
[Tat Tb] = 1&qpc T



The full Lagrangian for this is
L=0"D)9,d-MDTD + ig|(0*P)TA, & — PTA*J, D]
2 1
+g?dTA*A, & — ITr[F,, F* | ® — (<pA)

where VB

At = ATTy + AT, + A3Ts
We can also expand
F* =9,A, —0,A, +ig|A,, A, ]
=F"T;+FE " "Ty+F Tz
where

FIY = 0FAY — VAL — gegpe AL AY
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Mass generation:

To break this symmetry spontaneously, we now replace the scalar mass
term by a potential

-M*PTD - —V(P)
V(D) = —M2dt ) + A0 D)’

i.e. this is a theory with n massless scalars and some self-interactions
As before, if we define a real field

T ()P (x) = n(x)°
then we can write the potential as

V() = —M*n* + An*
with a local maximum atn = 0 ; local minima atn = v/v/2 = \/MZ—/ZA



These local minima correspond to

MZ
PTP =
=07
Recall that
P1t+iQ2
_ (PAN V2
b= ((pB) |\ p3tipy
V2
so that ®Td = |, |% + |pg|* = 1(<P1 + @5 + @5 + ¢5)
i.e.
MZ

OT + @3 + 95+ 1 = —

Equation of a 4-sphere — only one of these points can be the vacuum
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These local minima correspond to

MZ
dTP =
=07
Recall that
P1t+iQ2
_(PAN _ V2
b= (QOB) |\ p3tipy
V2
so that ®Td = |@,|? + |@g|? = 1(<P1 + @5 + @5 + ¢5)
i.e.
MZ

OT + @3 + 95+ 1 = —

Equation of a 4-sphere — only one of these points can be the vacuum
Hidden Symmetry!!
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Vacuum manifold in a U(1) gauge theory is a circle

e The scalar field is
_ Pt Koy,

V2 )

e Traditional to orient the axes in
the @-space such that only the
(1 has a vacuum expectation
value

Yo =(p1) =V
I.e.

(@) =%

e Now shift ¢ = (@) + ¢’

P1

18



Vacuum manifold in a U(1) gauge theory is a circle

e The scalar field is
_ Pt Koy,

V2

e Traditional to orient the axes in
the @-space such that only the
(1 has a vacuum expectation
value

Yo =(p1) =V
I.e.

(@) =%

e Now shift ¢ = (@) + ¢’

Y,

P1
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Vacuum manifold in a SU(2) gauge theory is a four-sphere
e The scalar field is

Q1tiQ;
2
o= V2
P3TLP4
V2
e Traditional to orient the axes in

the @-space such that only the
(3 has a vacuum expectation
value

(p3) =V
l.e.
0
(D) = \7_? (The @, axis is not shown...)

e Now shift ® = (®) + ¢’
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Vacuum manifold in a SU(2) gauge theory is a four-sphere

e The scalar field is

p1tip; @

V2
P3+iQy P3

V2
e Traditional to orient the axes in

the @-space such that only the
(3 has a vacuum expectation

b =

value
(p3) =V
l.e. 1
0
(D) = \7_? (The @, axis is not shown...)

e Now shift ® = (®) + ¢’
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Seagull term:

Ly, = g*PTAFA, @ - g?((@) + PNTAA, (@) + @)

= gz(cp)TA#Axﬂ(cp) 4.
We thus get a mass term for the gauge bosons, viz.
Linass = gH(P)TA*A (@) = g?(AH(D)T (A, (D))

Expand this...
1
Aﬂ = Aﬂl']Tl + AMZTZ + AM3T3 — E(Alllo-l + A‘uzo'z + AM303)

. 0
A'ug A,ul — lA‘uZ /m m—l— \
2 2 2. W2
A,Ltl + iA,LLZ All3 W — mo

z >/ \v7 T2
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0
(We W\ oy v

_ +
2 V2 2
A (@) = = 0 v | = v
W W |\ —= ——— W
5 2/ W2/ \ vz
and
rv . ~
A(@Nt = SWHT ——=WHP
(ANt = 5 5
- _
Thus,

gZUZ gZUZ
Linass = 92 (AM(@)) (8,()) = ( W + Tww>

::]W%JMfWVH—_F%Nﬁ%mﬁ”Mw0

where My, = gv
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In a hidden U(1) gauge theory: ¢ = (@) + ¢’

Q1tigy _ v n p'1tip’, _ (p'1+v)+ie’;
V2 V2 V2 V2

When substituted into the potential, this leads to a correct-sign mass
for ¢’ (massive scalar) and keeps @', massless (Goldstone boson)

In a hidden SU(2) gauge theory: ® = (®) + @'

P1+ip; 0 p'1tip’, p'1tip’;
‘/7. — + \/7 ) - ) V2 .

P3t+ip4 v @ 3tigy (p'3+v)+ip'y
V2 V2 V2 V2

When substituted into the potential, this leads to a correct-sign mass
for ¢'3 (massive scalar) and keeps ¢’y , 4 massless (Goldstone bosons)

We now have to worry about three Goldstone bosons



The Higgs mechanism works here too...

0
n(x)

Consider the unbroken (i.e. gauge invariant) Lagrangian density

Exactly as before: parametrise ®(x) = )T ( ) (polar form)

£ = —2Tt[F,, F*] + (D*®) ‘D, P — V(D)

2
where V(p) = —M2®dTd + 2 (CDTCD)

At this level, we are free to make any gauge choice we wish...

Make a gauge transformation

D(x) > U(X)D(x) = e 99T P(x) = ¢ilgt D] T (n(ox))



We might as well choose a special gauge, since the gauge symmetry is
going to be broken anyway...

Choose the three gauge functions é(x) such that

go(x) —&(x) =0

This is called the unitary gauge.

In this gauge, ®(x) = ®,(x) = ( and the Lagrangian becomes

0
n(x))
£ = —2Tt[F,, F*] + (D*®, ) D, @, — V()
where V() = —M?n? + An*
The ground state is still at v/4/2 so we must shift

v /
n=5tn

26



This will lead to

1. Lonass = My WEWHE™ + 1M, WoW* with My, =1 gv

v

2.V(ﬁ

+1') = +14M2n? + - ie. M, = 2M
3. and there are no Goldstone bosons...

if we had kept the g;(x) they would have been the Goldstone bosons

These three degrees of freedom reappear in the longitudinal
polarisations of the three W, W~ and WV.

27
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This will lead to
g2 +ya7h— 4 142 Oya7u0 . 1
1. L s = MWWHW +§MWWMW with My, = > gv
2 V(1+ ’)—+14M2 2 4 .ie. M, =2M
: ZTN)=1; n i.e. M, =
3. and there are no Goldstone bosons...

if we had kept the f(x) they would have been the Goldstone bosons

These three degrees of freedom reappear in the longitudinal
polarlsatlons of the three WJr W and wo.




The gauge field matrix expands to

All — A‘ulrﬂ-‘l + A,uZTZ + A.U3T3

Now,
Ay 1—iA _ Ay +iA
%+ — #1\/2 p2 % — Hl\/i p2 VVMO — AMB
_1 = _ ¢ = _ /0
jAﬂl_ﬁ(%Jr"l'%) AHZ_E(M—I—_VVM) Az =W,

l.e.
_1 - i - 0
Ay = =W+ W)Ty + = (W = W,7)T, + W, Ty
1 . 1 . _
= —(T; + iT)W," + - (T1 — iT)W,™ + W, T

= W T, + W, T_+ W2 T; where T, = % (T +iT,)

29
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Inclusion of fermions

If fermions are to interact with the W, W~ and W bosons, they must
transform as doublets under SU(2)y, just like the scalar doublet ®(x)

Consider a fermion doublet (we could do a similar thing for SU(N) ...)

(3

where the ¥, and g are two mass-degenerate Dirac fermions.

Construct the ‘free’ Lagrangian density
L=iPy*0,¥ —mPY

where W = (¥, jp).

Sum of two free Dirac fermion Lagrangian densities, with equal masses.



31

Now, under a global SU(2),y gauge transformation, if

Y(x) > ¥ (x) = U¥(x)
then
P(x) » P (x) = P(x)UT

It follows that the Lagrangian density
L=iPy"0,¥ —mPY
must be invariant under global SU(2) gauge transformations.

As before, we try to upgrade this to a local SU(2) gauge invariance, by
writing
= - 1
L=iPy*D,¥ — mWPY — Tr[F,, F* |

where D, =10, + igA, (x) as before. Invariance is now guaranteed.
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Expand the covariant derivate and get the full Lagrangian density

L=iY0,¥Y-mVPY¥ —éTr[IFW IF“VJ - 9Py AW

— /)

e . , Y : :
free fermion free’ gauge  interaction term

Expand the interaction term...
Lint — —g@y“A‘uq—’
= —gPy*(W,"T, + W, T_ + W) T3)¥
= —gPy*T W W, — gPyFT_W W, — gPy*T3¥ W

= —gji W' — gi* W, — gj§ W

PyHLT, W are ‘charged’ currents

.
o= H=

PyHT3W isa ‘neutral’ current

.
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Write the currents explicitly:

'jﬁf = PyHT, ¥ = Pyt i('JI‘1 +iT,)W¥

s o () D(0) -

o jh = PyFT_W = Py — (T, — (T,)W
=55 3r (7 0) (o) =75 Forun
Ojg = ‘ij“'ﬂ'gtlj

=2 B (5 ) () =2 @Bar b — bov i)



Line = —gjy W," — gj* W, — gjg W,
= — %I/SAVMI/JB W — %l/;BVMwA W,
— %(@AV“‘/)A — YpyHp) W)

This leads to vertices

c.c. interactions

n.c. interactions

34



Comparing with the IVB hypothesis for the W#i, we should be able to
identify

Ya\ _ (P YA\ _ (Ve Ya\ _ (W
() =G o ()= C2) o ()= C)
Q. Can we identify the %0 with the photon (forgetting the mass)?

If the I/I{li are charged, we will have, under U(1)en

- '+ _ —ied - - '— _ _+ied -
M{le% =e Wu I/I@—H/I@ =e m

Now, if the term Y, y* g %+ is to remain invariant, we must assign

charges g4 e and gge to the A and B, s.t. the term transforms as
l,bAVMI/JB M/;[I_ - e—LeH +iqge0—iqpebd 1/1,4)/“1/)13 ]/VM-I_

To keep the Lagrangian neutral, we require g4 — qg = —1

35



But if we look at the %0 vertices, and consider them to be QED

vertices, we must identify

g g
2

5 = ~da€ and — — = —qpe
l.e. gq = —(q;.
Now solve the equations: q4 —qg = —1 and g4 = —q5 ...
result is
1
da = =4 = —5

Two alternatives:

e A and B cannot be the Fermi-IVB particles (defeats whole effort...)
° %0 cannot be the photon... (already hinted by the mass)

36
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Electroweak unification

Why not just include the U(1)., group as a direct product with the
SU(2)w group?

The transformation matrix on a fermion of charge ge will then look like
U = ¢—i90.T—iqe6' T
where T is the generator of U(1)., and the direct product means that
[T, T,]=0 Va
The gauge field matrix should expand to
gA, = gWrT, + gW, T_+ gW? T3 + qeAd, T

and give us interaction terms as before...
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i.e., to the interaction terms with the W boson we must now add
interaction terms with the photon:

Ling = — %I/jAV”¢B W,r - %1/331’”1/#\ W,
— %lpAyulpA W, + %1/;3)/“1/213 W,

— qae Yay*Yal, — qge Yyt iPgA,

Working back, we can write this as

0 9 -
¢ =—@Wa  Pplv* ( e v % >(¢A>
\/—7 W, —% W0 + qged, | \¥s

= —P(gA* . T + eA, T)¥ where T = (q64 qO )
B



This generator of U(1). can be rewritten

' CIA O)
1r=(
0 gp

If we remember that g4 — g5

=CIA+CIB
2

= —1, then

1+

da — 4B

2

: 1
T =2qyu+ 11— =T;

Paradox!

2

[T, T,]#0 for a=1,2

T5
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This generator of U(1). can be rewritten

/ CIA O) CIA‘l'CIB qA_qB
T = = 1 T
(0 dB 2 T 2 3

If we remember that g4 — qg = —1, then

: 1
T =(2qg,+ 1)1 — E']I‘g

Paradox!
[T, T,]#0 for a=1,2
Glashow (1961) :

We cannot treat weak interactions and electromagnetism as separate

(direct product) gauge theories = electroweak unification

40



SU(2)wxU(1)y model

Introduce a new U(1), which is different from U(1)., and exists as a
direct product with the SU(2)...

The gauge transformation matrix will become
U= e—ig0.T+ig 6'T
where T = %]1 , Which, by construction, will commute with all the T
We now expand the gauge field matrix as
gA, = gW;"T, + gW, T_+ gWT; — g'B, T

B, is a new gauge field and y is a new quantum number which is

clearly same for both the A and B component of the fermion doublet.

41
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We now construct the gauge-fermion interaction term as before
Lint — _gLTJyMA\#LIJ
= —PyH(gW,;' T + gW, T_+ gW T3 — g'B, T )¥

Expanding as before

g o _ 9y 9o+

N i i e T A P

1nt_ (l/)A l/)B)V g B g 0 g'y l/)B
N 2 W =575

= — %‘/;AVMI/JB W, —iI/;BVMI/JA W,

_1/7AV”1/JA(% gy )+1/JBV”1/JB( w0 + <= B)
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Glashow (1961): for some reason, the I/I{P and B, mix, i.e. the physical

states are orthonormal combinations (demanded by gauge kinetic
terms) of the WMO and B, ...

VVMO B C —S Z,u B e
= A Cc =COSw, S=SIhw
B.U S C U

In terms of this, the neutral current terms come out to be
L =—1/;AV“‘/JA(% gy )+1/JBV“1/JB( WO"‘ B)
1 — / /
= —-Pav*Pal(ge — g'ys)Z, — (gs + g'yo)A,]

_%‘/;BV“‘/JB[(QC —g'y8)Z, + (gs — g'yo)A,]



If we now wish to identify A, with the photon, we require to set

1 1
—5(gs+g'yc) = dae - (gs —g'yc) = qpe
Solving for g and g’ we get
—gs = (qa — qp)e —g yc = (qa + qp)e
Recall that g4 — gz = —1. It follows that
e =(gs e=—gc 24
qa + Qs
Choose —y = q4 + qg. Then
e = gsinw g'=gtana)

Note that w is some arbitrary angle... it must be nonzero, else e = 0

44



We can also obtain

N

_1 L1,

1 . :
Now, these + ~are precisely the eigenvalues of the T; operator

i.e. we can write a general relation

Yy
=t —
q 3+2

Looks exactly like the Gell-Mann-Nishijima relation...

Call t3 the weak isospin and y the weak hypercharge

This gauge theory works pretty well and can give the correct couplings

45

of all the gauge bosons... up to the angle w, which is not determined by

the fermion sector...



Determination of w :

Back to the gauge boson mass term...
Linass = 9°(AH{@NT (A, (@) = (gA* ()T (gA (D))

For the Glashow theory, we must include the U(1), field in the gauge
field matrix, i.e.

gA, = gW T, + gW,T_+ gW?T;—g'B,T

u
/g , gY g . \
=~ W —-=—B — W
B 2 H 2 H /—2 H
g ... g o 9Y
— W — =~ WP —-=—R8
\ /—2 U 2 U 2 M/

where Y is the hypercharge of the ® field.



g p0_9Y 9 e+
A(q))_ 2% 2 Bﬂ \/ZVV.ZI
’ Lyw-  —Lwd-Lp
vz M U 2 U
gU
_< > W' )
2 (gW0 +g'YB,)
and
vl N
v —
(gA (@)t = TWHT == (g WO + g YBY)
— _

Multiplying these

47
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v

242

Consider only the neutral bosons:

2 2 ) :
Liass = (Z) W wH— + (55) (@W  + g'YB)(g W + g'YB,)

2
(g WHO + g’YB“)(g W, + g'YB#)
= g>? WO WL + gg' Y WHOB, + gg YB* W2 + (g Y)?B*B,

One cannot have mass terms of the form W“OBM and B* %0 in a viable

field theory, since our starting point is always a theory with free fields.

Thus, it is essential to transform to orthogonal states

VVMO B C —S le B e
— A C=COSw, S=SInhw
B.U S C U

and choose w to cancel out cross terms...



Rewrite the neutral boson mass terms as

(gWH® + g YB*)(g W2 + g YB,)

=g? WO WL + gg' Y WHOB, + gg YB* W, + (g Y)?B"B,
= (wHo BM)( 9°  ag¥ )(W“O>
gg'y (gY)?)\ B,

The diagonalising matrix will be

(cos w — Sin w)
Sin w COS W
where

gY

!
tanw = —
g

49



How to determine Y ?

Write out the interaction terms for the gauge bosons with the scalar
doublet. One finds that once again, to match the couplings to the

charges of the W bosons, we get the Gell-Mann-Nishijima relation, i.e.

y
q=13+7

Now, the lower component @y develops a vacuum expectation value,
so it must be neutral, i.e.

It follows that Weinberg angle

g
tanw = — =tan@
g w

50
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Eigenvalues of the mass matrix:

(92 gg’)
/ 12
9g" g

Determinant =0 ; trace = g2 + glz, l.e.
MA — 0

and

!/

2 2
) (g% + glz) = (%) (1 +“f]q—2> = Mz (1 + tan® 8y,)

1%
24/2

= M#, sec? Oy,

M§=2(




Determination of parameters:

82 _ 1 M, — MW
4n_a~13 Z_COSHW
e = gsin Gy g'=gtan9W

Experimental measurements show that

My, =~ 80.4GeV and M; = 91.2 GeV
It follows that cos 6y, = My, /M, =~ 0.8816 = 6y, = 28°.17

We can now calculate: e = V4ra = 0.303
g =e/sinfy, = 0.642
g =gtanf, = 0.344
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