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Lagrangian Field Theory 

Let  𝜓(𝑥) be a field defined on a Minkowski space with coordinates 𝑥  

i.e. for every value of  𝑥  there is a value of 𝜓(𝑥).                   

 

 

 

If we treat 𝜓(𝑥) at every point 𝑥 as a generalised coordinate, then 

clearly this is a system with infinite number of degrees of freedom.   

 

In Lagrangian dynamics, this will be described by a Lagrangian 𝐿              

𝐿 =  𝑑3𝑥   ℒ 𝜓 𝑥 , 𝜕𝜇𝜓(𝑥)  

where ℒ is the Lagrangian density and the integral is over all space. 

𝜓(𝑥) 

𝑥  𝑥′ 

𝜓(𝑥′) 
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The action integral will be given by 

𝑆 =  𝑑𝑡  𝐿 =  𝑑4𝑥  ℒ 𝜓 𝑥 , 𝜕𝜇𝜓(𝑥)  

The dynamics of this field will be driven by Hamilton’s Principle, viz.  

if   𝜓 𝑥 → 𝜓 𝑥 + 𝛿𝜓 𝑥      then     𝛿𝑆 = 0 

This will lead to Euler-Lagrange equations 

𝜕𝜇  
𝜕ℒ

𝜕 𝜕𝜇𝜓(𝑥) 
 −

𝜕ℒ

𝜕𝜓(𝑥)
= 0 

If there are many fields  𝜓1 𝑥 , 𝜓2 𝑥 , … , 𝜓𝑛 𝑥  the Lagrangian is 

𝐿 =  𝑑3𝑥   ℒ  𝜓1 𝑥 , … , 𝜓𝑛 𝑥 , 𝜕𝜇𝜓1(𝑥) … , 𝜕𝜇𝜓𝑛 𝑥   

and there are 𝑛 sets of Euler-Lagrange equations... 
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Nature of field Euler-Lagrange eqs. Lagrangian density 

real scalar 𝜑(𝑥)   ⎕ + 𝑀2 𝜑 = 0 ℒ =
1

2
𝜕𝜇𝜑𝜕𝜇𝜑 −

1

2
𝑀2𝜑2 

complex scalar 𝜑(𝑥) 
 ⎕ + 𝑀2 𝜑 = 0 

 ⎕ + 𝑀2 𝜑∗ = 0 
ℒ = 𝜕𝜇𝜑∗𝜕𝜇𝜑 − 𝑀2𝜑∗𝜑 

Dirac spinor 𝜓(𝑥) 
𝑖𝛾𝜇𝜕𝜇𝜓 − 𝑚𝜓 = 0 

𝑖𝜕𝜇𝜓 𝛾
𝜇 + 𝑚𝜓 = 0 

ℒ = 𝑖𝜓 𝛾𝜇𝜕𝜇𝜓 − 𝑚𝜓 𝜓 

e.m. field  𝐴𝜇 (𝑥) 𝜕𝜇𝐹
𝜇𝜈 = 𝑗𝜈  ℒ = −

1

4
𝐹𝜇𝜈 𝐹𝜇𝜈 + 𝑗𝜈𝐴𝜈  

 𝐹𝜇𝜈 ≡ 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇   

These are the standard relativistic fields 
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Nöther’s Theorem (again!) 

If, under a transformation 𝜓𝑖 𝑥 → 𝜓𝑖 𝑥 + 𝛿𝜓𝑖 𝑥 , we have 𝛿ℒ = 0, 

this will be called a symmetry of the system.  

For an infinitesimal change, it follows that  

𝛿ℒ =  
𝜕ℒ

𝜕 𝜕𝜇𝜓𝑖 
𝛿 𝜕𝜇𝜓𝑖 +

𝜕ℒ

𝜕𝜓𝑖
𝛿𝜓𝑖

𝑖

 

As before, substitute the Euler-Lagrange equations  

𝜕ℒ

𝜕𝜓𝑖
= 𝜕𝜇  

𝜕ℒ

𝜕 𝜕𝜇𝜓𝑖 
  

to get 

𝛿ℒ =  
𝜕ℒ

𝜕 𝜕𝜇𝜓𝑖 
𝜕𝜇  𝛿𝜓𝑖 + 𝜕𝜇  

𝜕ℒ

𝜕 𝜕𝜇𝜓𝑖 
 𝛿𝜓𝑖

𝑖

=  𝜕𝜇  
𝜕ℒ

𝜕 𝜕𝜇𝜓𝑖 
𝛿𝜓𝑖 

𝑖

 

i.e. 
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𝛿ℒ = 𝜕𝜇  
𝜕ℒ

𝜕 𝜕𝜇𝜓𝑖 
𝛿𝜓𝑖 = 𝜕𝜇 𝑗

𝜇

𝑖

 

where  𝑗𝜇 =  
𝜕ℒ

𝜕 𝜕𝜇 𝜓 𝑖 
𝛿𝜓𝑖𝑖  is called the Nöther current.  

Now, for a symmetry,  𝛿ℒ = 0  𝜕𝜇 𝑗
𝜇 = 0 

i.e. we get an equation of continuity for the Nöther current.  

Written out explicitly, the equation of continuity assumes the usual 

form, i.e.   

𝜕𝜇 𝑗
𝜇 = 0     𝜕𝑡𝑗

0 + ∇   . 𝑗 = 0 

Now, integrating over all space,  

𝜕𝑡  𝑑3𝑥    𝑗0 +  𝑑3𝑥   ∇   . 𝑗 = 0         𝜕𝑡  𝑑3𝑥    𝑗0 +  𝑗 . 𝑛  𝑑𝑠 = 0 

                   i.e.  𝜕𝑡  𝑑3𝑥    𝑗0 =  0  

We define 𝑄 =  𝑑3𝑥  𝑗0  as the Nöther charge 
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Gauge Invariance of a Complex Scalar Field 

The Lagrangian density  

ℒ = 𝜕𝜇𝜑∗(𝑥)𝜕𝜇𝜑(𝑥) − 𝑀2𝜑∗(𝑥)𝜑(𝑥) 

is manifestly invariant under a global gauge transformation 

𝜑 𝑥 → 𝜑′ 𝑥 = 𝑒−𝑖𝑔𝜃 𝜑(𝑥) 

where 𝜃 is an arbitrary (real) constant and 𝑔 is a (real) constant specific 

to the field... 

Also:  𝜑 𝑥 =
1

 2
 𝜑1 𝑥 + 𝑖𝜑2 𝑥    and  𝜑∗ 𝑥 =

1

 2
 𝜑1 𝑥 − 𝑖𝜑2 𝑥   

𝜑′1 𝑥 = 𝜑1 𝑥 cos 𝑔𝜃 − 𝜑2 𝑥 sin 𝑔𝜃   

𝜑2
′  𝑥 = 𝜑1 𝑥 sin 𝑔𝜃 +  𝜑2 𝑥 cos 𝑔𝜃 

complex 

rotation 
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This set of transformations forms an Abelian (commutative) group 

Proof: 

Group product  successive transformations  𝜑 𝑥 → 𝑒−𝑖𝑔𝜃2𝑒−𝑖𝑔𝜃1𝜑(𝑥) 

1. closure            :  𝑒−𝑖𝑔𝜃2𝑒−𝑖𝑔𝜃1 = 𝑒−𝑖𝑔 𝜃2+𝜃1  

2. associativity   :  𝑒−𝑖𝑔𝜃3 (𝑒−𝑖𝑔𝜃2𝑒−𝑖𝑔𝜃1 ) = (𝑒−𝑖𝑔𝜃3𝑒−𝑖𝑔𝜃2 )𝑒−𝑖𝑔𝜃1  

    = 𝑒−𝑖𝑔 𝜃3+𝜃2+𝜃1  

3. identity            :  𝜃 = 0  ;  𝑒0 = 1 

4. inverse             :   𝑒+𝑖𝑔𝜃 𝑒−𝑖𝑔𝜃 = 𝑒0 = 1 

5. commutativity:  𝑒−𝑖𝑔𝜃2𝑒−𝑖𝑔𝜃1 = 𝑒−𝑖𝑔𝜃1𝑒−𝑖𝑔𝜃2 = 𝑒−𝑖𝑔 𝜃1+𝜃2  
 

This set of phases  𝑒−𝑖𝑔𝜃  forms the group of unitary 11 matrices: U(1) 

These are global U(1) gauge transformations 
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Nöther current corresponding to the global U(1) gauge symmetry: 

𝑗𝜇 =
𝜕ℒ

𝜕 𝜕𝜇𝜑 
𝛿𝜑 +

𝜕ℒ

𝜕 𝜕𝜇𝜑
∗ 

𝛿𝜑∗ 

If   ℒ = 𝜕𝜇𝜑∗(𝑥)𝜕𝜇𝜑(𝑥) − 𝑀2𝜑∗(𝑥)𝜑(𝑥) , we get  

𝜕ℒ

𝜕 𝜕𝜇𝜑 
= 𝜕𝜇𝜑∗        and       

𝜕ℒ

𝜕 𝜕𝜇𝜑
∗ 

= 𝜕𝜇𝜑 

 

Now consider an infinitesimal gauge transformation, i.e. 𝜃 ≪ 1 

𝛿𝜑 𝑥   = 𝜑′ 𝑥  − 𝜑 𝑥   =  𝑒−𝑖𝑔𝜃 − 1 𝜑 𝑥   ≈ −𝑖𝑔𝜃𝜑 𝑥  

𝛿𝜑∗ 𝑥 = 𝜑′∗ 𝑥 − 𝜑∗ 𝑥 =  𝑒+𝑖𝑔𝜃 − 1 𝜑∗ 𝑥 ≈ +𝑖𝑔𝜃𝜑∗ 𝑥  

 

Plugging in these values.. 
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𝑗𝜇 = 𝜕𝜇𝜑∗ −𝑖𝑔𝜃𝜑 𝑥  + 𝜕𝜇𝜑 +𝑖𝑔𝜃𝜑∗ 𝑥   

= −𝑖𝑔𝜃 𝜕𝜇𝜑∗  𝜑 𝑥 − 𝜑∗ 𝑥  𝜕𝜇𝜑   

Drop the 𝜃 factor:   

𝐽𝜇 = −𝑖𝑔 𝜕𝜇𝜑∗  𝜑 𝑥 − 𝜑∗ 𝑥  𝜕𝜇𝜑  = −𝑖𝑔𝜑∗𝜕 𝜇𝜑  

scalar current 
 

Nöther charge: 

𝑄 =  𝑑3𝑥  𝑗0 = 𝑔 𝑑3𝑥   −𝑖  𝜕𝜇𝜑∗  𝜑 𝑥 − 𝜑∗ 𝑥  𝜕𝜇𝜑   

This is nothing but the probability for a Klein-Gordon particle,   

  i.e. gauge symmetry leads to conservation of probability... 

Normalisation:   𝑑3𝑥   −𝑖  𝜕𝜇𝜑∗  𝜑 𝑥 − 𝜑∗ 𝑥  𝜕𝜇𝜑  = 1 

i.e.      𝑄 = 𝑔       U(1) charge of 𝜑 𝑥  
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A global gauge transformation is not compatible with relativity  

 

 

 

does not account for finite time of signal propagation 
 

Replace it with a local U(1) gauge transformation: 

𝜑 𝑥 → 𝜑′ 𝑥 = 𝑒−𝑖𝑔𝜃 (𝑥)𝜑(𝑥) 

which also forms a U(1) group 

(Set of global U(1) gauge transfns  set of local U(1) gauge transfns) 
 

Demand:   The action S should be invariant under this transformation,  

      since it is physically meaningful  

𝑒−𝑖𝑔𝜃𝜓(𝑥) 

𝑥  𝑥′ 

𝑒−𝑖𝑔𝜃𝜓(𝑥′) 
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Under this local U(1) g.t. the fields change to  

𝜑 𝑥   → 𝜑′ 𝑥  = 𝑒−𝑖𝑔𝜃 (𝑥)𝜑(𝑥) 

𝜑∗ 𝑥 → 𝜑′∗ 𝑥 = 𝑒+𝑖𝑔𝜃 (𝑥)𝜑∗(𝑥) 

The Lagrangian changes to 

ℒ′ = 𝜕𝜇𝜑′ ∗ 𝑥 𝜕𝜇𝜑′(𝑥) − 𝑀2𝜑′ ∗(𝑥)𝜑′(𝑥) 

= 𝜕𝜇  𝑒+𝑖𝑔𝜃 (𝑥)𝜑∗(𝑥) 𝜕𝜇  𝑒
−𝑖𝑔𝜃 (𝑥)𝜑(𝑥) − 𝑀2𝜑∗(𝑥)𝜑(𝑥) 

=  ℒ + 𝑖𝑔𝜕𝜇𝜃  𝜑∗ − 𝜑 − 𝑔2 𝜑∗𝜑  𝜕𝜇𝜃 𝜕𝜇𝜃  
 

The theory is no longer gauge invariant!! 
 

This is not physically acceptable, because then we would be able to 

measure phases in quantum mechanics, which we cannot  paradox 

Something must be missing... 
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Take the Lagrangian density 

ℒ =  𝜕𝜇𝜑 𝑥  ∗  𝜕𝜇𝜑(𝑥) − 𝑀2𝜑∗(𝑥)𝜑(𝑥) 

and rewrite it as 

ℒ =  𝜕𝜇𝜑 𝑥 + 𝑖𝑔𝐴𝜇 (𝑥)𝜑 𝑥  ∗  𝜕𝜇𝜑(𝑥) + 𝑖𝑔𝐴𝜇 (𝑥)𝜑 𝑥  − 𝑀2𝜑∗(𝑥)𝜑(𝑥) 

where 𝐴𝜇 (𝑥) is a gauge field introduced to get gauge invariance.  
 

Under local U(1) g.t.: 

    𝜕𝜇𝜑 + 𝑖𝑔𝐴𝜇𝜑 →  𝜕𝜇𝜑′ + 𝑖𝑔𝐴′
𝜇𝜑′  

=  𝜕𝜇  𝑒
−𝑖𝑔𝜃 𝜑 + 𝑖𝑔𝐴′

𝜇  𝑒
−𝑖𝑔𝜃 𝜑  

= 𝑒−𝑖𝑔𝜃 𝜕𝜇𝜑 − 𝑖𝑔𝜕𝜇𝜃𝑒−𝑖𝑔𝜃 𝜑 + 𝑖𝑔𝐴′
𝜇𝑒

−𝑖𝑔𝜃 𝜑 

= 𝑒−𝑖𝑔𝜃  𝜕𝜇𝜑 − 𝑖𝑔𝜕𝜇𝜃𝜑 + 𝑖𝑔𝐴′
𝜇𝜑  

= 𝑒−𝑖𝑔𝜃  𝜕𝜇𝜑 − 𝑖𝑔 𝜕𝜇𝜃 − 𝐴′
𝜇  𝜑  

= 𝑒−𝑖𝑔𝜃  𝜕𝜇𝜑 + 𝑖𝑔𝐴𝜇𝜑     if we have   𝐴′
𝜇 = 𝐴𝜇 + 𝜕𝜇𝜃 
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Shorter notation:  write  𝜕𝜇𝜑 + 𝑖𝑔𝐴𝜇𝜑 =  𝜕𝜇 + 𝑖𝑔𝐴𝜇  𝜑 ≡ 𝐷𝜇𝜑 

The Lagrangian density becomes 

ℒ =  𝐷𝜇𝜑 𝑥  ∗  𝐷𝜇𝜑(𝑥) − 𝑀2𝜑∗(𝑥)𝜑(𝑥) 

Under a local U(1) g.t., we have seen that 

𝜑 𝑥 → 𝜑′ 𝑥  = 𝑒−𝑖𝑔𝜃 (𝑥)𝜑(𝑥) 

 𝐷𝜇𝜑 𝑥 →  𝐷′𝜇𝜑
′ 𝑥  = 𝑒−𝑖𝑔𝜃 (𝑥) 𝐷𝜇𝜑(𝑥) 

so that the Lagrangian density becomes trivially invariant. 

The construction 𝐷𝜇𝜑 transforms in the same way as the 𝜑(𝑥), so we 

call it a covariant derivative. 
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Write out the Lagrangian density in full... 

ℒ =  𝜕𝜇𝜑 + 𝑖𝑔𝐴𝜇𝜑 ∗  𝜕𝜇𝜑 + 𝑖𝑔𝐴𝜇𝜑 − 𝑀2𝜑∗𝜑 

    =  𝜕𝜇𝜑 ∗ 𝜕𝜇𝜑 − 𝑖𝑔 𝜑∗𝜕𝜇𝜑 − 𝜕𝜇𝜑
∗𝜑 𝐴𝜇 + 𝑔2𝜑∗𝜑𝐴𝜇𝐴𝜇 − 𝑀2𝜑∗𝜑 

    =  𝜕𝜇𝜑 ∗ 𝜕𝜇𝜑 − 𝑀2𝜑∗𝜑 + 𝑖𝑔 𝜑∗𝜕 𝜇𝜑 𝐴𝜇 + 𝑔2𝜑∗𝜑 𝐴𝜇𝐴𝜇  

                free scalar                      𝑔𝐽𝜇𝐴
𝜇            ‘seagull’ term  

Do we understand this 𝐴𝜇  field? 

Consider its Euler-Lagrange equation:  𝜕𝜇  
𝜕ℒ

𝜕 𝜕𝜇 𝐴𝜈  
 −

𝜕ℒ

𝜕𝐴𝜈
= 0 

𝑔𝐽𝜈 + 𝑔2𝜑∗𝜑 𝐴𝜈 = 0         𝐴𝜈 =
𝐽𝜈

𝑔𝜑∗𝜑
=

1

𝑔

𝜑∗𝜕 𝜇𝜑

𝜑∗𝜑
 

  nonlinear Lagrangian... nonlinear wave equations... no quantum theory 

Again, something must be missing.... 
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The 𝐴𝜈 fields must have some dynamics,  

i.e. there must be a term with  𝜕𝜇𝐴𝜈   
 

This term must be both Lorentz-invariant and gauge-invariant 
 

Under a local U(1) g.t., we know that  𝐴𝜈 → 𝐴𝜈 + 𝜕𝜈𝜃 

Then,        𝜕𝜇𝐴𝜈 → 𝜕𝜇𝐴𝜈 + 𝜕𝜇𝜕𝜈𝜃 

and        𝜕𝜈𝐴𝜇 → 𝜕𝜈𝐴𝜇 + 𝜕𝜈𝜕𝜇𝜃 

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇 → 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇 = 𝐹𝜇𝜈        field strength tensor 

Lorentz-invariant construction:  𝐹𝜇𝜈 𝐹𝜇𝜈  
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Full Lagrangian: 

ℒ =  𝜕𝜇𝜑 ∗ 𝜕𝜇𝜑 − 𝑀2𝜑∗𝜑 + 𝑖𝑔 𝜑∗𝜕 𝜇𝜑 𝐴𝜇 + 𝑔2𝜑∗𝜑 𝐴𝜇𝐴𝜇 −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈  

The Euler-Lagrange equation becomes: 

𝜕𝜇𝐹
𝜇𝜈 = 𝑔𝐽𝜈 − 𝑔2𝜑∗𝜑 𝐴𝜈  

For small 𝑔, this reduces to  

𝜕𝜇𝐹
𝜇𝜈 = 𝑔𝐽𝜈  

i.e. identical with Maxwell’s equations... 

It follows that the 𝐴𝜇  must be the electromagnetic field and 𝑔 = 𝑞𝑒.  

The quantum mechanics of a complex scalar field has no physical meaning 

unless we couple it to an electromagnetic field... 

electromagnetism   inability to measure phase of a wavefunction 
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Gauge Invariance of a Dirac Field 

The Lagrangian density  

ℒ = 𝑖 𝜓  𝛾𝜇𝜕𝜇𝜓 − 𝑚 𝜓 𝜓 

is manifestly invariant under a global U(1) gauge transformation 

𝜓 𝑥 → 𝜓′ 𝑥 = 𝑒−𝑖𝑒𝜃𝜓(𝑥) 

where 𝜃 is an arbitrary (real) constant and 𝑔 is a (real) constant specific 

to the field... 

Easy to show that the Nöther current corresponding to this symmetry 

is the Dirac current  𝐽𝜇 = 𝑒 𝜓     𝛾𝜇𝜓 and the Nöther charge is just 

𝑄 =  𝑑3𝑥   𝑗0 = 𝑒  𝑑3𝑥   𝜓  𝛾0𝜓 = 𝑔 𝑑3𝑥  𝜓†𝜓 = 𝑒 
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For local U(1) gauge invariance, replace  ℒ = 𝑖 𝜓  𝛾𝜇𝜕𝜇𝜓 − 𝑚 𝜓 𝜓  by  

ℒ = 𝑖 𝜓  𝛾𝜇𝐷𝜇𝜓 − 𝑚 𝜓 𝜓 −
1

4
𝐹𝜇𝜈 𝐹𝜇𝜈  

where, as before, 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑒𝐴𝜇  and 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . 

Expanding the covariant derivative, we get 

   ℒ = 𝑖 𝜓  𝛾𝜇𝜕𝜇𝜓 − 𝑒 𝜓  𝛾𝜇𝜓𝐴𝜇 − 𝑚 𝜓 𝜓 −
1

4
𝐹𝜇𝜈 𝐹𝜇𝜈  

= 𝑖 𝜓  𝛾𝜇𝜕𝜇𝜓 − 𝑚 𝜓 𝜓 − 1

4
𝐹𝜇𝜈 𝐹𝜇𝜈 − 𝑒 𝜓  𝛾𝜇𝜓𝐴𝜇  

 
                               free fermion            free e.m.       −𝑒𝐽𝜇𝐴𝜇  

We will also get Maxwells’ equations:  𝜕𝜇𝐹
𝜇𝜈 = 𝑒𝐽𝜈                          

 
 



19 
 

For local U(1) gauge invariance, replace  ℒ = 𝑖 𝜓  𝛾𝜇𝜕𝜇𝜓 − 𝑚 𝜓 𝜓  by  

ℒ = 𝑖 𝜓  𝛾𝜇𝐷𝜇𝜓 − 𝑚 𝜓 𝜓 −
1

4
𝐹𝜇𝜈 𝐹𝜇𝜈  

where, as before, 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑒𝐴𝜇  and 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . 

Expanding the covariant derivative, we get 

   ℒ = 𝑖 𝜓  𝛾𝜇𝜕𝜇𝜓 − 𝑒 𝜓  𝛾𝜇𝜓𝐴𝜇 − 𝑚 𝜓 𝜓 −
1

4
𝐹𝜇𝜈 𝐹𝜇𝜈  

= 𝑖 𝜓  𝛾𝜇𝜕𝜇𝜓 − 𝑚 𝜓 𝜓 − 1

4
𝐹𝜇𝜈 𝐹𝜇𝜈 − 𝑒 𝜓  𝛾𝜇𝜓𝐴𝜇  

 
                               free fermion            free e.m.       −𝑒𝐽𝜇𝐴𝜇  

We will also get Maxwells’ equations:  𝜕𝜇𝐹
𝜇𝜈 = 𝑒𝐽𝜈                          

 Quantum Electrodynamics (QED) 
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Once we have Maxwell’s equations, we can write 

𝜕𝜇𝐹
𝜇𝜈 = 𝑒𝐽𝜈  

or, 

𝜕𝜇  𝜕
𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇  = 𝑒𝐽𝜈  

or, 

𝜕𝜇𝜕
𝜇𝐴𝜈 − 𝜕𝜈 𝜕𝜇𝐴

𝜇 = 𝑒𝐽𝜈  

or, 

⎕𝐴𝜈 − 𝜕𝜈
 𝜕𝜇𝐴

𝜇
 = 𝑒𝐽𝜈 

Choose the Lorentz gauge 𝜕𝜇𝐴
𝜇 = 0 and we recover 

⎕𝐴𝜈 = 𝑒𝐽𝜈 

In static limit, this leads to Coulomb’s law and a long-range interaction 



21 
 

Can the photon have a mass? 

Then we would have a Klein-Gordon equation:  ⎕ + 𝑀𝛾
2 𝐴𝜈 = 𝑒𝐽𝜈 

coming from a Maxwell equation:  𝜕𝜇𝐹
𝜇𝜈 + 𝑀𝛾

2𝐴𝜈 = 𝑒𝐽𝜈  

If this is the Euler-Lagrange equation, the Lagrangian density must have 
an extra mass term 

ℒ𝑀 =
1

2
𝑀𝛾

2𝐴𝜈𝐴𝜈  

Under a gauge transformation, 𝐴𝜈 → 𝐴𝜈 + 𝜕𝜈𝜃, and it follows that 

ℒ𝑀 →
1

2
𝑀𝛾

2 𝐴𝜈 + 𝜕𝜈𝜃  𝐴𝜈 + 𝜕𝜈𝜃 ≠
1

2
𝑀𝛾

2𝐴𝜈𝐴𝜈  

For gauge invariance, we must set 𝑀𝛾 = 0, i.e. the photon must be 

massless 

gauge invariance   long range interactions 
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The electromagnetic interaction is not always long-range... 

Consider a superconductor: 

at  𝑇 < 𝑇𝑐 ,  it exhibits the following behaviour: 

1. perfect conductor, i.e. electric field is thrown out (K.-Onnes) 

2. perfect diamagnet, i.e, magnetic field is thrown out (Meissner) 

i.e. no component of the electromagnetic field can propagate inside a 
superconductor... 

However, at the edges, the fields fall off exponentially: 

                                 i.e.  𝐴𝜇 ~ 𝑒−𝑥/ℓ  

                                  ℓ   is the penetration depth 
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The electromagnetic interaction is not always long-range... 

Consider a superconductor: 

at  𝑇 < 𝑇𝑐 ,  it exhibits the following behaviour: 

1. perfect conductor, i.e. electric field is thrown out (K.-Onnes) 

2. perfect diamagnet, i.e, magnetic field is thrown out (Meissner) 

i.e. no component of the electromagnetic field can propagate inside a 
superconductor... 

However, at the edges, the fields fall off exponentially: 

                                 i.e.  𝐴𝜇 ~ 𝑒−𝑥/ℓ ~ 𝑒−𝑀𝑥  

                                  ℓ   is the penetration depth ; 𝑀 = ℓ−1 is the mass 

       the photon is massive inside a superconductor 
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Somehow, the local U(1) gauge symmetry breaks down inside the 
superconductor... 

Do we understand this phenomenon? 

Yes.  

 It was first explained by Landau and Ginzburg in 1937 for a non-
relativistic theory (which applies to superconductors). 

 It was extensively applied in condensed matter systems by Philip 
Anderson in the 1950’s 

 It was worked out for a relativistic theory by Englert & Brout (1964) 
and independently, by Peter Higgs (1964). 

The phenomenon is called spontaneous symmetry-breaking, but a 
better name (Coleman) is hidden symmetry... 
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Hidden symmetry 

This arises when the action of a system has a particular symmetry, but 
the ground state does not... 
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Hidden symmetry 

This arises when the action of a system has a particular symmetry, but 
the ground state does not... 

Example 1:  Salam’s banquet 

 

 

 

 

People are sitting to dinner at a round table. Each 
has a plate in front and a glass on either hand. 
Before the meal, there is perfect symmetry 
between left glasses and right glasses. 

The first person to pick up a glass makes a random 
choice, say the left glass...                                     
    ...now everyone must pick up the left glass... 

During the meal, there is no symmetry... 
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Has the symmetry really been destroyed? 

No: if we consider an ensemble of systems... 
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Has the symmetry really been destroyed? 

No: if we consider an ensemble of systems... the symmetry reappears! 
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Hidden symmetry 

This arises when the action of a system has a particular symmetry, but 
the ground state does not... 

Example 2:  Ferromagnet below Curie temperature 

 

 

 

 

 

 

 

Above the Curie temperature, all the domains are 
in random directions... obeys rotation invariance...  

𝐻 =  𝐽𝑖𝑗  𝑆 𝑖 .
 𝑖𝑗  

𝑆 𝑗  

Below the Curie temperature, all the domains are 
aligned parallel to a particular direction... 
magnetic field measurement will show a preferred 
direction, i.e. rotation invariance is lost  
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Has the symmetry really been destroyed? 

No: if we consider an ensemble of systems... the symmetry reappears! 

 

 

 

 

If we confine ourselves to the inside of a ferromagnet (Coleman’s 
demon), then rotation invariance will always be violated...  

This is always associated with a phase transition: 

i.e. at some high temperature, the symmetry exists 
  at low temperature the symmetry disappears 

  in between a flip occurs... critical temperature...  phase transition 
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How does the superconducting phase break the electromagnetic U(1) 
gauge invariance? 

We discuss the relativistic model, because we will apply the same idea 
to particle physics problems... 

Imagine the interior of the superconductor to have, in addition to the 
electromagnetic field, a charged scalar field 𝜑(𝑥). We have already 
seen that this leads to a Lagrangian density 

ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇𝜑 ∗  𝐷𝜇𝜑 − 𝑀2𝜑∗𝜑 

In addition to this, let the scalar field have a self-interaction term 

ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇𝜑 ∗  𝐷𝜇𝜑 − 𝑀2𝜑∗𝜑 − 𝜆 𝜑∗𝜑 2 

The last two terms can then be thought of as a gauge-invariant 
potential, i.e. we rewrite 
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ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇𝜑 ∗  𝐷𝜇𝜑 − 𝑉 𝜑  

where  

𝑉 𝜑 = 𝑀2𝜑∗𝜑 + 𝜆 𝜑∗𝜑 2 = 𝑀2 𝜑 2 + 𝜆 𝜑 4 

If we plot this potential as a function of   𝜑  , we will get 

 

 

 

 

 

 

with a minimum at  𝜑 = 0, i.e. at 𝜑 = 0. No symmetries are broken. 

 𝜑  

𝑉 𝜑  
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But now, let us consider another variant of this theory, viz. 

ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇𝜑 ∗  𝐷𝜇𝜑 + 𝑀2𝜑∗𝜑 − 𝜆 𝜑∗𝜑 2 

If we try to treat +𝑀2𝜑∗𝜑 as a mass term, the scalar particle will 
become a tachyon. Don’t try this. Just let +𝑀2𝜑∗𝜑 be an interaction 
term. Now, rewrite 

ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇𝜑 ∗  𝐷𝜇𝜑 − 𝑉 𝜑  

where  𝑉 𝜑 = −𝑀2𝜑∗𝜑 + 𝜆 𝜑∗𝜑 2 = −𝑀2 𝜑 2 + 𝜆 𝜑 4 

This clearly has extrema at 

𝜕𝑉

𝜕 𝜑 
= 0             𝜑 = 0  max  ,  

𝑀2

2𝜆
  (min) ≡  

𝑣

 2
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Thus, there are an infinite number of possible ground states 𝜑 = 𝑣𝑒𝑖𝛼  

 

Only one of these can be the true ground state... as in a ferromagnet 

Im 𝜑 

𝑉 𝜑  

Re 𝜑 
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Thus, there are an infinite number of possible ground states 𝜑 = 𝑣𝑒𝑖𝛼  

 

Only one of these can be the true ground state... as in a ferromagnet 

Im 𝜑 

𝑉 𝜑  

Re 𝜑 

Hidden 
symmetry 
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Let us orient the axes in the complex 𝜑 plane such that the ground 
state (wherever it is) falls along the real axis. 

(Just a convenient parametrisation – like choosing the z-axis along a 
constant magnetic field) 

The ground state is now 𝜑0 =
𝑣

 2
 . To construct a viable field theory we 

must expand around this ground state, i.e. 𝜑(𝑥) = 𝜑0 + 𝜑′(𝑥) . 

Rewrite the Lagrangian density in terms of this new field 𝜑′ 𝑥 ∶ 

ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇  𝜑0 + 𝜑′  ∗  𝐷𝜇  𝜑0 + 𝜑′  − 𝑉 𝜑0 + 𝜑′  

Calculate the terms one by one: 

 𝐷𝜇  𝜑0 + 𝜑′ = (𝜕𝜇 + 𝑖𝑒𝐴𝜇 ) 𝜑0 + 𝜑′ = 𝜕𝜇𝜑
′ + 𝑖𝑒𝐴𝜇𝜑

′ + 𝑖𝑒𝜑0𝐴𝜇  

 



37 
 

It follows that  

     𝐷𝜇  𝜑0 + 𝜑′  ∗  𝐷𝜇  𝜑0 + 𝜑′   

=  𝜕𝜇𝜑
′ + 𝑖𝑒𝐴𝜇𝜑′ + 𝑖𝑒𝜑0𝐴

𝜇  
∗
 𝜕𝜇𝜑

′ + 𝑖𝑒𝐴𝜇𝜑
′ + 𝑖𝑒𝜑0𝐴𝜇   

=  𝜕𝜇𝜑
′∗ − 𝑖𝑒𝐴𝜇𝜑′∗ − 𝑖𝑒𝜑0𝐴

𝜇   𝜕𝜇𝜑
′ + 𝑖𝑒𝐴𝜇𝜑

′ + 𝑖𝑒𝜑0𝐴𝜇   

= ⋯ + 𝑒2𝜑0
2 𝐴𝜇𝐴𝜇  

Recall    ℒ𝑀 =
1

2
𝑀𝛾

2𝐴𝜈𝐴𝜈  

Inside a superconductor with a potential as assumed here, the photon 
has become massive! 

𝑀𝛾 =  2𝑒𝜑0 =  2𝑒
𝑣

 2
= 𝑒𝑣 

Since 𝑣 =  𝑀2/𝜆 , 𝑀𝛾  is a manifestation of the scalar self-interactions... 
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Another miracle... 

𝑉 𝜑0 + 𝜑′ = −𝑀2 𝜑0 + 𝜑′ ∗ 𝜑0 + 𝜑′ + 𝜆  𝜑0 + 𝜑′ ∗ 𝜑0 + 𝜑′  2 

 = −𝑀2𝜑′∗𝜑′+. . +𝜆 2𝜑0
2𝜑′∗𝜑′ +  2𝜑0Re𝜑′ 2 + ⋯   

=   −𝑀2 + 2𝜆𝜑0
2   Re 𝜑′ 2 +  Im 𝜑′ 2 + 4𝜆𝜑0

2 Re 𝜑′ 2 + ⋯  

Now,  𝜑0
2 =  𝑀2/2𝜆  

It follows that 

𝑉 𝜑0 + 𝜑′ = +4𝜆𝜑0
2 Re 𝜑′ 2 + ⋯  

 = +
1

2
4𝑀2 Re 𝜑′ 2 + ⋯ 

i.e. 

Re 𝜑′  has a (real) mass 2𝑀 

Im 𝜑′  is massless   Goldstone boson 

U(1) symmetry is broken 

– both global and local  
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Goldstone theorem (1962):  

To every spontaneously broken continuous global symmetry, there 
corresponds a massless boson   

How to get rid of this massless boson (would induce new long-range 
interactions otherwise)? 

Englert & Brout (1964), Higgs (1964):   

Can be done if it is a local symmetry...      

Idea is very simple: parametrise 𝜑(𝑥) = 𝜂(𝑥) 𝑒𝑖𝜉 (𝑥)  (polar form) 

Consider the unbroken (i.e. gauge invariant) Lagrangian density 

ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇𝜑 ∗  𝐷𝜇𝜑 − 𝑉 𝜑  

where  𝑉 𝜑 = −𝑀2𝜑∗𝜑 + 𝜆 𝜑∗𝜑 2 = −𝑀2 𝜑 2 + 𝜆 𝜑 4 
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At this level, we are free to make any gauge choice we wish... 

Make a gauge transformation 

𝜑 𝑥 → 𝑒−𝑖𝑔𝜃 (𝑥)𝜑 𝑥 = 𝜂(𝑥) 𝑒𝑖 𝜉 𝑥 −𝑔𝜃 (𝑥)  

We might as well choose a special gauge, since the gauge symmetry is 
going to be broken anyway... 

Choose the gauge function 𝜃(𝑥) such that 

𝜉 𝑥 − 𝑔𝜃 𝑥 = 0 

This is called the unitary gauge.  

In this gauge, 𝜑 𝑥 = 𝜂(𝑥) and the Lagrangian becomes 

ℒ = −
1

4
 𝐹𝜇𝜈 𝐹𝜇𝜈 +  𝐷𝜇𝜂 ∗  𝐷𝜇𝜂 − 𝑉 𝜂  

where  𝑉 𝜂 = −𝑀2𝜂2 + 𝜆𝜂4 
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The ground state is still at 𝑣/ 2 so we must shift  

𝜂 =
𝑣

 2
+ 𝜂′ 

This will lead to  

1.   ℒ𝑀 =
1

2
𝑀𝛾

2𝐴𝜈𝐴𝜈    with   𝑀𝛾 = 𝑒𝑣 

2.   𝑉 𝜑0 + 𝜑′ = +1

2
4𝑀2𝜂2 + ⋯ i.e. 𝑀𝜂 = 2𝑀 

3.    and there is no Goldstone boson...  

if we had kept 𝜉 𝑥  it would have been the Goldstone boson... 
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The ground state is still at 𝑣/ 2 so we must shift  

𝜂 =
𝑣

 2
+ 𝜂′ 

This will lead to  

1.   ℒ𝑀 =
1

2
𝑀𝛾

2𝐴𝜈𝐴𝜈    with   𝑀𝛾 = 𝑒𝑣 

2.   𝑉 𝜑0 + 𝜑′ = +1

2
4𝑀2𝜂2 + ⋯ i.e. 𝑀𝜂 = 2𝑀 

3.    and there is no Goldstone boson...  

if we had kept 𝜉 𝑥  it would have been the Goldstone boson... 

Looks like magic!! 

How can a degree of freedom of the system vanish?  
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In the unitary gauge, the photon is massive,  

i.e. it has three polarisations.  

The extra degree of freedom (longitudinal polarisation) which appears 
here is at the cost of the disappearance of the Goldstone degree of 
freedom... 

Effectively:  

 the photon ‘swallows up’ the Goldstone boson and becomes massive. 
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In the unitary gauge, the photon is massive,  

i.e. it has three polarisations.  

The extra degree of freedom (longitudinal polarisation) which appears 
here is at the cost of the disappearance of the Goldstone degree of 
freedom... 

Effectively:  

 the photon ‘swallows up’ the Goldstone boson and becomes massive. 

  

Higgs mechanism 


