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Recall how we arrived at the Schrödinger equation. 

Assume a wave solution  𝜓 = 𝜓0𝑒
𝑖 𝐸𝑡−𝑝 .𝑥  /ℏ   

Implicit that  𝐸 = ℏ𝜔  and  𝑝 = ℏ𝑘   

Leads to operator equivalences:   𝐸𝜓 = 𝑖ℏ 𝜕𝑡𝜓   and  𝑝 𝜓 = −𝑖ℏ ∇   𝜓 

Now consider the energy-momentum relation 

1

2𝑚
𝑝 2 = 𝐸 

Make these operators on a wavefunction 𝜓... 

1

2𝑚
𝑝 2𝜓 = 𝐸𝜓        −

ℏ2

2𝑚
∇2𝜓 = 𝑖ℏ 𝜕𝑡𝜓 

Schrödinger equation for a free particle (not really a derivation) 
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Relativistic case:  

Assume a wave function and operator equivalences as before (ℏ = 1) 

𝐸𝜓 = 𝑖𝜕𝑡𝜓      and     𝑝 𝜓 = −𝑖∇   𝜓 

Relativistic energy-momentum relation: 

𝑝 2 +𝑀2 = 𝐸2 

Make these operators on a wavefunction 𝜑... 

 𝑝 2 +𝑀2 𝜑 = 𝐸2𝜑         ⎕+𝑀2 𝜑 = 0 

Klein-Gordon equation for a free particle (not really a derivation) 

Solutions:  𝜑 = 𝜑0 𝑒𝑖 𝐸𝑡−𝑝 .𝑥  = 𝜑0𝑒
𝑖𝑝 .𝑥   

⎕ =  𝜕𝑡
2 − ∇2 d’Alembertian operator,  𝑝 =  𝐸,𝑝   and 𝑥 =  𝑡, 𝑥   
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Problem of negative energy states: 

𝐸2 = 𝑝 2 +𝑀2     𝐸 = + 𝑝 2 +𝑀2  or  𝐸 = − 𝑝 2 +𝑀2 

 

 

 

 

 

 

Classically, a positive energy particle cannot cross the energy gap 

A quantum particle can jump to negative energies  catastrophe 

 𝑝   

𝐸  

+𝑀 

−𝑀 
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Problem of negative probability density: 

 ⎕+𝑀2 𝜑 = 0      𝜕𝑡
2 − ∇2 +𝑀2 𝜑 = 0   

     ∇2 −𝑀2 𝜑 = 𝜕𝑡
2𝜑 

          ∇2 −𝑀2 𝜑∗ = 𝜕𝑡
2𝜑∗ 

Multiply by 𝜑∗ and 𝜑 and subtract 

          𝜑∗∇2𝜑 − 𝜑∇2𝜑∗ = 𝜑∗𝜕𝑡
2𝜑 − 𝜑𝜕𝑡

2𝜑∗ 

  ∇   .  𝜑∗∇   𝜑 − 𝜑∇   𝜑∗ = 𝜕𝑡 𝜑
∗𝜕𝑡𝜑 − 𝜑𝜕𝑡𝜑

∗  

  ∇   .  −𝜑∗∇   𝜑 + 𝜑∇   𝜑∗ + 𝜕𝑡 𝜑
∗𝜕𝑡𝜑 − 𝜑𝜕𝑡𝜑

∗ = 0 

  ∇   . J + 𝜕𝑡𝜌 = 0   equation of continuity 

   probability density:   𝜌 = −
𝑖

2
 𝜑∗𝜕𝑡𝜑 − 𝜑𝜕𝑡𝜑

∗  
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Q.  Is the probability density guaranteed to be positive definite? 

𝜌 = −
𝑖

2
 𝜑∗𝜕𝑡𝜑 − 𝜑𝜕𝑡𝜑

∗  

Take 𝜑 = 𝜑0 𝑒𝑖 𝐸𝑡−𝑝 .𝑥   , then  𝜌 = 𝐸𝜑∗𝜑 

which is positive for 𝐸 > 0  and negative for 𝐸 < 0   

We cannot interpret negative probability physically, just as one cannot 

interpret negative energy (for a free particle) physically... 

  something must be wrong somewhere! 
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Q.  Is the probability density guaranteed to be positive definite? 

𝜌 = −
𝑖

2
 𝜑∗𝜕𝑡𝜑 − 𝜑𝜕𝑡𝜑

∗  

Take 𝜑 = 𝜑0 𝑒𝑖 𝐸𝑡−𝑝 .𝑥   , then  𝜌 = 𝐸𝜑∗𝜑 

which is positive for 𝐸 > 0  and negative for 𝐸 < 0   

We cannot interpret negative probability physically, just as one cannot 

interpret negative energy (for a free particle) physically... 

  something must be wrong somewhere! 

 The Klein-Gordon equation is wrong; must look for a new equation 

(Dirac 1928)   led to the Dirac equation 

 We are interpreting the Klein-Gordon equation in the wrong way 

(Pauli & Weisskopf 1933)  led to quantum field theory 
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Dirac approach:  

Go back to the Schrödinger equation 

−
ℏ2

2𝑚
∇2𝜓 = 𝑖ℏ 𝜕𝑡𝜓                −

ℏ2

2𝑚
∇2𝜓∗ = −𝑖ℏ 𝜕𝑡𝜓

∗ 

Multiply by 𝜓∗ and 𝜓 and subtract 

−
ℏ2

2𝑚
 𝜓∗∇2𝜓 − 𝜓∇2𝜓∗ = 𝑖ℏ  𝜓∗𝜕𝑡𝜓 + 𝜓𝜕𝑡𝜓

∗  

 
𝑖ℏ

2𝑚
 ∇   .  𝜓∗∇   𝜓 − 𝜓∇   𝜓∗ = 𝜕𝑡 𝜓

∗𝜓  

  ∇   . J + 𝜕𝑡𝜌 = 0   equation of continuity 

probability density:   𝜌 = 𝜓∗𝜓 ≥ 0 
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Problem arose because we had 𝐸2 → −𝜕𝑡
2  instead of 𝐸 → 𝑖𝜕𝑡  

Let us write a linear energy-momentum relation in the form 

𝐸 = 𝛼 .𝑝 + 𝛽𝑀 

where 𝛼  and 𝛽 are constants such that  𝐸2 = 𝑝 2 +𝑀2 is regained. 

This requires the 𝛼  and 𝛽 to satisfy the following relations: 

𝛼1
2 = 𝛼2

2 = 𝛼3
2 = 𝛽2 = 𝟙 

𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖 = 0     ∀ 𝑖, 𝑗 = 1,3 

𝛼𝑖𝛽 + 𝛽𝛼𝑖 = 0      ∀ 𝑖 = 1,3 

Clearly they cannot be real/complex numbers... 

Because they do not commute, it is natural to try some matrices 
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Dirac-Pauli representation:  4x4 matrices (smallest) 

𝛼 =  0 𝜎 
𝜎 0

            𝛽 =  
𝐼 0
0 −𝐼

  

Wave function must be a column vector of length 4 , i.e. 𝛹(𝑥) =  
𝜓+

𝜓−
   

Thus, 

 𝛼 . 𝑝 + 𝛽𝑀 𝛹 = 𝐸𝛹 

Putting back the operator equivalences 

 −𝑖𝛼 .∇   + 𝛽𝑀 𝛹(𝑥) = 𝑖𝜕𝑡𝛹(𝑥) 

This is known as the Dirac equation for a free particle. 

Like the Schrödinger equation, this is a fundamental equation. 
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Dirac Hamiltonan is 𝐻 = −𝑖𝛼 .∇   + 𝛽𝑀    𝛼  and 𝛽 must be Hermitian. 

Check the probability density: 

𝛹† ×           − 𝑖𝛼 .∇   𝛹 +𝑀𝛽𝛹 = 𝑖𝜕𝑡𝛹  

𝑖 ∇   𝛹† .𝛼 +𝑀𝛹†𝛽 = −𝑖𝜕𝑡𝛹
†                ×𝛹  

Multiply by 𝛹†  and 𝛹 and subtract 

−𝑖 𝛹†𝛼 .∇   𝛹 + ∇   𝛹† .𝛼 𝛹 = 𝑖 𝛹†𝜕𝑡𝛹 + 𝜕𝑡𝛹
†𝛹  

 ∇   .  𝛹†𝛼  𝛹 + 𝜕𝑡 𝛹
†𝛹 = 0 

  ∇   . J + 𝜕𝑡𝜌 = 0   equation of continuity 

probability density:   𝜌 = 𝛹†𝛹 ≥ 0 
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Dirac succeeded in solving the probability problem...  

...but what about the negative energy states? 
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Dirac succeeded in solving the probability problem...  

...but what about the negative energy states? 

Try to solve the Dirac equation:     𝛹 𝑥 = 𝑢 𝑝  𝑒𝑖(𝜔𝑡−𝑘  .𝑥 ) 

Substitute in the Dirac equation:    −𝑖𝛼 .∇   + 𝛽𝑀 𝛹 = 𝑖𝜕𝑡𝛹 

Leads to the equation:                   −𝛼 .𝑘  + 𝛽𝑀 𝑢 𝑝  = −𝜔𝑢 𝑝   

If  𝑢 =  
𝜑
𝜒 , this equation becomes 

− 0 𝜎 .𝑘  

𝜎 .𝑘  0
  
𝜑
𝜒 +𝑀 

𝐼 0
0 −𝐼

  
𝜑
𝜒 = 𝜔  

𝜑
𝜒  

i.e.   −𝜎 . 𝑘  𝜒 +𝑀𝜑 = 𝜔𝜑    − 𝜎 . 𝑘  𝜒 =  𝜔 −𝑀 𝜑 

   −𝜎 . 𝑘  𝜑 −𝑀𝜒 = 𝜔𝜒    − 𝜎 . 𝑘  𝜑 =  𝜔 +𝑀 𝜒 
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For consistency: 

𝜎 . 𝑘   𝜒 = − 𝜔 −𝑀 𝜑               𝜎 .𝑘  𝜑 = − 𝜔 +𝑀 𝜒 

Multiply from the left by 𝜎 .𝑘   : 

𝜎 . 𝑘   𝜎 .𝑘  𝜒 = − 𝜔 −𝑀 𝜎 . 𝑘  𝜑              𝜎 .𝑘   𝜎 .𝑘  𝜑 = − 𝜔 +𝑀 𝜎 .𝑘  𝜒 

𝑘  2𝜒 =  𝜔 −𝑀  𝜔 +𝑀 𝜒              𝑘  2𝜑 =  𝜔 +𝑀  𝜔 −𝑀 𝜑 

i.e.   𝑘  2 =  𝜔 −𝑀  𝜔 +𝑀 = 𝜔2 −𝑀2 

or,   𝜔2 =  𝑘  2 +𝑀2 

i.e.   𝜔 = ± 𝑘  2 +𝑀2         recall  ℏ = 1 

i.e.   𝐸 = ± 𝑝 2 +𝑀2           problem of negative energies persists 

𝜎 .𝑎  𝜎 . 𝑏  = 𝑎 . 𝑏  + 𝑖𝑎 × 𝑏  .𝜎  
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Again Dirac found an unconventional solution to the problem...  

...by the discovery that the Dirac equation describes spin-½ particles 
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Again Dirac found an unconventional solution to the problem...  

...by the discovery that the Dirac equation describes spin-½ particles 

Dirac Hamiltonan: 𝐻 = 𝑖𝛼 .𝑝 + 𝛽𝑀   

If we consider the angular momentum operator  𝐿    then 

 𝐻, 𝐿   = 𝛼 × 𝑝  

How can a free particle violate angular momentum conservation?  

Only if 𝐿   is not the total angular momentum, but there is some other 
component... 

Take the total angular momentum  𝐽 = 𝐿  + 𝑆  such that   𝐻, 𝐽  = 0 

Then   

 𝐻, 𝑆  = −𝛼 × 𝑝  
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We need to construct an operator 𝑆  such that:   𝐻, 𝑆  = −𝛼 × 𝑝  

Easily done:  take  𝑆 = 1

2
𝛴 =

1

2
 𝜎 0

0 𝜎 
      (eigenvalues ±½  spin) 

Obviously, the actual conserved quantity is  𝑆 .𝑝  , for  

 𝐻, 𝑆 .𝑝  = − 𝛼 × 𝑝  .𝑝 = 0 

 Traditionally, we define the helicity as  𝜂 =
2𝑆 .𝑝 

 𝑝  
= 𝛴 .𝑝  

This has eigenvalues ±1. Projection of spin along the motion. 

The four solutions of the Dirac equation can then be classified as 

𝐸 = + 𝑝 2 +𝑀2 ;   𝜂 = +1     ;      𝐸 = + 𝑝 2 +𝑀2 ;   𝜂 = −1 

𝐸 = − 𝑝 2 +𝑀2 ;   𝜂 = +1     ;      𝐸 = − 𝑝 2 +𝑀2 ;   𝜂 = −1 
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Back to the problem of negative energies: 

 

 

 

 

 

Dirac sea hypothesis: 

Dirac suggested that the negative energy states are already occupied 

by Dirac particles, which are invisible when in a negative energy state. 

Spin-½ particles are fermions, so transitions from positive to negative 

energy states are not permitted by Fermi-Dirac statistics. 

 𝑝   

𝐸  

+𝑀 

−𝑀 
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But negative energy particles can be knocked out of their negative 

energy states into positive energy states, leaving a ‘hole’ behind.... 

 

 

 

 

 

 

This ‘hole’ will appear as an antiparticle  i.e. same mass and spin, but 

opposite charge (to keep the Universe neutral) 

Thus, Dirac predicted (1928) the existence of the positron.... 

 𝑝   

𝐸  

+𝑀 

−𝑀 
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The positron was discovered by Anderson in cosmic ray showers... 

 

 

 

 

 

 

 

 

Same 𝑒/𝑚 but opposite sign – exactly as predicted by Dirac...  

𝐵      
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Is the Dirac equation covariant under Lorentz transformations? 

              −𝛼 .𝑝 + 𝛽𝑀 𝑢 𝑝  = −𝐸𝑢 𝑝   

   𝐸𝟙 − 𝛼 .𝑝 + 𝛽𝑀 𝑢 𝑝  = 0 

multiply from the left by 𝛽 

 𝐸𝛽 − 𝛽𝛼 .𝑝 +𝑀𝟙 𝑢 𝑝  = 0 

Define  𝛽 = 𝛾0 =  
𝐼 0
0 −𝐼

    and   𝛾 = 𝛽𝛼 =  0 𝜎 
−𝜎 0

  

Then, writing four vectors 𝛾𝜇 =  𝛾0, 𝛾   and 𝑝𝜇 =  𝐸,𝑝    

 𝛾𝜇𝑝𝜇 +𝑀𝟙 𝑢 𝑝  = 0 

If we go back to ordinary spacetime, we get the ‘covariant’ form 

 𝑖𝛾𝜇𝜕𝜇 −𝑀𝟙 𝛹(𝑥) = 0 
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Under a Lorentz transformation,  𝑥𝜇 → 𝑥′𝜇 = 𝛬𝜇𝜈
𝜇
𝑥𝜈  

and  𝛹 𝑥 → 𝛹′ 𝑥 = 𝑀 𝛬 𝛹(𝑥),  

where  𝑀 𝛬  satisfies:    𝑀 𝛬 −1𝛾𝜇𝑀 𝛬 = 𝛬𝜇𝜈
𝜇
𝛾𝜈  

(spinor transformation) 

The 𝛾𝜇  obey the Dirac algebra, viz. 

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝑔𝜇𝜈 𝟙       ∀𝜇, 𝜈 

We can also define  𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3  which satisfies 

𝛾𝜇𝛾5 = −𝛾5𝛾
𝜇        ∀𝜇 

Define  a a   (Feynman slash notation) 

  0i M     
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Bilinear covariants: 

We can construct the Dirac adjoint  𝛹(𝑥)       = 𝛹†(𝑥)𝛾0 

which transforms as  𝛹(𝑥)       → 𝛹′(𝑥)       = 𝛹(𝑥)        𝑀 𝛬 −1 

It follows that we can construct the bilinear covariants 

Scalar                𝑆    = 𝛹(𝑥)        𝛹 𝑥 ′                    𝑆 → 𝑆′ = 𝑆 

Pseudoscalar   𝑃    = 𝛹(𝑥)        𝛾5𝛹 𝑥                 𝑃 → 𝑃′ = 𝑃 det𝛬 

Vector               𝑉𝜇   = 𝛹(𝑥)        𝛾𝜇𝛹 𝑥               𝑉𝜇 → 𝑉′𝜇 = 𝛬𝜇𝜈
𝜇
𝑉𝜈  

Pseudovector   𝐴𝜇   = 𝛹(𝑥)        𝛾𝜇𝛾5𝛹 𝑥          𝐴
𝜇 → 𝐴′𝜇 = det𝛬 𝛬𝜇𝜈

𝜇
𝐴𝜈  

Tensor               𝑇𝜇𝜈 = 𝛹(𝑥)        𝜎𝜇𝜈𝛹 𝑥             𝑇𝜇𝜈 →  𝑇′𝜇𝜈 = 𝛬𝜇𝛼
𝜇
𝛬𝜇𝛽
𝜈 𝑇𝛼𝛽  

where  𝜎𝜇𝜈 = 𝑖

2
 𝛾𝜇 , 𝛾𝜈𝜇   
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The explicit solutions of the Dirac equation are written: 

𝐸 ↓      𝜂
→ 

+1 (rest frame) -1 (rest frame) 

 

+ve 
𝑢(1) 𝑝 = 

1

 𝐸 + 𝑀 

𝐸 +𝑀
0
𝑝𝑧
𝑝+

  
𝑢(2) 𝑝 = 

1

 𝐸 + 𝑀 

0
𝐸 +𝑀
𝑝−
−𝑝𝑧

  

 
  

 
-ve 

𝑣(1) 𝑝 = 
1

 −𝐸 +𝑀 

𝑝𝑧
𝑝+

−𝐸 +𝑀
0

  
𝑣(2) 𝑝 = 

1

 −𝐸 +𝑀 

𝑝−
−𝑝𝑧

0
−𝐸 +𝑀

  

                    

 𝑝± = 𝑝𝑥 ± 𝑖𝑝𝑦  
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Orthogonality  relations: 

 

𝑢 𝑎  𝑝            𝑢 𝑏  𝑝 = 2𝑀𝛿𝑎𝑏  𝑢 𝑎  𝑝            𝑣 𝑏  𝑝 = 0 

  
  

𝑣 𝑎  𝑝            𝑢 𝑏  𝑝 = 0 𝑣 𝑎  𝑝            𝑣 𝑏  𝑝 = −2𝑀𝛿𝑎𝑏  
 

Completeness  relations: 
 

  𝑢 𝑎  𝑝   𝑢 𝑎  𝑝            = 2
𝑎=1      p M  

  𝑣 𝑎  𝑝   𝑣 𝑎  𝑝            = 2
𝑎=1 − p M  
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Dirac matrix identities: 

𝛾𝜇𝛾𝜇 =     4 𝟙 

   𝛾𝜇𝛾𝛼𝛾𝜇 = −2𝛾𝛼  

     𝛾𝜇𝛾𝛼𝛾𝛽𝛾𝜇 =    4𝑔𝛼𝛽  𝟙 

 𝛾𝜇𝛾𝛼𝛾𝛽𝛾𝛾𝛾𝜇 = −2𝛾𝛾𝛾𝛽𝛾𝛼  

Trace identities: 

                   Tr 𝛾𝜇  = 0 

         Tr 𝛾𝜇𝛾𝜈 …  = 0   for any odd number of gamma matrices  

              Tr 𝛾𝜇𝛾𝜈  = 4𝑔𝜇𝜈  

          Tr 𝛾𝜇𝛾𝜈𝛾
5
 = 0 

    Tr 𝛾𝜇𝛾𝜈𝛾𝛼𝛾𝛽  = 4 𝑔𝜇𝜈 𝑔𝛼𝛽 − 𝑔𝜇𝛼 𝑔𝜈𝛽 + 𝑔𝜇𝛽 𝑔𝜈𝛼   

Tr 𝛾𝜇𝛾𝜈𝛾𝛼𝛾𝛽𝛾
5
 = −4𝑖휀𝜇𝜈𝛼𝛽  
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Parity  𝑃 

basically a Lorentz transformation  

Under parity,  𝑥0 → 𝑥′0 = 𝑥0   and   𝑥 → 𝑥 ′ = −𝑥  

𝛬 → 𝑃 =  

+1
−1

−1
−1

  

Under parity 𝛹 𝑥 → 𝛹′ 𝑥 = 𝑀 𝑃 𝛹(𝑥) 

   where  𝑀 𝑃 −1𝛾𝜇𝑀 𝑃 = 𝑃𝜇𝜈
𝜇
𝛾𝜈  

It can then be shown that  𝑀 𝑃 = 𝛾0, i.e. 

𝛹 𝑥0 , 𝑥  → 𝛹′ 𝑥0,−𝑥  = 𝛾0𝛹(𝑥0, 𝑥 ) 
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We can now assign a better meaning to 𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 

Define two matrix operators 

𝑃+ = 1

2
 𝟙 + 𝛾

5
     and     𝑃− = 1

2
 𝟙 − 𝛾

5
  

and two sub-wavefunctions 

𝛹+ = 𝑃+𝛹     and    𝛹− = 𝑃−𝛹 

Now, note the following 

𝑃+𝛹+ = 𝛹+            𝑃−𝛹− = 𝛹− 

𝑃+𝛹− = 0               𝑃−𝛹+ = 0   

𝛹 = 𝛹+ +𝛹− 

Clearly the 𝑃+ and 𝑃− project out two orthogonal components of 𝛹 
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Now, under parity, 𝛹 → 𝛹′ = 𝛾0𝛹 

Now,   𝛹′ + =  𝑃+𝛹
′ = 𝑃+𝛾

0𝛹 = 𝛾0𝑃−𝛹 = 𝛾0𝛹− =  𝛹− ′ 

and      𝛹′ − =  𝑃−𝛹
′ = 𝑃−𝛾

0𝛹 = 𝛾0𝑃+𝛹 = 𝛾0𝛹+ =  𝛹+ ′ 

These states are interchanged by parity.... 

 

 

                                                  

 

 

 

𝛹+ 

 

𝛹− 

 

 

𝑃 
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Now, under parity, 𝛹 → 𝛹′ = 𝛾0𝛹 

Now,   𝛹′ 𝑅 =  𝑃𝑅𝛹
′ = 𝑃𝑅𝛾

0𝛹 = 𝛾0𝑃𝐿𝛹 = 𝛾0𝛹𝐿 =  𝛹𝐿 ′ 

and      𝛹′ 𝐿 =  𝑃𝐿𝛹
′ = 𝑃𝐿𝛾

0𝛹 = 𝛾0𝑃𝑅𝛹 = 𝛾0𝛹𝑅 =  𝛹𝑅 ′ 

These states are interchanged by parity.... 

𝑃𝑅 = 1

2
 𝟙 + 𝛾

5
     and     𝑃𝐿 = 1

2
 𝟙 − 𝛾

5
  

 

                                                  

 

 

Must correspond to left- and right-handed projections: chirality 

𝛹𝑅  

 

𝛹𝐿  

 

 

𝑃 
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Time Reversal  𝑇 

again, basically a Lorentz transformation  

Under time reversal,  𝑥0 → 𝑥′0 = −𝑥0 and   𝑥 → 𝑥 ′ = 𝑥   

...construct 𝑇𝜇𝜈
𝜇

... under time reversal  𝛹 𝑥 → 𝛹′ 𝑥 = 𝑀 𝑇 𝛹(𝑥) 

            where  𝑀 𝑇 −1𝛾𝜇𝑀 𝑇 = 𝑇𝜇𝜈
𝜇
𝛾𝜈  

It can then be shown that  𝑀 𝑇 = 𝑖𝛾1𝛾3.  

But in quantum mechanics  𝐻𝜓 = 𝑖𝜕𝑡𝜓, so, even if  𝑇𝐻𝑇−1 = 𝐻, the 

right side changes sign... i.e. we also require to change from 𝜓 to 𝜓∗... 

Thus, for the Dirac equation, we have  

𝛹 𝑥0, 𝑥  → 𝛹′ −𝑥0, 𝑥  = 𝑖𝛾1𝛾3𝛹∗(𝑥0, 𝑥 ) 
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Charge Conjugation  𝐶 

Not a spacetime symmetry, but an internal symmetry 

Define the operator  𝐶 = 𝑖𝛾2𝛾0 and the wavefunction 

𝛹 𝑥 → 𝛹𝑐 𝑥 = 𝐶𝛹(𝑥)       𝑡  

where 𝑡  stands for transpose. 

If we take the Dirac equation through these changes, it remains the 

same, i.e.  

     if   𝑖𝛾𝜇𝜕𝜇 +𝑀𝟙 𝛹(𝑥) = 0 

then  𝑖𝛾𝜇𝜕𝜇 +𝑀𝟙 𝛹𝑐 𝑥 = 0 

Dirac equation has charge conjugation invariance. 
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However, if we have a charged Dirac particle, we replace  

𝑝𝜇 → 𝑝𝜇 − 𝑒𝐴𝜇  

where 𝐴𝜇 = (𝜑,𝐴 ) is the electromagnetic four potential. 

The charge-coupled Dirac equation has the form 

 𝑖𝛾𝜇𝜕𝜇 − 𝑒𝛾
𝜇𝐴𝜇 −𝑀𝟙 𝛹(𝑥) = 0 

Under charge conjugation, it changes to 

 𝑖𝛾𝜇𝜕𝜇 + 𝑒𝛾𝜇𝐴𝜇 −𝑀𝟙 𝛹
𝑐 𝑥 = 0 

Thus, the 𝛹𝑐 𝑥  wavefunction describes the antiparticle.  

Obviously the neutral Dirac equation is invariant under 𝐶,𝑃,𝐶𝑃,𝑇,𝐶𝑃𝑇 

  discrete symmetries of the Dirac equation 


