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Relativistic Quantum Mechanics



Recall how we arrived at the Schrodinger equation.

Assume a wave solution Y = woei(Et_ﬁ"?)/h

Implicit that E = Aw and p = hik

Leads to operator equivalences: EY = ih 0,y and py = —ih Vl/)

Now consider the energy-momentum relation

i 2 = E

2m

Make these operators on a wavefunction ...
hZ

1
— p2 = R, v — ]
Zmp p=Ep = va Y =ih 0y

Schrodinger equation for a free particle (not really a derivation)



Relativistic case:

Assume a wave function and operator equivalences as before (h = 1)
EY =idp and pY = —iViy
Relativistic energy-momentum relation:
52 + M? = E2
Make these operators on a wavefunction ¢...

@*+Mp =E%p = ((|+M)p=0

Klein-Gordon equation for a free particle (not really a derivation)

Solutions: ¢ = @ el (Et—p.X) — poeP*

= 07 — V? d’Alembertian operator, p = (E,p) and x = (t, X)




Problem of negative energy states:

E?=p%+M? = E=+{p2+M? or E = —/p? + M2

E a4

+M

> |pl
—M

Classically, a positive energy particle cannot cross the energy gap

A quantum particle can jump to negative energies = catastrophe



Problem of negative probability density:
(T+MHe =0 =@ —-V?+M)p =0
= (V2 =MH¢ = 0df¢
(V2 =Mo" = 07 ¢*
Multiply by @™ and ¢ and subtract

P'VPp — VP " = ¢*0f ¢ — pdf ¢
= V.(¢*Vo — ¢V¢") = 0,(¢* 0,0 — 90,9")
= V. (‘QD*V}D + ‘PVQD*) + 0. (¢ 0,0 — 93, 90") =0
= VT+ d.p = 0 equation of continuity

probability density: p = —%((p*@gp — @0, ")



Q. Is the probability density guaranteed to be positive definite?

i
p==590¢—¢d¢’)
Take ¢ = @g e!ELPY) then p = E@*op
which is positive for E > 0 and negativefor £ < 0

We cannot interpret negative probability physically, just as one cannot
interpret negative energy (for a free particle) physically...

= something must be wrong somewhere!



Q. Is the probability density guaranteed to be positive definite?
[
p==590¢—¢d¢’)
Take ¢ = @g e!ELPY) then p = E@*op

which is positive for E > 0 and negativefor £ < 0

We cannot interpret negative probability physically, just as one cannot
interpret negative energy (for a free particle) physically...

= something must be wrong somewhere!

e The Klein-Gordon equation is wrong; must look for a new equation
(Dirac 1928) = led to the Dirac equation

e We are interpreting the Klein-Gordon equation in the wrong way
(Pauli & Weisskopf 1933) = led to quantum field theory



Dirac approach:

Go back to the Schrodinger equation
2 hZ
. 2 — g . 2.0, % — i *
o Vey = ih 0.y o Vey ih 0.y

Multiply by Y™ and 1 and subtract

hZ
— o= (VA —YVEYT) = ih (p 0 + oY)
if
2m

V. (0 — V) = 3, (P )

—

= VT+ d.p = 0 equation of continuity
probability density: p =YY"y =0



Problem arose because we had E? —» —0? instead of E — i0,
Let us write a linear energy-momentum relation in the form
E=ap+ M

where @ and £ are constants such that E% = p* + M? is regained.
This requires the a and f to satisfy the following relations:

ait =as=as=pF°=1

ao +oa; = 0 Vij=1,3
a;f+pa; =0 Vi=13

Clearly they cannot be real/complex numbers...

Because they do not commute, it is natural to try some matrices



Dirac-Pauli representation: 4x4 matrices (smallest)
- (0 o (I 0
“_(5 o) ﬁ_(o —1)
l/J+)

Wave function must be a column vector of length 4, i.e. ¥ (x) = (1/)

Thus,
(a.p + BM)Y¥Y = EY¥
Putting back the operator equivalences
(—id.V + BM)¥ (x) = i0, ¥ (x)
This is known as the Dirac equation for a free particle.

Like the Schrodinger equation, this is a fundamental equation.
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Dirac Hamiltonan is H = —i@.V + BM = @ and B8 must be Hermitian.

Check the probability density:
@t x| —ia@. V¥ + MBY = i0,¥
ivet.a+ MPtg = —io, Wt ] x ¥
Multiply by ¥ and ¥ and subtract
—i(vta. v + vt aw) = i(wto, W + 9, wtw)
=V.(vtaw) +o,(¥tyY) =0
= VT+ d.p = 0 equation of continuity

probability density: p = ¥T¥ >0
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Dirac succeeded in solving the probability problem...

...but what about the negative energy states?
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Dirac succeeded in solving the probability problem...

...but what about the negative energy states?
Try to solve the Dirac equation: ¥ (x) = u(ﬁ)ei(‘“t_%'f)
Substitute in the Dirac equation: (—ic?ﬁ + ,BM)‘IJ = 10;¥
Leads to the equation: (—a. k + BM)u(p) = —wu(p)

If u = ()g?)’ this equation becomes

(0 TR @ +m (@) =0(?)

i.e. —Gky+Mp=wp = —d6.kxy=(w—Mg

—6.kp—My=wy = —d.kp =(w+ M)y
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For consistency:

E.EXZ—(w—M)QD 5.E<p=—(w+M))(
Multiply from the left by &. k :
G.kao.ky= —(w—M)&.I?cp E.Eﬁ.lzrp = —(w+ M)G.ky
K x=(@-M@+My ko=
e. k%= (w—M)(w+M)=w?— M

or, w?= k% + M2

ie. w= i\/EZ + M2 recall h =1

ie. E=+p?+ M2 — problem of negative energies persists
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Again Dirac found an unconventional solution to the problem...
...by the discovery that the Dirac equation describes spin-% particles
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Again Dirac found an unconventional solution to the problem...
...by the discovery that the Dirac equation describes spin-% particles

Dirac Hamiltonan: H = ia.p + M
If we consider the angular momentum operator L then
|H, Z] =axp
How can a free particle violate angular momentum conservation?

Only if L is not the total angular momentum, but there is some other
component...

Take the total angular momentum f = L + S such that [H,ﬂ =0
Then

N

[H,S] =-axp



We need to construct an operator S such that: [H,ﬂ =—axp

Easily done: take S = %f = %(g 9) (eigenvalues +% = spin)
o

Obviously, the actual conserved quantity is S. p , for
[H,S.p] = —(@xp).p=0

Traditionally, we define the helicity as 1 = %’f =7, p
This has eigenvalues +1. Projection of spin along the motion.

The four solutions of the Dirac equation can then be classified as

E=+p2+M%; n=+1 ; E=+/p2+M?%; n=-1

E=—Jp2+M%; n=+41 ; E=—\p?+M?%; n=-1
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Back to the problem of negative energies:
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Dirac sea hypothesis:

Dirac suggested that the negative energy states are already occupied

by Dirac particles, which are invisible when in a negative energy state.

Spin-% particles are fermions, so transitions from positive to negative

energy states are not permitted by Fermi-Dirac statistics.
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But negative energy particles can be knocked out of their negative
energy states into positive energy states, leaving a ‘hole’ behind....
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This ‘hole’ will appear as an antiparticle i.e. same mass and spin, but
opposite charge (to keep the Universe neutral)

Thus, Dirac predicted (1928) the existence of the positron....



The positron was discovered by Anderson in cosmic ray showers...

Same e /m but opposite sign — exactly as predicted by Dirac...

19



20

Is the Dirac equation covariant under Lorentz transformations?
(—a.p + BM)u(p) = —Eu(p)
= (El—a.p+ BM)u(p) =0
multiply from the left by 8
(EB — Ba.p + MDu(p) = 0

Define B =y = ((I) —OI) and y = fa = (_05 g)

Then, writing four vectors y* = (¥°,y) and p* = (E, p)
(Y*p, + MD)u(p) =0
If we go back to ordinary spacetime, we get the ‘covariant’ form

(iy*9, — M1)¥ (x) = 0



Under a Lorentz transformation, x# - x # = A" x”

and ¥(x) » ¥'(x) = M(AN)¥(x),
where M(A) satisfies: M(A)"1y*M(A) = A" yY

(spinor transformation)
The y* obey the Dirac algebra, viz.
viy' vyt =291 vy

1293 which satisfies

We can also define y: = iy'y
YHys = —ysy* Vv
Define &= 7/ﬂau (Feynman slash notation)

(i0—-M)¥ =0
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Bilinear covariants:

We can construct the Dirac adjoint ¥ (x) = pi (x))/o

which transforms as ¥(x) —» ¥'(x) = ¥ (x) M(A)~?

It follows that we can construct the bilinear covariants

Scalar S =¥Yx)¥Px)’ S-S =5
Pseudoscalar P =¥ (x) ys¥(x) P— P =Pdet/
Vector Ve =P (x) y*¥(x) VE >V = A" VY

Pseudovector A* =W (x) y*ys¥(x) AF - A'H = detA A" A
Tensor TW =W¥(x) o™ ¥(x) T — T'W = A“a/lvﬁ T8

where gV = S[y*,y"¥]

22
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The explicit solutions of the Dirac equation are written:

El n +1 (rest frame) -1 (rest frame)
%
D) === (F M\ | @) =— X
vE + M 0 JVE+M|E+M
+ve D, =
P+ —Pz
1 p 1 p_
(1) — z (2) _
(% = v —
-ve ®) V-E+ M| P+ ») V—E+ M| “Pz
—E+M 0
0 —E+M

P+ =DPx T ipy




Orthogonality relations:

u@ @) ub)(p) =2M6%  u@ (@) v (p) =0

v @ () u®(p) =0 v@(p) v (p) = —2M5%

Completeness relations:

2_ u@(p) u@@p) = p+M

y2_ v@(p) v@(p) = — P+ M

24



Dirac matrix identities:

vy, = 41
yiy®y, = =2y
yhyeyPy, = 4g9% 1
yryeyPyry, = =2yYyFy”
Trace identities:

a

Tr[y#] =0
Tr[y#yY ...] = 0 for any odd number of gamma matrices
Trly#y¥] = 4g*
Tr{y#y¥ys| = 0
Trly*y'yey*?| = 4(g" g% — g"* g"F + g g"*)
Trly*y vy yPys] = —4iehe’




Parity P

basically a Lorentz transformation

0 0 _ ,0

Under parity, x° — x x" and x > x = —x

+1
—1
A—-P=
~ -1
Under parity ¥ (x) -» ¥'(x) = M(P)¥(x)
where M(P)"1y*M(P) = P y"¥
It can then be shown that M(P) =y, i.e.

P(x®, %) > ¥'(x°,—x) = y'¥ (x°, %)
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We can now assign a better meaning to y= = iy'yly?y?

Define two matrix operators
P, =21+y.) and P_=11-vy,)
and two sub-wavefunctions
Y. =PV and Y_=P VY

Now, note the following

PY, =y, PY_ =
PY =0 P, =0
L}’ —_ IIU_|_ +L}’_

Clearly the P, and P_ project out two orthogonal components of ¥

27



Now, under parity, ¥ —» ¥’ = y'@
Now, (¥), = P, =P, y'w =y'p @ = 0w — (@ Y
and (W)_=P¥ =Py =y0p @y =10p — (g

These states are interchanged by parity....

28
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Now, under parity, ¥ —» ¥’ = y'@

Now, (Pg = PR¥ = Pry°¥ =y'P W =%, = (¥))
and (¥, = P¥ =P y'% =y'P¥ =y = (W)’
These states are interchanged by parity....

Pp = 1(]1+y5) and P, = %(]1—)/5)

2

P

=

Must correspond to left- and right-handed projections: chirality



Time Reversal T

again, basically a Lorentz transformation

Undertimereversal, x9 5 x %= —x%and x > x =%

...construct T" ... under time reversal ¥ (x) - ¥'(x) = M(T)¥(x)
where M(T)"Yy*M(T) =T",y"

It can then be shown that M(T) = iyly3.

But in quantum mechanics Hy = id,, so, even if THT ™! = H, the

right side changes sign... i.e. we also require to change from Y to y™...

Thus, for the Dirac equation, we have

P (x%, %) » ¥'(—x% %) = iyly? P (x0,%)

30



Charge Conjugation C

Not a spacetime symmetry, but an internal symmetry
Define the operator C = iy*y° and the wavefunction

Y(x) » ¥¢(x) = C¥(x)!
where ! stands for transpose.

If we take the Dirac equation through these changes, it remains the
same, i.e.

if (iy*d, + ML)¥(x) =0
then (iy“ﬁu + M]l)‘lfc(x) =0

Dirac equation has charge conjugation invariance.

31



However, if we have a charged Dirac particle, we replace
pt — ph — e AH
where A* = ((p,/f) is the electromagnetic four potential.
The charge-coupled Dirac equation has the form
(iy“é‘u —ey*A, — M]l)‘lf(x) =0
Under charge conjugation, it changes to
(iy"9, + eyt A, — M1)¥°(x) = 0

Thus, the ¢ (x) wavefunction describes the antiparticle.

Obviously the neutral Dirac equation is invariant under C, P, CP, T, CPT

= discrete symmetries of the Dirac equation




