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Nonabelian Gauge Theory 

Consider a scalar multiplet Φ(𝑥) of length 𝑛, i.e. 

Φ 𝑥 =  

𝜑1(𝑥)
⋮
⋮

𝜑𝑛(𝑥)

  

where each 𝜑𝑖 𝑥  (𝑖 = 1,… , 𝑛) is a complex scalar field. 

Construct the ‘free’ Lagrangian density 

ℒ =  𝜕𝜇Φ †𝜕𝜇Φ−𝑀
2Φ†Φ 

This is just a shorthand for 𝑛 mass-degenerate free scalar fields, i.e. 

ℒ =   𝜕𝜇𝜑𝑖
∗ 𝜕𝜇𝜑𝑖 −𝑀

2𝜑𝑖
∗𝜑𝑖  

𝑛

𝑖=1

  



2 
 

Now consider a global SU(N) gauge transformation 

Φ 𝑥 → Φ′ 𝑥 = 𝕌Φ 𝑥  

where 𝕌 is a SU(N) matrix, i.e. 𝕌†  𝕌 = 𝟙  and det𝕌 =  +1, where 

𝕌 =  

𝑈11 ⋯ 𝑈1𝑛

⋮ ⋮
𝑈𝑛1 ⋯ 𝑈𝑛𝑛

  

The number of free (real) parameters in this SU(N) matrix is 

𝑝 = 2𝑁2 − 𝑁 − 2𝑁𝐶2 − 1 = 𝑁2 − 1 

We can write this SU(N) transformation in the form  𝕌 = 𝑒−𝑖𝑔𝜃
   .𝕋    

where the 𝜃 =  𝜃1, ⋯ , 𝜃𝑝  are free (real) parameters 

and the 𝕋   =  𝕋1, ⋯ , 𝕋𝑝  are the generators of SU(N)  
𝜃 . 𝕋   =  𝜃𝑎𝕋𝑎

𝑝

𝑎=1

 

𝑛 and 𝑁 are different (in general) 
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Under this gauge transformation  

Φ 𝑥   → Φ′ 𝑥   = 𝕌 Φ 𝑥  

Φ† 𝑥 → Φ′† 𝑥 = Φ† 𝑥  𝕌†  

The Lagrangian density transforms to 

ℒ →  ℒ′ =  𝜕𝜇Φ′ †𝜕𝜇Φ′ − 𝑀
2Φ′ †Φ′ 

  =  𝜕𝜇𝕌Φ †𝜕𝜇𝕌Φ−𝑀
2Φ†𝕌†𝕌Φ          global 

  =  𝜕𝜇Φ †𝕌†𝕌𝜕𝜇Φ−𝑀
2Φ†𝕌†𝕌Φ        unitary 

  =  𝜕𝜇Φ †𝜕𝜇Φ−𝑀
2Φ†Φ                      

  = ℒ 

Thus, this system of 𝑛 mass-degenerate free scalar fields possesses a       

SU(N) global gauge symmetry ― with 𝑝 conserved currents/charges. 
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The next step is to convert this to a SU(N) local gauge symmetry, i.e. 

Φ 𝑥   → Φ′ 𝑥   = 𝕌(𝑥) Φ 𝑥  

Φ† 𝑥 → Φ′† 𝑥 = Φ† 𝑥  𝕌†(𝑥) 

As in the nonAbelian case, the Lagrangian density will no longer remain 

gauge invariant... 

ℒ →  ℒ′ =  𝜕𝜇Φ′ †𝜕𝜇Φ′ − 𝑀
2Φ′ †Φ′ 

 =  𝜕𝜇𝕌 Φ †𝜕𝜇𝕌 Φ −𝑀2Φ†𝕌†𝕌 Φ     local 

=  𝕌𝜕𝜇Φ+ 𝜕𝜇𝕌Φ 
†
 𝕌𝜕𝜇Φ+ 𝜕𝜇𝕌Φ −𝑀

2Φ†𝕌†𝕌Φ      

=   𝟙𝜕𝜇 + 𝕌†𝜕𝜇𝕌 Φ 
†
𝕌†𝕌 𝟙𝜕𝜇 + 𝕌†𝜕𝜇𝕌 Φ −𝑀

2Φ†𝕌†𝕌Φ  unitary   

=   𝟙𝜕𝜇 + 𝕌†𝜕𝜇𝕌 Φ 
†
 𝟙𝜕𝜇 + 𝕌†𝜕𝜇𝕌 Φ −𝑀

2Φ†Φ      ≠ ℒ  
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Solution:  define a covariant derivative  𝔻𝜇 = 𝟙𝜕𝜇 + 𝑖𝑔𝔸𝜇 (𝑥) 

where the 𝔸𝜇 (𝑥) is a 𝑛 × 𝑛 matrix of gauge fields, i.e. 

𝔸𝜇 =  

𝑎11
𝜇

⋯ 𝑎1𝑛
𝜇

⋮ ⋮
𝑎𝑛1
𝜇

⋯ 𝑎𝑛𝑛
𝜇
  

Not all of these need to be independent... (𝔸𝜇  is Hermitian...) 

We require the covariant derivative 𝔻𝜇Φ to transform exactly like Φ, 

i.e. 
𝔻𝜇Φ → 𝔻′𝜇Φ′ = 𝕌 𝔻𝜇Φ 

for then, if we rewrite the Lagrangian density as  

ℒ =  𝔻𝜇Φ †𝔻𝜇Φ−𝑀
2Φ†Φ 

it will be trivially gauge invariant. 
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How do we ensure that  𝔻𝜇Φ → 𝔻′𝜇Φ′ = 𝕌 𝔻𝜇Φ ?  

By adjusting the transformation of the gauge field matrix 𝔸𝜇  ... 

𝔻𝜇Φ → 𝔻′𝜇Φ
′ =   𝟙𝜕𝜇 + 𝑖𝑔𝔸′𝜇  𝕌Φ 

 =  𝜕𝜇  𝕌Φ + 𝑖𝑔𝔸′𝜇𝕌Φ 

 =  𝕌 𝜕𝜇Φ +  𝜕𝜇𝕌 Φ + 𝑖𝑔𝔸′𝜇𝕌Φ 

 =  𝕌 𝜕𝜇Φ + 𝕌𝕌† 𝜕𝜇𝕌 Φ + 𝑖𝑔𝕌𝕌†𝔸′𝜇𝕌Φ 

 =  𝕌 𝟙𝜕𝜇 + 𝕌†𝜕𝜇𝕌 + 𝑖𝑔𝕌†𝔸′𝜇𝕌 Φ 

If this is to be the same as  

  𝔻𝜇Φ =  𝟙𝜕𝜇 + 𝑖𝑔𝔸𝜇  Φ  

we must have  𝑖𝑔𝔸𝜇 = 𝑖𝑔𝕌†𝔸′𝜇𝕌 + 𝕌†𝜕𝜇𝕌  
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Rewrite       

𝑖𝑔𝔸𝜇 = 𝑖𝑔𝕌†𝔸′𝜇𝕌 + 𝕌†𝜕𝜇𝕌 

as        

𝑖𝑔𝕌†𝔸′𝜇𝕌 = 𝑖𝑔𝔸𝜇 − 𝕌
†𝜕𝜇𝕌 

or,              

𝑖𝑔𝔸′𝜇 = 𝑖𝑔𝕌𝔸𝜇𝕌
† −  𝜕𝜇𝕌 𝕌

†  

Note that  𝕌𝕌†  = 𝟙   leads to   𝜕𝜇𝕌 𝕌
† + 𝕌 𝜕𝜇𝕌

†  = 0    

i.e.  

𝑖𝑔𝔸′𝜇 = 𝑖𝑔𝕌𝔸𝜇𝕌
† + 𝕌 𝜕𝜇𝕌

† = 𝑖𝑔𝕌𝔸𝜇𝕌
† + 𝕌 𝜕𝜇𝕌

† 𝕌𝕌†  

or, finally, 

  𝔸′𝜇 = 𝕌  𝔸𝜇 −
𝑖

𝑔
 𝜕𝜇𝕌

† 𝕌 𝕌†  
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Quick check:  suppose 𝑁 = 1 and 𝑛 = 1, i.e. U(1) gauge symmetry 

Then 𝕌 = 𝑒−𝑖𝑔𝜃  and  𝔸𝜇 = 𝐴𝜇 .  

Now, 

𝔸′𝜇 = 𝕌  𝔸𝜇 −
𝑖

𝑔
 𝜕𝜇𝕌

† 𝕌 𝕌†   

assumes the form 

𝐴′𝜇 = 𝑒−𝑖𝑔𝜃  𝐴𝜇 −
𝑖

𝑔
 𝜕𝜇𝑒

+𝑖𝑔𝜃 𝑒−𝑖𝑔𝜃  𝑒+𝑖𝑔𝜃   

= 𝑒−𝑖𝑔𝜃  𝐴𝜇 −
𝑖

𝑔
 𝑖𝑔𝜕𝜇𝜃 𝑒+𝑖𝑔𝜃 𝑒−𝑖𝑔𝜃  𝑒+𝑖𝑔𝜃   

= 𝐴𝜇 + 𝜕𝜇𝜃 

which is what we had derived for the U(1) case. 
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How many independent fields do we require in the 𝔸𝜇  matrix? 

𝔸′𝜇 = 𝕌  𝔸𝜇 −
𝑖

𝑔
 𝜕𝜇𝕌

† 𝕌 𝕌†   

Since 𝕌 = 𝑒−𝑖𝑔𝜃
   .𝕋    i.e. 𝕌 has 𝑝 free parameters, 𝔸𝜇  should have 𝑝 

independent fields. This encourages us to expand 

𝔸𝜇 (𝑥) =  𝐴𝑎
𝜇  𝑥  𝕋𝑎 = 𝐴𝜇       . 𝕋   

𝑝

𝑎=1

 

One can now work out the transformation properties of the 𝐴𝑎
𝜇  𝑥  

fields in terms of the parameters 𝜃 =  𝜃1, ⋯ , 𝜃𝑝 .  

(Will do this for specific cases...) 
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We can also use this expression  

𝔸𝜇 (𝑥) =  𝐴𝑎
𝜇  𝑥  𝕋𝑎 = 𝐴𝜇       . 𝕋   

𝑝

𝑎=1

 

to write out the interaction terms in the Lagrangian density... 

  ℒ =  𝔻𝜇Φ †𝔻𝜇Φ−𝑀
2Φ†Φ 

 =   𝟙𝜕𝜇 + 𝑖𝑔𝔸𝜇  Φ † 𝟙𝜕𝜇 + 𝑖𝑔𝔸𝜇  Φ −𝑀
2Φ†Φ 

 =  𝜕𝜇Φ †𝜕𝜇Φ –𝑀2Φ†Φ                       free scalar 

   + 𝑖𝑔  𝜕𝜇Φ †𝔸𝜇Φ−Φ
†𝔸𝜇𝜕𝜇Φ        gauge-scalar interaction 

   +  𝑔2Φ†𝔸𝜇𝔸𝜇Φ                                    seagull terms 
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We should complete the Lagrangian density by adding a kinetic term 

for the gauge fields... 

𝔽𝜇𝜈 = −
𝑖

𝑔
 𝔻𝜇 , 𝔻𝜈  = 𝜕𝜇𝔸𝜈 − 𝜕𝜈𝔸𝜇 + 𝑖𝑔 𝔸𝜇 , 𝔸𝜈   

Now, we have 

𝔻𝜇Φ → 𝔻′𝜇Φ′ = 𝕌 𝔻𝜇Φ 

 = 𝕌 𝔻𝜇𝕌
†  𝕌Φ 

 = 𝕌 𝔻𝜇𝕌
†  Φ′           𝔻′𝜇 =  𝕌 𝔻𝜇𝕌

†  

Thus, 

𝔽𝜇𝜈 → 𝔽′𝜇𝜈 = −
𝑖

𝑔
 𝔻′𝜇 , 𝔻′𝜈  = −

𝑖

𝑔
 𝕌 𝔻𝜇𝕌

† , 𝕌 𝔻𝜈𝕌
† = 𝕌 𝔽𝜇𝜈𝕌

†  

To get gauge invariance, we have to take the trace... 



12 
 

The full Lagrangian density is now 

  ℒ =  𝔻𝜇Φ †𝔻𝜇Φ−𝑀
2Φ†Φ−

1

2
Tr 𝔽𝜇𝜈 𝔽

𝜇𝜈   

Since    𝔽𝜇𝜈 =  𝜕𝜇𝔸𝜈 − 𝜕𝜈𝔸𝜇  + 𝑖𝑔 𝔸𝜇 , 𝔸𝜈   

 

𝔽𝜇𝜈 =  𝜕𝜇𝔸𝜈 − 𝜕𝜈𝔸𝜇  + 𝑖𝑔 𝔸𝜇 , 𝔸𝜈   

Leads to triple gauge vertices and quadruple gauge vertices 

 

 

 

absent in an Abelian gauge theory, e.g. QED 
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SU(2) Gauge Theory 

Recall that for weak interactions we needed three gauge bosons, the 

𝑊𝜇
+,𝑊𝜇

−,𝑊𝜇
0 

This seems to indicate a gauge theory with three generators   

and the obvious one to take is an SU(2) gauge theory. 

 

All of the above formalism will work, except that now we must take the 

generators as  

𝕋1 = 1

2
𝜎1               𝕋2 = 1

2
𝜎2             𝕋3 = 1

2
𝜎3  

obeying the Lie algebra 

 𝕋𝑎 , 𝕋𝑏 = 𝑖𝜀𝑎𝑏𝑐𝕋𝑐  
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The full Lagrangian for this is  

ℒ =  𝜕𝜇Φ †𝜕𝜇Φ –𝑀2Φ†Φ+  𝑖𝑔  𝜕𝜇Φ †𝔸𝜇Φ−Φ
†𝔸𝜇𝜕𝜇Φ       

 +𝑔2Φ†𝔸𝜇𝔸𝜇Φ − 1

2
Tr 𝔽𝜇𝜈 𝔽

𝜇𝜈                               

where 

𝔸𝜇 = 𝐴1
𝜇
𝕋1 + 𝐴2

𝜇
𝕋2 + 𝐴3

𝜇
𝕋3 

We can also expand 

𝔽𝜇𝜈 = 𝜕𝜇𝔸𝜈 − 𝜕𝜈𝔸𝜇 + 𝑖𝑔 𝔸𝜇 , 𝔸𝜈   

= 𝐹1
𝜇𝜈
𝕋1 + 𝐹2

𝜇𝜈
𝕋2 + 𝐹3

𝜇𝜈
𝕋3 

where 

𝐹𝑎
𝜇𝜈

= 𝜕𝜇𝐴𝑎
𝜈 − 𝜕𝜈𝐴𝑎

𝜇
− 𝑔𝜀𝑎𝑏𝑐 𝐴𝑏

𝜇
𝐴𝑐
𝜈  

Φ =  
𝜑A

𝜑B
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Mass generation: 

To break this symmetry spontaneously, we now replace the scalar mass 

term by a potential 

–𝑀2Φ†Φ → −V Φ  

V Φ = −𝑀2Φ†Φ+ 𝜆 Φ†Φ 
2

 

i.e. this is a theory with 𝑛 massless scalars and some self-interactions 

As before, if we define a real field  

Φ†(𝑥)Φ(𝑥) ≡ 𝜂(𝑥)2 

then we can write the potential as 

V 𝜂 = −𝑀2𝜂2 + 𝜆𝜂4 

with a local maximum at 𝜂 = 0 ; local minima at 𝜂 = 𝑣/ 2 =  𝑀2/2𝜆 
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These local minima correspond to 

Φ†Φ = 𝜂2 =
𝑀2

2𝜆
 

Recall that  

Φ =  
𝜑A

𝜑B
 =  

𝜑1+𝑖𝜑2

 2
𝜑3+𝑖𝜑4

 2

   

so that  Φ†Φ =  𝜑A  
2 +  𝜑B 

2 = 1

2
 𝜑1

2 + 𝜑2
2 + 𝜑3

2 + 𝜑4
2  

i.e. 

𝜑1
2 + 𝜑2

2 + 𝜑3
2 + 𝜑4

2 =
𝑀2

𝜆
 

Equation of a 4-sphere – only one of these points can be the vacuum  
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These local minima correspond to 

Φ†Φ = 𝜂2 =
𝑀2

2𝜆
 

Recall that  

Φ =  
𝜑A

𝜑B
 =  

𝜑1+𝑖𝜑2

 2
𝜑3+𝑖𝜑4

 2

   

so that  Φ†Φ =  𝜑A  
2 +  𝜑B 

2 = 1

2
 𝜑1

2 + 𝜑2
2 + 𝜑3

2 + 𝜑4
2  

i.e. 

𝜑1
2 + 𝜑2

2 + 𝜑3
2 + 𝜑4

2 =
𝑀2

𝜆
 

Equation of a 4-sphere – only one of these points can be the vacuum  

Hidden Symmetry!! 
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Vacuum manifold in a U(1) gauge theory is a circle 

 The scalar field is 

𝜑 =
𝜑1 + 𝑖𝜑2

 2
 

 

 Traditional to orient the axes in 
the 𝜑-space such that only the 
𝜑1 has a vacuum expectation 
value 

𝜑0 ≡  𝜑1 = 𝑣 
i.e. 

 𝜑 =
𝑣

 2
  

 

 Now shift  𝜑 =  𝜑 + 𝜑′ 
 

 

𝜑1  

𝜑2  
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Vacuum manifold in a U(1) gauge theory is a circle 

 The scalar field is 

𝜑 =
𝜑1 + 𝑖𝜑2

 2
 

 

 Traditional to orient the axes in 
the 𝜑-space such that only the 
𝜑1 has a vacuum expectation 
value 

𝜑0 ≡  𝜑1 = 𝑣 
i.e. 

 𝜑 =
𝑣

 2
  

 

 Now shift  𝜑 =  𝜑 + 𝜑′ 
 

 

𝜑1  

𝜑2  
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Vacuum manifold in a SU(2) gauge theory is a four-sphere 

 The scalar field is 

Φ =  

𝜑1+𝑖𝜑2

 2
𝜑3+𝑖𝜑4

 2

   

 Traditional to orient the axes in 
the 𝜑-space such that only the 
𝜑3 has a vacuum expectation 
value 

 𝜑3 = 𝑣 
i.e. 

 Φ =  
0
𝑣

 2
   

 Now shift  Φ =  Φ + Φ′ 

 
 
 
 
 
 
 
 
 
 
 

(The 𝜑4 axis is not shown...) 

 

𝜑3  

𝜑2  

𝜑1  
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Vacuum manifold in a SU(2) gauge theory is a four-sphere 

 The scalar field is 

Φ =  

𝜑1+𝑖𝜑2

 2
𝜑3+𝑖𝜑4

 2

   

 Traditional to orient the axes in 
the 𝜑-space such that only the 
𝜑3 has a vacuum expectation 
value 

 𝜑3 = 𝑣 
i.e. 

 Φ =  
0
𝑣

 2
   

 Now shift  Φ =  Φ + Φ′ 

 
 
 
 
 
 
 
 
 
 
 

(The 𝜑4 axis is not shown...) 

 

𝜑3  

𝜑2  

𝜑1  
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Seagull term: 

ℒsg = 𝑔2Φ†𝔸𝜇𝔸𝜇Φ → 𝑔2  Φ + Φ′ †𝔸𝜇𝔸𝜇   Φ + Φ′            

                                = 𝑔2 Φ †𝔸𝜇𝔸𝜇  Φ + ⋯ 

We thus get a mass term for the gauge bosons, viz. 

ℒmass = 𝑔2 Φ †𝔸𝜇𝔸𝜇  Φ = 𝑔2 𝔸𝜇  Φ  † 𝔸𝜇  Φ   

Expand this... 

𝔸𝜇 = 𝐴𝜇1𝕋1 + 𝐴𝜇2𝕋2 + 𝐴𝜇3𝕋3 =
1

2
 𝐴𝜇1𝜎1 + 𝐴𝜇2𝜎2 + 𝐴𝜇3𝜎3  

 =  

𝐴𝜇3

2

𝐴𝜇1 − 𝑖𝐴𝜇2

2
𝐴𝜇1 + 𝑖𝐴𝜇2

2
−
𝐴𝜇3

2

 ≡

 

 
 

𝑊𝜇
0

2

𝑊𝜇
+

 2
𝑊𝜇

−

 2
−
𝑊𝜇

0

2  
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𝔸𝜇  Φ =

 

 
 

𝑊𝜇
0

2

𝑊𝜇
+

 2
𝑊𝜇

−

 2
−
𝑊𝜇

0

2  

 
 
 

0

𝑣

 2

 =  

𝑣

2
𝑊𝜇

+

−
𝑣

2 2
𝑊𝜇

0
  

and 

 𝔸𝜇  Φ  † =     
𝑣

2
𝑊𝜇− −

𝑣

2 2
𝑊𝜇0 

Thus,  

ℒmass = 𝑔2 𝔸𝜇  Φ  † 𝔸𝜇  Φ  =  
𝑔2𝑣2

4
𝑊𝜇

+𝑊𝜇− +
𝑔2𝑣2

4
𝑊𝜇

0𝑊𝜇0  

   = 𝑀𝑊
2 𝑊𝜇

+𝑊𝜇− +
1

2
𝑀𝑊

2 𝑊𝜇
0𝑊𝜇0 

where 𝑀𝑊 = 1

2
 𝑔𝑣 
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In a hidden U(1) gauge theory:  𝜑 =  𝜑 + 𝜑′ 

𝜑1+𝑖𝜑2

 2
=

𝑣

 2
+
𝜑′1+𝑖𝜑′2

 2
=

 𝜑′1+𝑣 +𝑖𝜑′2

 2
  

When substituted into the potential, this leads to a correct-sign mass 

for 𝜑′1 (massive scalar) and keeps 𝜑′2 massless (Goldstone boson) 

In a hidden SU(2) gauge theory:  Φ =  Φ + Φ′ 

 

𝜑1+𝑖𝜑2

 2
𝜑3+𝑖𝜑4

 2

 →  

0

𝑣

 2

 +  

𝜑′1+𝑖𝜑′2

 2
𝜑′3+𝑖𝜑′4

 2

 =  

𝜑′1+𝑖𝜑′2

 2
 𝜑′3+𝑣 +𝑖𝜑′4

 2

   

When substituted into the potential, this leads to a correct-sign mass 

for 𝜑′3 (massive scalar) and keeps 𝜑′1,2,4 massless (Goldstone bosons) 

We now have to worry about three Goldstone bosons 
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The Higgs mechanism works here too... 

Exactly as before: parametrise Φ(𝑥) =  𝑒𝑖𝜉
  𝑥 .𝕋     

0

𝜂(𝑥)
   (polar form) 

Consider the unbroken (i.e. gauge invariant) Lagrangian density 

ℒ = −
1

2
Tr 𝔽𝜇𝜈𝔽

𝜇𝜈
 +  𝔻𝜇Φ 

†
𝔻𝜇Φ− 𝑉 Φ  

where  𝑉 𝜑 = −𝑀2Φ†Φ+ 𝜆  Φ†Φ 
2
 

At this level, we are free to make any gauge choice we wish... 

Make a gauge transformation 

Φ 𝑥 → 𝑈 𝑥 Φ 𝑥 = 𝑒−𝑖𝑔𝜃
    𝑥 .𝕋   Φ 𝑥 = 𝑒𝑖 𝑔𝜃

    𝑥 −𝜉  𝑥  .𝕋    
0

𝜂(𝑥)
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We might as well choose a special gauge, since the gauge symmetry is 
going to be broken anyway... 

Choose the three gauge functions 𝜃  𝑥  such that 

𝑔𝜃  𝑥 − 𝜉  𝑥 = 0   

This is called the unitary gauge.  

In this gauge, Φ 𝑥 = Φ𝜂 𝑥 =  
0

𝜂(𝑥)
  and the Lagrangian becomes 

ℒ = −
1

2
Tr 𝔽𝜇𝜈𝔽

𝜇𝜈
 +  𝔻𝜇Φ𝜂 

†
𝔻𝜇Φ𝜂 − 𝑉 𝜂  

where  𝑉 𝜂 = −𝑀2𝜂2 + 𝜆𝜂4 

The ground state is still at 𝑣/ 2 so we must shift  

𝜂 =
𝑣

 2
+ 𝜂′  
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This will lead to  

1.   ℒ𝑚𝑎𝑠𝑠 = 𝑀𝑊
2 𝑊𝜇

+𝑊𝜇− + 1
2
𝑀𝑊

2 𝑊𝜇
0𝑊𝜇0

   with   𝑀𝑊 = 1

2
 𝑔𝑣 

2.   𝑉  
𝑣

 2
+ 𝜂′ = +1

2
4𝑀2𝜂2 + ⋯ i.e. 𝑀𝜂 = 2𝑀 

3.    and there are no Goldstone bosons...  

if we had kept the 𝜉  𝑥  they would have been the Goldstone bosons 

These three degrees of freedom reappear in the longitudinal 
polarisations of the three 𝑊+, 𝑊− and 𝑊0. 
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This will lead to  

1.   ℒ𝑚𝑎𝑠𝑠 = 𝑀𝑊
2 𝑊𝜇

+𝑊𝜇− + 1
2
𝑀𝑊

2 𝑊𝜇
0𝑊𝜇0

   with   𝑀𝑊 = 1

2
 𝑔𝑣 

2.   𝑉  
𝑣

 2
+ 𝜂′ = +1

2
4𝑀2𝜂2 + ⋯ i.e. 𝑀𝜂 = 2𝑀 

3.    and there are no Goldstone bosons...  

if we had kept the 𝜉  𝑥  they would have been the Goldstone bosons 

These three degrees of freedom reappear in the longitudinal 
polarisations of the three 𝑊+, 𝑊− and 𝑊0. 
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The gauge field matrix expands to  

𝔸𝜇 = 𝐴𝜇1𝕋1 + 𝐴𝜇2𝕋2 + 𝐴𝜇3𝕋3 

Now,  

        𝑊𝜇
+ =

𝐴𝜇 1−𝑖𝐴𝜇 2

 2
                   𝑊𝜇

− =
𝐴𝜇 1+𝑖𝐴𝜇 2

 2
                    𝑊𝜇

0 =  𝐴𝜇3  

   𝐴𝜇1 =
1

 2
 𝑊𝜇

+ +𝑊𝜇
−        𝐴𝜇2 =

𝑖

 2
 𝑊𝜇

+ −𝑊𝜇
−         𝐴𝜇3 = 𝑊𝜇

0  

i.e. 

𝔸𝜇 =
1

 2
 𝑊𝜇

+ +𝑊𝜇
− 𝕋1 +

𝑖

 2
 𝑊𝜇

+ −𝑊𝜇
− 𝕋2 +𝑊𝜇

0 𝕋3  

   =
1

 2
 𝕋1 + 𝑖𝕋2 𝑊𝜇

+ +
1

 2
 𝕋1 − 𝑖𝕋2 𝑊𝜇

− +𝑊𝜇
0 𝕋3  

≡ 𝑊𝜇
+𝕋+ +𝑊𝜇

−𝕋− +𝑊𝜇
0 𝕋3   where 𝕋± =

1

 2
 𝕋1 ± 𝑖𝕋2  
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Inclusion of fermions 

If fermions are to interact with the 𝑊+, 𝑊− and 𝑊0 bosons, they must 

transform as doublets under SU(2)W, just like the scalar doublet Φ 𝑥  

Consider a fermion doublet (we could do a similar thing for SU(N) ...) 

Ψ =  
𝜓A

𝜓B
  

where the 𝜓A  and 𝜓B  are two mass-degenerate Dirac fermions. 

Construct the ‘free’ Lagrangian density 

ℒ = 𝑖Ψ 𝛾𝜇𝜕𝜇Ψ−𝑚 Ψ   Ψ 

where Ψ =  𝜓 𝐴 𝜓 𝐵 .  

Sum of two free Dirac fermion Lagrangian densities, with equal masses.  
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Now, under a global SU(2)W gauge transformation, if 

Ψ 𝑥 → Ψ′ 𝑥 = 𝕌Ψ 𝑥  

then 

Ψ  𝑥 → Ψ ′ 𝑥 = Ψ  𝑥 𝕌†  

It follows that the Lagrangian density  

ℒ = 𝑖Ψ 𝛾𝜇𝜕𝜇Ψ−𝑚 Ψ   Ψ 

must be invariant under global SU(2)W gauge transformations. 

As before, we try to upgrade this to a local SU(2)W gauge invariance, by 

writing  

ℒ = 𝑖Ψ 𝛾𝜇𝔻𝜇Ψ−𝑚 Ψ   Ψ −
1

2
Tr 𝔽𝜇𝜈 𝔽

𝜇𝜈   

where 𝔻𝜇 = 𝟙𝜕𝜇 + 𝑖𝑔𝔸𝜇 (𝑥) as before. Invariance is now guaranteed. 
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Expand the covariant derivate and get the full Lagrangian density 

ℒ = 𝑖Ψ 𝜕𝜇Ψ−𝑚 Ψ   Ψ  − 1

2
Tr 𝔽𝜇𝜈 𝔽

𝜇𝜈  − 𝑔Ψ 𝛾𝜇𝔸𝜇Ψ 

          free fermion            ‘free’ gauge       interaction term 

Expand the interaction term... 

ℒint = −𝑔Ψ 𝛾𝜇𝔸𝜇Ψ 

= −𝑔Ψ 𝛾𝜇  𝑊𝜇
+𝕋+ +𝑊𝜇

−𝕋− +𝑊𝜇
0 𝕋3 Ψ 

= −𝑔Ψ 𝛾𝜇𝕋+Ψ 𝑊𝜇
+ − 𝑔Ψ 𝛾𝜇𝕋−Ψ 𝑊𝜇

− − 𝑔Ψ 𝛾𝜇𝕋3Ψ 𝑊𝜇
0 

 ≡ −𝑔𝑗+
𝜇

 𝑊𝜇
+ − 𝑔𝑗−

𝜇  𝑊𝜇
− − 𝑔𝑗0

𝜇
 𝑊𝜇

0 

𝑗±
𝜇

= Ψ 𝛾𝜇𝕋±Ψ   are ‘charged’ currents 

𝑗0
𝜇

= Ψ 𝛾𝜇𝕋3Ψ    is a ‘neutral’ current 
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Write the currents explicitly: 

 𝑗+
𝜇

= Ψ 𝛾𝜇𝕋+Ψ = Ψ 𝛾𝜇
1

 2
 𝕋1 + 𝑖𝕋2 Ψ 

  =
1

 2
 𝜓 𝐴 𝜓 𝐵 𝛾

𝜇  
0 1
0 0

  
𝜓A

𝜓B
 =

1

 2
𝜓 𝐴𝛾

𝜇𝜓B   

 

 𝑗−
𝜇 = Ψ 𝛾𝜇𝕋−Ψ = Ψ 𝛾𝜇

1

 2
 𝕋1 − 𝑖𝕋2 Ψ 

  =
1

 2
 𝜓 𝐴 𝜓 𝐵 𝛾

𝜇  
0 0
1 0

  
𝜓A

𝜓B
 =

1

 2
 𝜓 𝐵𝛾

𝜇𝜓A   

 

 𝑗0
𝜇

= Ψ 𝛾𝜇𝕋3Ψ   

=
1

2
 𝜓 𝐴 𝜓 𝐵 𝛾

𝜇  
1 0
0 −1

  
𝜓A

𝜓B
 =

1

2
 𝜓 𝐴𝛾

𝜇𝜓A − 𝜓 𝐵𝛾
𝜇𝜓B    
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ℒint = −𝑔𝑗+
𝜇

 𝑊𝜇
+ − 𝑔𝑗−

𝜇  𝑊𝜇
− − 𝑔𝑗0

𝜇
 𝑊𝜇

0 

    = − 
𝑔

 2
𝜓 𝐴𝛾

𝜇𝜓B  𝑊𝜇
+ −

𝑔

 2
𝜓 𝐵𝛾

𝜇𝜓A  𝑊𝜇
−   c.c. interactions 

 − 
𝑔

2
 𝜓 𝐴𝛾

𝜇𝜓A − 𝜓 𝐵𝛾
𝜇𝜓B  𝑊𝜇

0               n.c. interactions 

This leads to vertices 

 

 

 

 

 

 

𝑖𝑔

 2
𝛾𝜇  

𝐴 𝐵 

 𝑊+
 

𝐴 𝐴 

 𝑊0
 

𝐵 𝐵 

 𝑊0
 

𝑖𝑔

2
𝛾𝜇  −

𝑖𝑔

2
𝛾𝜇  
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Comparing with the IVB hypothesis for the  𝑊𝜇
±, we should be able to 

identify 

 
𝜓A

𝜓B
 =  

𝑝
𝑛
         or         

𝜓A

𝜓B
 =  

𝜈𝑒
𝑒
        or        

𝜓A

𝜓B
 =  

𝜈𝜇
𝜇   

Q.  Can we identify the  𝑊𝜇
0 with the photon (forgetting the mass)? 

If the  𝑊𝜇
± are charged, we will have, under U(1)em  

 𝑊𝜇
+ →  𝑊𝜇

′+ = 𝑒−𝑖𝑒𝜃  𝑊𝜇
+                      𝑊𝜇

− →  𝑊𝜇
′− = 𝑒+𝑖𝑒𝜃  𝑊𝜇

− 

Now, if the term  𝜓 𝐴𝛾
𝜇𝜓B  𝑊𝜇

+ is to remain invariant, we must assign 

charges 𝑞𝐴𝑒 and 𝑞𝐵𝑒 to the A and B, s.t. the term transforms as 

𝜓 𝐴𝛾
𝜇𝜓B  𝑊𝜇

+ → 𝑒−𝑖𝑒𝜃+𝑖𝑞𝐴𝑒𝜃−𝑖𝑞𝐵𝑒𝜃  𝜓 𝐴𝛾
𝜇𝜓B  𝑊𝜇

+  

To keep the Lagrangian neutral, we require 𝑞𝐴 − 𝑞𝐵 = −1 
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But if we look at the  𝑊𝜇
0 vertices, and consider them to be QED 

vertices, we must identify 

𝑔

2
= −𝑞𝐴𝑒              and          −

𝑔

2
= −𝑞𝐵𝑒    

i.e.  𝑞𝐴 = −𝑞𝐵 . 

Now solve the equations:  𝑞𝐴 − 𝑞𝐵 = −1  and  𝑞𝐴 = −𝑞𝐵  ... 

result is 

𝑞𝐴 = −𝑞𝐵 = −
1

2
 

Two alternatives:  

 A and B cannot be the Fermi-IVB particles (defeats whole effort...) 

 𝑊𝜇
0 cannot be the photon... (already hinted by the mass) 
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Electroweak unification 

Why not just include the U(1)em group as a direct product with the 

SU(2)W group?  

The transformation matrix on a fermion of charge 𝑞𝑒 will then look like 

𝕌 = 𝑒−𝑖𝑔𝜃
   .𝕋   −𝑖𝑞𝑒 𝜃 ′𝕋′  

where 𝕋′  is the generator of U(1)em and the direct product means that 

 𝕋′ , 𝕋𝑎  = 0    ∀𝑎 

The gauge field matrix should expand to 

𝑔𝔸𝜇 = 𝑔𝑊𝜇
+𝕋+ + 𝑔𝑊𝜇

−𝕋− + 𝑔𝑊𝜇
0 𝕋3 + 𝑞𝑒𝐴𝜇𝕋

′  

and give us interaction terms as before... 
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i.e., to the interaction terms with the W boson we must now add 

interaction terms with the photon: 

 ℒint = − 
𝑔

 2
𝜓 𝐴𝛾

𝜇𝜓B  𝑊𝜇
+ −

𝑔

 2
𝜓 𝐵𝛾

𝜇𝜓A  𝑊𝜇
−   

 − 
𝑔

2
𝜓 𝐴𝛾

𝜇𝜓A  𝑊𝜇
0 +

𝑔

2
𝜓 𝐵𝛾

𝜇𝜓B  𝑊𝜇
0                

− 𝑞𝐴𝑒 𝜓 𝐴𝛾
𝜇𝜓A𝐴𝜇 − 𝑞𝐵𝑒 𝜓 𝐵𝛾

𝜇𝜓B𝐴𝜇                 

Working back, we can write this as 

ℒint = − 𝜓 𝐴 𝜓 𝐵 𝛾
𝜇   

𝑔

2
 𝑊𝜇

0 + 𝑞𝐴𝑒𝐴𝜇
𝑔

 2
 𝑊𝜇

+

𝑔

 2
 𝑊𝜇

− −
𝑔

2
 𝑊𝜇

0 + 𝑞𝐵𝑒𝐴𝜇
  
𝜓A

𝜓B
   

= − Ψ    𝑔𝐴𝜇       . 𝕋   + 𝑒𝐴𝜇𝕋
′ Ψ    where   𝕋′ =  

𝑞𝐴 0
0 𝑞𝐵
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This generator of U(1)em can be rewritten 

𝕋′ =  
𝑞𝐴 0
0 𝑞𝐵

 =
𝑞𝐴 + 𝑞𝐵

2
𝟙 +  

𝑞𝐴 − 𝑞𝐵
2

𝕋3 

If we remember that 𝑞𝐴 − 𝑞𝐵 = −1, then 

𝕋′ =  2𝑞𝐴 + 1 𝟙 − 
1

2
𝕋3 

Paradox! 

 𝕋′ , 𝕋𝑎  ≠ 0    for    𝑎 = 1,2 
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This generator of U(1)em can be rewritten 

𝕋′ =  
𝑞𝐴 0
0 𝑞𝐵

 =
𝑞𝐴 + 𝑞𝐵

2
𝟙 +  

𝑞𝐴 − 𝑞𝐵
2

𝕋3 

If we remember that  𝑞𝐴 − 𝑞𝐵 = −1, then 

𝕋′ =  2𝑞𝐴 + 1 𝟙 − 
1

2
𝕋3 

Paradox! 

 𝕋′ , 𝕋𝑎  ≠ 0    for    𝑎 = 1,2 

Glashow (1961) :   

We cannot treat weak interactions and electromagnetism as separate 

(direct product) gauge theories  electroweak unification 
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SU(2)WxU(1)Y model 

Introduce a new U(1)y which is different from U(1)em and exists as a 

direct product with the SU(2)W... 

The gauge transformation matrix will become 

𝕌 = 𝑒−𝑖𝑔𝜃
   .𝕋   +𝑖𝑔′ 𝜃 ′𝕋′  

where 𝕋′ = 𝑦

2
𝟙 , which, by construction, will commute with all the 𝕋    

We now expand the gauge field matrix as 

𝑔𝔸𝜇 = 𝑔𝑊𝜇
+𝕋+ + 𝑔𝑊𝜇

−𝕋− + 𝑔𝑊𝜇
0 𝕋3 − 𝑔′𝐵𝜇𝕋

′  

𝐵𝜇  is a new gauge field and 𝑦 is a new quantum number which is 

clearly same for both the A and B component of the fermion doublet.   
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We now construct the gauge-fermion interaction term as before 

ℒint = −𝑔Ψ 𝛾𝜇𝔸𝜇Ψ 

  = −Ψ 𝛾𝜇  𝑔𝑊𝜇
+𝕋+ + 𝑔𝑊𝜇

−𝕋− + 𝑔𝑊𝜇
0 𝕋3 − 𝑔′𝐵𝜇𝕋

′ Ψ 

Expanding as before 

ℒint = − 𝜓 𝐴 𝜓 𝐵 𝛾
𝜇   

𝑔

2
 𝑊𝜇

0 −
𝑔′ 𝑦

2
𝐵𝜇

𝑔

 2
 𝑊𝜇

+

𝑔

 2
 𝑊𝜇

− −
𝑔

2
 𝑊𝜇

0 −
𝑔′ 𝑦

2
𝐵𝜇

  
𝜓A

𝜓B
    

 = − 
𝑔

 2
𝜓 𝐴𝛾

𝜇𝜓B  𝑊𝜇
+ −

𝑔

 2
𝜓 𝐵𝛾

𝜇𝜓A  𝑊𝜇
− 

−𝜓 𝐴𝛾
𝜇𝜓A  

𝑔

2
 𝑊𝜇

0 −
𝑔′ 𝑦

2
𝐵𝜇 + 𝜓 𝐵𝛾

𝜇𝜓B  
𝑔

2
 𝑊𝜇

0 +
𝑔′ 𝑦

2
𝐵𝜇     
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Glashow (1961):  for some reason, the  𝑊𝜇
0 and 𝐵𝜇  mix, i.e. the physical 

states are orthonormal combinations (demanded by gauge kinetic 

terms) of the  𝑊𝜇
0 and 𝐵𝜇 ... 

 
 𝑊𝜇

0

𝐵𝜇
 =  

𝑐 −𝑠

𝑠 𝑐
  
𝑍𝜇
𝐴𝜇
           𝑐 = cos𝜔, 𝑠 = sin𝜔 

In terms of this, the neutral current terms come out to be 

ℒnc = −𝜓 𝐴𝛾
𝜇𝜓A  

𝑔

2
 𝑊𝜇

0 −
𝑔′ 𝑦

2
𝐵𝜇 + 𝜓 𝐵𝛾

𝜇𝜓B  
𝑔

2
 𝑊𝜇

0 +
𝑔′ 𝑦

2
𝐵𝜇   

   = −
1

2
𝜓 𝐴𝛾

𝜇𝜓A  𝑔𝑐 − 𝑔′𝑦𝑠 𝑍𝜇 −  𝑔𝑠 + 𝑔′𝑦𝑐 𝐴𝜇    

−
1

2
𝜓 𝐵𝛾

𝜇𝜓B  𝑔𝑐 − 𝑔′𝑦𝑠 𝑍𝜇 +  𝑔𝑠 − 𝑔′𝑦𝑐 𝐴𝜇    
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If we now wish to identify 𝐴𝜇  with the photon, we require to set 

−
1

2
 𝑔𝑠 + 𝑔′𝑦𝑐 = 𝑞𝐴𝑒               

1

2
 𝑔𝑠 − 𝑔′𝑦𝑐 = 𝑞𝐵𝑒 

Solving for 𝑔 and 𝑔′ we get  

−𝑔𝑠 =  𝑞𝐴 − 𝑞𝐵 𝑒                         −𝑔′𝑦𝑐 =  𝑞𝐴 + 𝑞𝐵 𝑒 

Recall that 𝑞𝐴 − 𝑞𝐵 = −1. It follows that  

𝑒 = 𝑔𝑠                       𝑒 = −𝑔′𝑐
𝑦

𝑞𝐴 + 𝑞𝐵
 

Choose −𝑦 = 𝑞𝐴 + 𝑞𝐵 . Then 

𝑒 = 𝑔 sin𝜔                      𝑔′ = 𝑔 tan𝜔        

Note that 𝜔 is some arbitrary angle... it must be nonzero, else 𝑒 = 0 
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We can also obtain 

𝑞𝐴 =
1

2
+
𝑦

2
                     𝑞𝐵 = −

1

2
+
𝑦

2
  

Now, these  ±
1

2
 are precisely the eigenvalues of the  𝕋3 operator 

i.e. we can write a general relation 

𝑞 = 𝑡3 +
𝑦

2
 

Looks exactly like the Gell-Mann-Nishijima relation... 

Call  𝑡3 the weak isospin and  𝑦 the weak hypercharge 

This gauge theory works pretty well and can give the correct couplings 

of all the gauge bosons... up to the angle 𝜔, which is not determined by 

the fermion sector... 
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Determination of 𝜔 : 

Back to the gauge boson mass term... 

ℒmass = 𝑔2 𝔸𝜇  Φ  † 𝔸𝜇  Φ  =  𝑔𝔸𝜇  Φ  † 𝑔𝔸𝜇  Φ   

For the Glashow theory, we must include the U(1)y field in the gauge 

field matrix, i.e. 

𝑔𝔸𝜇 = 𝑔𝑊𝜇
+𝕋+ + 𝑔𝑊𝜇

−𝕋− + 𝑔𝑊𝜇
0 𝕋3 − 𝑔′𝐵𝜇𝕋

′  

   =

 

 
 

𝑔

2
 𝑊𝜇

0 −
𝑔′𝑌

2
𝐵𝜇

𝑔

 2
 𝑊𝜇

+

𝑔

 2
 𝑊𝜇

− −
𝑔

2
 𝑊𝜇

0 −
𝑔′𝑌

2
𝐵𝜇
 

 
 

 

where 𝑌 is the hypercharge of the Φ field. 
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Thus, 

𝑔𝔸𝜇  Φ =  

𝑔

2
 𝑊𝜇

0 −
𝑔′𝑌

2
𝐵𝜇

𝑔

 2
 𝑊𝜇

+

𝑔

 2
 𝑊𝜇

− −
𝑔

2
 𝑊𝜇

0 −
𝑔′ 𝑌

2
𝐵𝜇

  

0

𝑣

 2

    

 =  

𝑔𝑣

2
 𝑊𝜇

+

−
𝑔𝑣

2 2
 𝑔 𝑊𝜇

0 + 𝑔′𝑌𝐵𝜇  
  

and 

 𝑔𝔸𝜇  Φ  † =     
𝑔𝑣

2
𝑊𝜇− −

𝑔𝑣

2 2
 𝑔 𝑊𝜇0 + 𝑔′𝑌𝐵𝜇    

 

Multiplying these  
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ℒmass =   
𝑔𝑣

2
 

2
 𝑊𝜇

+𝑊𝜇− +  
𝑣

2 2
 

2
 𝑔 𝑊𝜇0 + 𝑔′𝑌𝐵𝜇   𝑔 𝑊𝜇

0 + 𝑔′𝑌𝐵𝜇    

Consider only the neutral bosons: 

 𝑔 𝑊𝜇0 + 𝑔′𝑌𝐵𝜇   𝑔 𝑊𝜇
0 + 𝑔′𝑌𝐵𝜇    

= 𝑔2 𝑊𝜇0 𝑊𝜇
0 + 𝑔𝑔′𝑌 𝑊𝜇0𝐵𝜇+ 𝑔𝑔′𝑌𝐵𝜇  𝑊𝜇

0 +  𝑔′𝑌 2𝐵𝜇𝐵𝜇   

One cannot have mass terms of the form 𝑊𝜇0𝐵𝜇  and 𝐵𝜇  𝑊𝜇
0 in a viable 

field theory, since our starting point is always a theory with free fields.   

Thus, it is essential to transform to orthogonal states 

 
 𝑊𝜇

0

𝐵𝜇
 =  

𝑐 −𝑠

𝑠 𝑐
  
𝑍𝜇
𝐴𝜇
           𝑐 = cos𝜔, 𝑠 = sin𝜔 

and choose 𝜔 to cancel out cross terms... 
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Rewrite the neutral boson mass terms as 

 𝑔 𝑊𝜇0 + 𝑔′𝑌𝐵𝜇   𝑔 𝑊𝜇
0 + 𝑔′𝑌𝐵𝜇    

= 𝑔2 𝑊𝜇0 𝑊𝜇
0 + 𝑔𝑔′𝑌 𝑊𝜇0𝐵𝜇+ 𝑔𝑔′𝑌𝐵𝜇  𝑊𝜇

0 +  𝑔′𝑌 2𝐵𝜇𝐵𝜇   

=   𝑊𝜇0 𝐵𝜇   
𝑔2 𝑔𝑔′𝑌

𝑔𝑔′𝑌  𝑔′𝑌 2  
 𝑊𝜇

0

𝐵𝜇
  

The diagonalising matrix will be  

 
cos𝜔 − sin𝜔
sin𝜔 cos𝜔

  

where  

tan𝜔 =
𝑔′𝑌

𝑔
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How to determine 𝑌 ? 

Write out the interaction terms for the gauge bosons with the scalar 

doublet. One finds that once again, to match the couplings to the 

charges of the W bosons, we get the Gell-Mann-Nishijima relation, i.e. 

𝑞 = 𝑡3 +
𝑌

2
  

Now, the lower component 𝜑𝐵  develops a vacuum expectation value, 

so it must be neutral, i.e. 

0 = −
1

2
+
𝑌

2
      𝑌 = 1  

It follows that  

tan𝜔 =
𝑔′

𝑔
= tan 𝜃𝑊  

Weinberg angle 
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Eigenvalues of the mass matrix: 

 
𝑔2 𝑔𝑔′

𝑔𝑔′ 𝑔′
2  

Determinant = 0 ; trace = 𝑔2 +  𝑔′
2

, i.e.  

𝑀𝐴 = 0 

and 

𝑀𝑍
2 = 2 

𝑣

2 2
 

2

 𝑔2 + 𝑔′
2
 =  

𝑔𝑣

2
 

2

 1 +
𝑔′

2

𝑔2
 = 𝑀𝑊

2  1 + tan2 𝜃𝑊  

= 𝑀𝑊
2 sec2 𝜃𝑊   

           𝑀𝑍 =
𝑀𝑊

cos 𝜃𝑊
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Determination of parameters: 

𝑒2

4𝜋
= 𝛼 ≈  

1

137
                             𝑀𝑍 =

𝑀𝑊
cos 𝜃𝑊

 

𝑒 = 𝑔 sin 𝜃𝑊                                    𝑔′ = 𝑔 tan 𝜃𝑊  

Experimental measurements show that  

𝑀𝑊 ≈ 80.4 GeV       and      𝑀𝑍 ≈ 91.2 GeV 

It follows that  cos 𝜃𝑊 = 𝑀𝑊/𝑀𝑍 ≈ 0.8816   𝜃𝑊 ≈ 28𝑜 . 17 

We can now calculate:   𝑒 =  4𝜋𝛼  ≈ 0.303  

                                           𝑔 = 𝑒/ sin 𝜃𝑊  ≈ 0.642 

                                           𝑔′ = 𝑔 tan𝜃𝑊  ≈ 0.344  


